Merge branch 'master' into finetune-lora
# Conflicts: # Makefile
This commit is contained in:
commit
d3afd7131e
15 changed files with 2277 additions and 2118 deletions
|
@ -17,3 +17,6 @@ indent_style = tab
|
|||
|
||||
[prompts/*.txt]
|
||||
insert_final_newline = unset
|
||||
|
||||
[examples/server/public/*]
|
||||
indent_size = 2
|
||||
|
|
30
.gitignore
vendored
30
.gitignore
vendored
|
@ -31,27 +31,29 @@ tmp/
|
|||
models/*
|
||||
models-mnt
|
||||
|
||||
/main
|
||||
/quantize
|
||||
/quantize-stats
|
||||
/result
|
||||
/perplexity
|
||||
/embedding
|
||||
/train-text-from-scratch
|
||||
/convert-llama2c-to-ggml
|
||||
/simple
|
||||
/benchmark-matmult
|
||||
/vdot
|
||||
/server
|
||||
/Pipfile
|
||||
/baby-llama
|
||||
/beam-search
|
||||
/benchmark-matmult
|
||||
/convert-llama2c-to-ggml
|
||||
/embd-input-test
|
||||
/embedding
|
||||
/gguf
|
||||
/gguf-llama-simple
|
||||
/libllama.so
|
||||
/llama-bench
|
||||
/baby-llama
|
||||
/beam-search
|
||||
/main
|
||||
/metal
|
||||
/perplexity
|
||||
/quantize
|
||||
/quantize-stats
|
||||
/result
|
||||
/save-load-state
|
||||
/server
|
||||
/simple
|
||||
/speculative
|
||||
/train-text-from-scratch
|
||||
/vdot
|
||||
build-info.h
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
|
|
|
@ -36,6 +36,12 @@ endif()
|
|||
# Option list
|
||||
#
|
||||
|
||||
if (APPLE)
|
||||
set(LLAMA_METAL_DEFAULT ON)
|
||||
else()
|
||||
set(LLAMA_METAL_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
# general
|
||||
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
||||
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
|
||||
|
@ -76,7 +82,7 @@ option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some
|
|||
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
||||
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
|
@ -158,6 +164,31 @@ if (APPLE AND LLAMA_ACCELERATE)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
message(STATUS "Metal framework found")
|
||||
|
||||
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_METAL)
|
||||
#add_compile_definitions(GGML_METAL_NDEBUG)
|
||||
|
||||
# get full path to the file
|
||||
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
|
||||
|
||||
# copy ggml-metal.metal to bin directory
|
||||
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BLAS)
|
||||
if (LLAMA_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
|
@ -293,29 +324,6 @@ if (LLAMA_CUBLAS)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_METAL)
|
||||
#add_compile_definitions(GGML_METAL_NDEBUG)
|
||||
|
||||
# get full path to the file
|
||||
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
|
||||
|
||||
# copy ggml-metal.metal to bin directory
|
||||
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
)
|
||||
endif()
|
||||
|
||||
if (LLAMA_MPI)
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
find_package(MPI)
|
||||
|
|
79
Makefile
79
Makefile
|
@ -1,5 +1,5 @@
|
|||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search tests/test-c.o finetune
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative finetune tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1
|
||||
|
@ -7,6 +7,39 @@ TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-dou
|
|||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
||||
ifndef UNAME_P
|
||||
UNAME_P := $(shell uname -p)
|
||||
endif
|
||||
|
||||
ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
ifndef LLAMA_NO_METAL
|
||||
LLAMA_METAL := 1
|
||||
endif
|
||||
|
||||
ifneq ($(UNAME_P),arm)
|
||||
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
|
||||
ifeq ($(SYSCTL_M),1)
|
||||
# UNAME_P := arm
|
||||
# UNAME_M := arm64
|
||||
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
|
||||
BUILD_TARGETS += metal
|
||||
endif
|
||||
|
||||
default: $(BUILD_TARGETS)
|
||||
|
||||
test:
|
||||
|
@ -38,18 +71,6 @@ gcovr-report: coverage ## Generate gcovr report
|
|||
mkdir -p gcovr-report
|
||||
gcovr --root . --html --html-details --output gcovr-report/coverage.html
|
||||
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
||||
ifndef UNAME_P
|
||||
UNAME_P := $(shell uname -p)
|
||||
endif
|
||||
|
||||
ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
ifdef RISCV_CROSS_COMPILE
|
||||
CC := riscv64-unknown-linux-gnu-gcc
|
||||
CXX := riscv64-unknown-linux-gnu-g++
|
||||
|
@ -58,19 +79,6 @@ endif
|
|||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
ifneq ($(UNAME_P),arm)
|
||||
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
|
||||
ifeq ($(SYSCTL_M),1)
|
||||
# UNAME_P := arm
|
||||
# UNAME_M := arm64
|
||||
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
#
|
||||
# Compile flags
|
||||
#
|
||||
|
@ -231,14 +239,24 @@ endif
|
|||
endif
|
||||
|
||||
ifndef LLAMA_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework.
|
||||
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
|
||||
# Mac OS - include Accelerate framework.
|
||||
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
|
||||
MK_LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif # LLAMA_NO_ACCELERATE
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
# By default - use GPU acceleration on Mac OS
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
|
||||
CXXFLAGS += -DGGML_USE_METAL
|
||||
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
OBJS += ggml-metal.o
|
||||
endif
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifdef LLAMA_MPI
|
||||
MK_CPPFLAGS += -DGGML_USE_MPI
|
||||
MK_CFLAGS += -Wno-cast-qual
|
||||
|
@ -480,9 +498,8 @@ beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o co
|
|||
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
|
||||
BUILD_TARGETS += metal
|
||||
endif
|
||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
metal: examples/metal/metal.cpp ggml.o $(OBJS)
|
||||
|
|
26
README.md
26
README.md
|
@ -280,29 +280,11 @@ In order to build llama.cpp you have three different options.
|
|||
|
||||
### Metal Build
|
||||
|
||||
Using Metal allows the computation to be executed on the GPU for Apple devices:
|
||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
|
||||
|
||||
- Using `make`:
|
||||
|
||||
```bash
|
||||
LLAMA_METAL=1 make
|
||||
```
|
||||
|
||||
- Using `CMake`:
|
||||
|
||||
```bash
|
||||
mkdir build-metal
|
||||
cd build-metal
|
||||
cmake -DLLAMA_METAL=ON ..
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
When built with Metal support, you can enable GPU inference with the `--gpu-layers|-ngl` command-line argument.
|
||||
Any value larger than 0 will offload the computation to the GPU. For example:
|
||||
|
||||
```bash
|
||||
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
|
||||
```
|
||||
When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line
|
||||
argument.
|
||||
|
||||
### MPI Build
|
||||
|
||||
|
|
|
@ -730,7 +730,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_batch = params.n_batch;
|
||||
if (params.n_gpu_layers != -1) {
|
||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
lparams.main_gpu = params.main_gpu;
|
||||
lparams.tensor_split = params.tensor_split;
|
||||
lparams.low_vram = params.low_vram;
|
||||
|
@ -1243,7 +1245,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
|
||||
fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
|
||||
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
|
||||
fprintf(stream, "n_gpu_layers: %d # default: 0\n", params.n_gpu_layers);
|
||||
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
|
||||
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
|
||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||
|
|
|
@ -34,7 +34,7 @@ struct gpt_params {
|
|||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
|
|
0
examples/llama-bench/llama-bench.cpp
Executable file → Normal file
0
examples/llama-bench/llama-bench.cpp
Executable file → Normal file
|
@ -151,14 +151,6 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
// TODO: determine the actual max context of the model (e.g. 4096 for LLaMA v2) and use that instead of 2048
|
||||
LOG_TEE("%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx);
|
||||
} else if (params.n_ctx < 8) {
|
||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
|
@ -194,6 +186,13 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
if (params.n_ctx > llama_n_ctx(ctx)) {
|
||||
LOG_TEE("%s: warning: base model only supports context sizes no greater than %d tokens (%d specified)\n", __func__, llama_n_ctx(ctx), params.n_ctx);
|
||||
} else if (params.n_ctx < 8) {
|
||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_TEE("\n");
|
||||
|
|
|
@ -368,7 +368,7 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
|
|||
// Example, we have a context window of 512, we will compute perplexity for each of the
|
||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||
// process the entire prompt.
|
||||
const int first = std::min(512, params.n_ctx/2);
|
||||
const int first = params.n_ctx/2;
|
||||
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
|
||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||
count += params.n_ctx - first - 1;
|
||||
|
@ -668,11 +668,6 @@ int main(int argc, char ** argv) {
|
|||
params.n_ctx += params.ppl_stride/2;
|
||||
}
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
|
@ -698,6 +693,11 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
if (params.n_ctx > llama_n_ctx(ctx)) {
|
||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than %d tokens (%d specified);"
|
||||
"expect poor results\n", __func__, llama_n_ctx(ctx), params.n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -145,7 +145,29 @@
|
|||
color: #888;
|
||||
}
|
||||
|
||||
|
||||
@keyframes loading-bg-wipe {
|
||||
0% {
|
||||
background-position: 0%;
|
||||
}
|
||||
100% {
|
||||
background-position: 100%;
|
||||
}
|
||||
}
|
||||
|
||||
.loading {
|
||||
--loading-color-1: #eeeeee00;
|
||||
--loading-color-2: #eeeeeeff;
|
||||
background-size: 50% 100%;
|
||||
background-image: linear-gradient(90deg, var(--loading-color-1), var(--loading-color-2), var(--loading-color-1));
|
||||
animation: loading-bg-wipe 2s linear infinite;
|
||||
}
|
||||
|
||||
@media (prefers-color-scheme: dark) {
|
||||
.loading {
|
||||
--loading-color-1: #22222200;
|
||||
--loading-color-2: #222222ff;
|
||||
}
|
||||
.popover-content {
|
||||
background-color: black;
|
||||
}
|
||||
|
@ -321,7 +343,10 @@
|
|||
const llamaStats = signal(null)
|
||||
const controller = signal(null)
|
||||
|
||||
const generating = computed(() => controller.value == null )
|
||||
// currently generating a completion?
|
||||
const generating = computed(() => controller.value != null)
|
||||
|
||||
// has the user started a chat?
|
||||
const chatStarted = computed(() => session.value.transcript.length > 0)
|
||||
|
||||
const transcriptUpdate = (transcript) => {
|
||||
|
@ -430,11 +455,19 @@
|
|||
return html`
|
||||
<form onsubmit=${submit}>
|
||||
<div>
|
||||
<textarea type="text" rows=2 onkeypress=${enterSubmits} value="${message}" oninput=${(e) => message.value = e.target.value} placeholder="Say something..."/>
|
||||
<textarea
|
||||
className=${generating.value ? "loading" : null}
|
||||
oninput=${(e) => message.value = e.target.value}
|
||||
onkeypress=${enterSubmits}
|
||||
placeholder="Say something..."
|
||||
rows=2
|
||||
type="text"
|
||||
value="${message}"
|
||||
/>
|
||||
</div>
|
||||
<div class="right">
|
||||
<button type="submit" disabled=${!generating.value} >Send</button>
|
||||
<button onclick=${stop} disabled=${generating}>Stop</button>
|
||||
<button type="submit" disabled=${generating.value}>Send</button>
|
||||
<button onclick=${stop} disabled=${!generating.value}>Stop</button>
|
||||
<button onclick=${reset}>Reset</button>
|
||||
</div>
|
||||
</form>
|
||||
|
|
89
ggml-cuda.cu
89
ggml-cuda.cu
|
@ -464,58 +464,91 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
|||
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
||||
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
template <int block_size>
|
||||
static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
const float eps = 1e-5f;
|
||||
|
||||
float mean = 0.0f;
|
||||
float var = 0.0f;
|
||||
float2 mean_var = make_float2(0.f, 0.f);
|
||||
|
||||
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const float xi = x[row*ncols + col];
|
||||
mean += xi;
|
||||
var += xi * xi;
|
||||
mean_var.x += xi;
|
||||
mean_var.y += xi * xi;
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
mean_var = warp_reduce_sum(mean_var);
|
||||
if (block_size > WARP_SIZE) {
|
||||
__shared__ float2 s_sum[32];
|
||||
int warp_id = threadIdx.x / WARP_SIZE;
|
||||
int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = mean_var;
|
||||
}
|
||||
__syncthreads();
|
||||
mean_var = s_sum[lane_id];
|
||||
mean_var = warp_reduce_sum(mean_var);
|
||||
}
|
||||
|
||||
const float mean = mean_var.x / ncols;
|
||||
const float var = mean_var.y / ncols - mean * mean;
|
||||
const float inv_std = rsqrtf(var + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
|
||||
var += __shfl_xor_sync(0xffffffff, var, mask, 32);
|
||||
}
|
||||
|
||||
mean /= ncols;
|
||||
var = var / ncols - mean * mean;
|
||||
const float inv_var = rsqrtf(var + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
||||
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
|
||||
}
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
template <int block_size>
|
||||
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
|
||||
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const float xi = x[row*ncols + col];
|
||||
tmp += xi * xi;
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
if (block_size > WARP_SIZE) {
|
||||
__shared__ float s_sum[32];
|
||||
int warp_id = threadIdx.x / WARP_SIZE;
|
||||
int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
__syncthreads();
|
||||
tmp = s_sum[lane_id];
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
}
|
||||
|
||||
const float mean = tmp / ncols;
|
||||
const float scale = rsqrtf(mean + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
dst[row*ncols + col] = scale * x[row*ncols + col];
|
||||
}
|
||||
}
|
||||
|
@ -4203,14 +4236,24 @@ static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
|
|||
|
||||
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
}
|
||||
}
|
||||
|
||||
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
}
|
||||
}
|
||||
|
||||
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
|
||||
|
|
|
@ -1334,7 +1334,7 @@ void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
|||
return;
|
||||
}
|
||||
|
||||
cl_mem mem = (cl_mem)tensor->data;
|
||||
cl_mem mem = (cl_mem)tensor->extra;
|
||||
clReleaseMemObject(mem);
|
||||
}
|
||||
|
||||
|
@ -1393,7 +1393,7 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
|||
size_t d_size;
|
||||
|
||||
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
|
||||
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
|
||||
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
||||
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
|
||||
|
||||
|
||||
|
@ -1491,7 +1491,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->data;
|
||||
d_X = (cl_mem) src0->extra;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
}
|
||||
|
@ -1567,7 +1567,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->data;
|
||||
d_X = (cl_mem) src0->extra;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||
}
|
||||
|
@ -1697,7 +1697,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
d_Q = (cl_mem) src0->data;
|
||||
d_Q = (cl_mem) src0->extra;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
@ -1860,6 +1860,6 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
|||
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
tensor->data = dst;
|
||||
tensor->extra = dst;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
}
|
||||
|
|
|
@ -5341,7 +5341,7 @@ struct llama_context_params llama_context_default_params() {
|
|||
/*.seed =*/ LLAMA_DEFAULT_SEED,
|
||||
/*.n_ctx =*/ 512,
|
||||
/*.n_batch =*/ 512,
|
||||
/*.gpu_layers =*/ 0,
|
||||
/*.n_gpu_layers =*/ 0,
|
||||
/*.main_gpu =*/ 0,
|
||||
/*.tensor_split =*/ nullptr,
|
||||
/*.rope_freq_base =*/ 10000.0f,
|
||||
|
@ -5358,6 +5358,10 @@ struct llama_context_params llama_context_default_params() {
|
|||
/*.embedding =*/ false,
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
result.n_gpu_layers = 1;
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -5550,7 +5554,6 @@ struct llama_context * llama_new_context_with_model(
|
|||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (params.n_gpu_layers > 0) {
|
||||
|
@ -5587,6 +5590,7 @@ struct llama_context * llama_new_context_with_model(
|
|||
#undef LLAMA_METAL_CHECK_BUF
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_MPI
|
||||
ctx->ctx_mpi = ggml_mpi_init();
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue