add causal_attn flag to llama_cparams

This commit is contained in:
Douglas Hanley 2024-03-09 22:59:30 -06:00
parent 2df2834df3
commit d3085deb2a
3 changed files with 18 additions and 16 deletions

View file

@ -65,6 +65,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
// clear previous kv_cache values (irrelevant for embeddings) // clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx); llama_kv_cache_clear(ctx);
llama_set_causal_attn(ctx, false);
// run model // run model
llama_decode(ctx, batch); llama_decode(ctx, batch);
@ -131,6 +132,9 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
const llama_model * mdl = llama_get_model(ctx); const llama_model * mdl = llama_get_model(ctx);
llama_token eos_token = llama_token_eos(mdl); llama_token eos_token = llama_token_eos(mdl);
llama_kv_cache_clear(ctx);
llama_set_causal_attn(ctx, true);
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1); llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true); std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
@ -197,11 +201,8 @@ int main(int argc, char * argv[])
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams); llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
// create new context - set to embedding mode // create new context - set to embedding mode
llama_context * embd_ctx = llama_new_context_with_model(mdl, cparams); cparams.embeddings = true;
llama_set_embeddings(embd_ctx, true); llama_context * ctx = llama_new_context_with_model(mdl, cparams);
// create new context - default mode is causal
llama_context * causal_ctx = llama_new_context_with_model(mdl, cparams);
// ### Embedding/Representation ### // ### Embedding/Representation ###
// samples taken from: https://github.com/ContextualAI/gritlm#basic // samples taken from: https://github.com/ContextualAI/gritlm#basic
@ -219,8 +220,8 @@ int main(int argc, char * argv[])
}; };
// No need to add instruction for retrieval documents // No need to add instruction for retrieval documents
std::vector<std::vector<float>> d_rep = encode(embd_ctx, documents, gritlm_instruction("")); std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
std::vector<std::vector<float>> q_rep = encode(embd_ctx, queries, gritlm_instruction(instruction)); std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
float cosine_sim_q0_d0 = cosine_similarity(q_rep[0], d_rep[0]); float cosine_sim_q0_d0 = cosine_similarity(q_rep[0], d_rep[0]);
float cosine_sim_q0_d1 = cosine_similarity(q_rep[0], d_rep[1]); float cosine_sim_q0_d1 = cosine_similarity(q_rep[0], d_rep[1]);
@ -237,12 +238,10 @@ int main(int argc, char * argv[])
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction // GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{ {
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n"; const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
std::string response = generate(causal_ctx, prompt, true); std::string response = generate(ctx, prompt, true);
} }
llama_free(embd_ctx); llama_free(ctx);
llama_free(causal_ctx);
llama_free_model(mdl); llama_free_model(mdl);
llama_backend_free(); llama_backend_free();

View file

@ -1683,7 +1683,9 @@ struct llama_cparams {
float defrag_thold; float defrag_thold;
bool embeddings; bool embeddings;
bool causal_attn;
bool offload_kqv; bool offload_kqv;
enum llama_pooling_type pooling_type; enum llama_pooling_type pooling_type;
ggml_backend_sched_eval_callback cb_eval; ggml_backend_sched_eval_callback cb_eval;
@ -8030,13 +8032,13 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
} }
GGML_ASSERT( GGML_ASSERT(
(hparams.causal_attn || cparams.embeddings) && (hparams.causal_attn || !cparams.causal_attn) &&
"non-causal attention with generative models is not supported" "non-causal attention with generative models is not supported"
); );
// NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
// But if cparams.embeddings is set, the attention will be non-causal nonetheless. // But if cparams.embeddings is set, the attention will be non-causal nonetheless.
if (!cparams.embeddings) { if (cparams.causal_attn) {
const int64_t n_kv = kv_self.n; const int64_t n_kv = kv_self.n;
const int64_t n_tokens = batch.n_tokens; const int64_t n_tokens = batch.n_tokens;
@ -12181,6 +12183,7 @@ struct llama_context * llama_new_context_with_model(
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
} }
cparams.causal_attn = hparams.causal_attn;
if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
cparams.pooling_type = LLAMA_POOLING_TYPE_NONE; cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
@ -13169,8 +13172,8 @@ void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)
ctx->abort_callback_data = abort_callback_data; ctx->abort_callback_data = abort_callback_data;
} }
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) { void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.embeddings = embeddings; ctx->cparams.causal_attn = causal_attn;
} }
struct llama_batch llama_batch_get_one( struct llama_batch llama_batch_get_one(

View file

@ -643,7 +643,7 @@ extern "C" {
// Set whether to use causal attention or not // Set whether to use causal attention or not
// If set to true, the model will only attend to the past tokens // If set to true, the model will only attend to the past tokens
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings); LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
// Set abort callback // Set abort callback
LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data); LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);