Add llava inference code, but it's buggy. debugging

This commit is contained in:
M. Yusuf Sarıgöz 2023-10-03 19:49:45 +03:00
parent 7e9120f7b1
commit d37ed4750f
4 changed files with 235 additions and 32 deletions

View file

@ -7,8 +7,8 @@ if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()
set(TARGET clip-test)
add_executable(${TARGET} clip-test.cpp)
set(TARGET llava)
add_executable(${TARGET} llava.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -1,29 +0,0 @@
#include "clip.h"
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char ** argv) {
const char * model_path = argv[1];
const char * img_path = argv[2];
const char * text = argv[3];
auto ctx_clip = clip_model_load(model_path, 1);
clip_image_u8 img;
clip_image_f32 img_res;
clip_image_load_from_file(img_path, &img);
clip_image_preprocess(ctx_clip, &img, &img_res);
float * vec = (float *)malloc(4096 * 257 * sizeof(float));
clip_image_encode(ctx_clip, 4, &img_res, vec, false);
/*
float score;
clip_compare_text_and_image(ctx_clip, 4, text, &img, &score);
printf("score: %f\n", score);
*/
clip_free(ctx_clip);
free(vec);
return 0;
}

View file

@ -1120,6 +1120,9 @@ bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const cl
const int projection_dim = hparams.projection_dim;
const float eps = hparams.eps;
int batch_size = imgs->size;
if(ctx->has_llava_projector) {
GGML_ASSERT(batch_size == 1);
}
auto & buf_compute = ctx->buf_compute;
@ -1192,7 +1195,7 @@ bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const cl
}
// loop over layers
for (int il = 0; il < n_layer; il++) {
for (int il = 0; il < n_layer - 1; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
const size_t nb_q_w = model.layers[il].q_w->nb[0];
@ -1283,6 +1286,12 @@ bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const cl
output = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
embeddings = ggml_mul_mat(ctx0, model.llava_proj_w, embeddings);
output = ggml_add(ctx0, ggml_repeat(ctx0, model.llava_proj_b, embeddings), embeddings);
output = ggml_reshape_2d(ctx0, output, output->ne[0], output->ne[1]);
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
for (int i = 0; i < num_patches; ++i) {
ggml_set_i32_1d(patches, i, i+1);
}
output = ggml_get_rows(ctx0, output, patches);
} else {
// get the output of cls token, e.g., 0th index
struct ggml_tensor * cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, batch_size);

223
examples/llava/llava.cpp Normal file
View file

@ -0,0 +1,223 @@
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include "clip.h"
#include "common.h"
#include "llama.h"
static bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int * n_past) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
int n_batch = N; // params.n_batch;
for (int i = 0; i < (int) N; i += n_batch) {
int n_eval = (int) N - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, *n_past, 1, 0, };
if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
}
return true;
}
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int N, int * n_past) {
int n_batch = N;
for (int i = 0; i < (int) tokens.size(); i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int N, int * n_past){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, true);
eval_tokens(ctx_llama, embd_inp, N, n_past);
return true;
}
static llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
// const float repeat_penalty = params.repeat_penalty;
// const float alpha_presence = params.presence_penalty;
// const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
// const bool penalize_nl = params.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// TODO: Apply penalties
// float nl_logit = logits[llama_token_nl(ctx)];
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
// llama_sample_repetition_penalty(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, repeat_penalty);
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, alpha_frequency, alpha_presence);
// if (!penalize_nl) {
// logits[llama_token_nl(ctx)] = nl_logit;
// }
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
}
return id;
}
const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
int id = sample_id(ctx_llama, params);
static std::string ret;
if (id == llama_token_eos(ctx_llama)) {
ret = "</s>";
} else {
ret = llama_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
return ret.c_str();
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc < 3) {
printf("usage: %s <path/to/llava-rlhf-qe_k.gguf> <path/to/llava-encoder-f16.gguf> [path/to/an/image.jpg] [a text prompt]\n", argv[0]);
}
params.model = argv[1];
const char * clip_path = argv[2];
const char * img_path;
if (argc >= 4) {
img_path = argv[3];
}
if (argc >= 5) {
params.prompt = argv[4];
}
if (params.prompt.empty()) {
params.prompt = "user: describe the image in detail.\nassistant:";
}
auto ctx_clip = clip_model_load(clip_path, 1);
clip_image_u8 img;
clip_image_f32 img_res;
clip_image_load_from_file(img_path, &img);
clip_image_preprocess(ctx_clip, &img, &img_res);
float * vec = (float *)malloc(4096 * 256 * sizeof(float));
clip_image_encode(ctx_clip, params.n_threads, &img_res, vec, false);
clip_free(ctx_clip);
llama_backend_init(params.numa);
llama_model_params model_params = llama_model_default_params();
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
int n_past = 0;
int max_tgt_len = 256;
//eval_string(ctx_llama, params.prompt.c_str(), params.n_batch, &n_past);
eval_image_embd(ctx_llama, vec, 256, &n_past);
//eval_string(ctx_llama, "assistant:", params.n_batch, &n_past);
printf("n_past = %d\n", n_past);
const char* tmp;
for (int i=0; i<max_tgt_len; i++) {
tmp = sample(ctx_llama, params, &n_past);
if (strcmp(tmp, "</s>")==0) break;
printf("%s", tmp);
fflush(stdout);
}
printf("\n");
llama_print_timings(ctx_llama);
llama_free(ctx_llama);
llama_free_model(model);
llama_backend_free();
free(vec);
return 0;
}