Merge remote-tracking branch 'upstream/master'
This commit is contained in:
commit
d3c57c1eed
47 changed files with 1773 additions and 941 deletions
161
.clang-format
Normal file
161
.clang-format
Normal file
|
@ -0,0 +1,161 @@
|
|||
---
|
||||
Language: Cpp
|
||||
AlignAfterOpenBracket: Align
|
||||
AlignArrayOfStructures: Left
|
||||
AlignConsecutiveAssignments: AcrossComments
|
||||
AlignConsecutiveBitFields: AcrossComments
|
||||
AlignConsecutiveDeclarations: AcrossComments
|
||||
AlignConsecutiveMacros: AcrossComments
|
||||
# AlignConsecutiveShortCaseStatements: AcrossComments
|
||||
AlignEscapedNewlines: Left # LeftWithLastLine
|
||||
AlignOperands: Align
|
||||
AlignTrailingComments:
|
||||
Kind: Always
|
||||
OverEmptyLines: 1
|
||||
AllowAllArgumentsOnNextLine: true
|
||||
AllowAllParametersOfDeclarationOnNextLine: false
|
||||
# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen
|
||||
AllowShortBlocksOnASingleLine: Never
|
||||
AllowShortCaseLabelsOnASingleLine: false
|
||||
AllowShortFunctionsOnASingleLine: Inline
|
||||
AllowShortIfStatementsOnASingleLine: Never
|
||||
AllowShortLambdasOnASingleLine: Inline
|
||||
AllowShortLoopsOnASingleLine: false
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
BinPackArguments: true
|
||||
BinPackParameters: true # OnePerLine
|
||||
BitFieldColonSpacing: Both
|
||||
BreakBeforeBraces: Custom # Attach
|
||||
BraceWrapping:
|
||||
AfterCaseLabel: true
|
||||
AfterClass: false
|
||||
AfterControlStatement: false
|
||||
AfterEnum: false
|
||||
AfterFunction: false
|
||||
AfterNamespace: false
|
||||
AfterObjCDeclaration: false
|
||||
AfterStruct: false
|
||||
AfterUnion: false
|
||||
AfterExternBlock: false
|
||||
BeforeCatch: false
|
||||
BeforeElse: false
|
||||
BeforeLambdaBody: false
|
||||
BeforeWhile: false
|
||||
IndentBraces: false
|
||||
SplitEmptyFunction: false
|
||||
SplitEmptyRecord: false
|
||||
SplitEmptyNamespace: false
|
||||
# BreakAdjacentStringLiterals: true
|
||||
BreakAfterAttributes: Never
|
||||
BreakBeforeBinaryOperators: None
|
||||
BreakBeforeInlineASMColon: OnlyMultiline
|
||||
BreakBeforeTernaryOperators: false
|
||||
# BreakBinaryOperations: Never
|
||||
BreakConstructorInitializers: AfterColon
|
||||
# BreakFunctionDefinitionParameters: false
|
||||
BreakInheritanceList: AfterComma
|
||||
BreakStringLiterals: true
|
||||
# BreakTemplateDeclarations: Yes
|
||||
ColumnLimit: 120
|
||||
CommentPragmas: '^ IWYU pragma:'
|
||||
CompactNamespaces: false
|
||||
ConstructorInitializerIndentWidth: 4
|
||||
ContinuationIndentWidth: 4
|
||||
Cpp11BracedListStyle: false
|
||||
DerivePointerAlignment: false
|
||||
DisableFormat: false
|
||||
EmptyLineBeforeAccessModifier: Leave
|
||||
EmptyLineAfterAccessModifier: Never
|
||||
ExperimentalAutoDetectBinPacking: false
|
||||
FixNamespaceComments: true
|
||||
IncludeBlocks: Regroup
|
||||
IncludeCategories:
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 1
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
Priority: 3
|
||||
SortPriority: 0
|
||||
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||
IncludeIsMainSourceRegex: ''
|
||||
IndentAccessModifiers: false
|
||||
IndentCaseBlocks: true
|
||||
IndentCaseLabels: true
|
||||
IndentExternBlock: NoIndent
|
||||
IndentGotoLabels: false
|
||||
IndentPPDirectives: AfterHash
|
||||
IndentWidth: 4
|
||||
IndentWrappedFunctionNames: false
|
||||
InsertBraces: true # NOTE: may lead to incorrect formatting
|
||||
InsertNewlineAtEOF: true
|
||||
JavaScriptQuotes: Leave
|
||||
JavaScriptWrapImports: true
|
||||
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
LambdaBodyIndentation: Signature
|
||||
LineEnding: LF
|
||||
MacroBlockBegin: ''
|
||||
MacroBlockEnd: ''
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: None
|
||||
ObjCBinPackProtocolList: Auto
|
||||
ObjCBlockIndentWidth: 4
|
||||
ObjCSpaceAfterProperty: true
|
||||
ObjCSpaceBeforeProtocolList: true
|
||||
PPIndentWidth: -1
|
||||
PackConstructorInitializers: CurrentLine
|
||||
PenaltyBreakAssignment: 2
|
||||
PenaltyBreakBeforeFirstCallParameter: 1
|
||||
PenaltyBreakComment: 300
|
||||
PenaltyBreakFirstLessLess: 120
|
||||
PenaltyBreakString: 1000
|
||||
PenaltyBreakTemplateDeclaration: 10
|
||||
PenaltyExcessCharacter: 1000000
|
||||
PenaltyReturnTypeOnItsOwnLine: 200
|
||||
PointerAlignment: Middle
|
||||
QualifierAlignment: Left
|
||||
#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict']
|
||||
RawStringFormats:
|
||||
- Language: Cpp
|
||||
Delimiters:
|
||||
- cc
|
||||
- CC
|
||||
- cpp
|
||||
- Cpp
|
||||
- CPP
|
||||
- 'c++'
|
||||
- 'C++'
|
||||
CanonicalDelimiter: ''
|
||||
ReferenceAlignment: Middle
|
||||
ReflowComments: false # IndentOnly
|
||||
SeparateDefinitionBlocks: Always
|
||||
SortIncludes: CaseInsensitive
|
||||
SortUsingDeclarations: LexicographicNumeric
|
||||
SpaceAfterCStyleCast: true
|
||||
SpaceAfterLogicalNot: false
|
||||
SpaceAfterTemplateKeyword: true
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeCpp11BracedList: false
|
||||
SpaceBeforeCtorInitializerColon: true
|
||||
SpaceBeforeInheritanceColon: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceBeforeRangeBasedForLoopColon: true
|
||||
SpaceInEmptyBlock: false
|
||||
SpaceInEmptyParentheses: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
SpacesInAngles: Never
|
||||
SpacesInContainerLiterals: true
|
||||
SpacesInLineCommentPrefix:
|
||||
Minimum: 1
|
||||
Maximum: -1
|
||||
SpacesInParentheses: false
|
||||
SpacesInSquareBrackets: false
|
||||
SpaceBeforeSquareBrackets: false
|
||||
Standard: c++17
|
||||
TabWidth: 4
|
||||
UseTab: Never
|
||||
WhitespaceSensitiveMacros: ['STRINGIZE']
|
||||
...
|
||||
|
50
.github/ISSUE_TEMPLATE/01-bug-low.yml
vendored
50
.github/ISSUE_TEMPLATE/01-bug-low.yml
vendored
|
@ -1,50 +0,0 @@
|
|||
name: Low Severity Bugs
|
||||
description: Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "low severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
73
.github/ISSUE_TEMPLATE/010-bug-compilation.yml
vendored
Normal file
73
.github/ISSUE_TEMPLATE/010-bug-compilation.yml
vendored
Normal file
|
@ -0,0 +1,73 @@
|
|||
name: Bug (compilation)
|
||||
description: Something goes wrong when trying to compile llama.cpp.
|
||||
title: "Compile bug: "
|
||||
labels: ["bug-unconfirmed", "compilation"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for bug reports where the compilation of llama.cpp fails.
|
||||
Before opening an issue, please confirm that the compilation still fails with `-DGGML_CCACHE=OFF`.
|
||||
If the compilation succeeds with ccache disabled you should be able to permanently fix the issue
|
||||
by clearing `~/.cache/ccache` (on Linux).
|
||||
- type: textarea
|
||||
id: commit
|
||||
attributes:
|
||||
label: Git commit
|
||||
description: Which commit are you trying to compile?
|
||||
placeholder: |
|
||||
$git rev-parse HEAD
|
||||
84a07a17b1b08cf2b9747c633a2372782848a27f
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: backends
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
|
||||
multiple: true
|
||||
- type: textarea
|
||||
id: steps_to_reproduce
|
||||
attributes:
|
||||
label: Steps to Reproduce
|
||||
description: >
|
||||
Please tell us how to reproduce the bug and any additional information that you think could be useful for fixing it.
|
||||
If you can narrow down the bug to specific compile flags, that information would be very much appreciated by us.
|
||||
placeholder: >
|
||||
Here are the exact commands that I used: ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
Please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
98
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
Normal file
98
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
Normal file
|
@ -0,0 +1,98 @@
|
|||
name: Bug (model use)
|
||||
description: Something goes wrong when using a model (in general, not specific to a single llama.cpp module).
|
||||
title: "Eval bug: "
|
||||
labels: ["bug-unconfirmed", "model evaluation"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for bug reports where the model evaluation results
|
||||
(i.e. the generated text) are incorrect or llama.cpp crashes during model evaluation.
|
||||
If you encountered the issue while using an external UI (e.g. ollama),
|
||||
please reproduce your issue using one of the examples/binaries in this repository.
|
||||
The `llama-cli` binary can be used for simple and reproducible model inference.
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: backends
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
|
||||
multiple: true
|
||||
- type: textarea
|
||||
id: hardware
|
||||
attributes:
|
||||
label: Hardware
|
||||
description: Which CPUs/GPUs are you using?
|
||||
placeholder: >
|
||||
e.g. Ryzen 5950X + 2x RTX 4090
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: model
|
||||
attributes:
|
||||
label: Model
|
||||
description: >
|
||||
Which model at which quantization were you using when encountering the bug?
|
||||
If you downloaded a GGUF file off of Huggingface, please provide a link.
|
||||
placeholder: >
|
||||
e.g. Meta LLaMA 3.1 Instruct 8b q4_K_M
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: steps_to_reproduce
|
||||
attributes:
|
||||
label: Steps to Reproduce
|
||||
description: >
|
||||
Please tell us how to reproduce the bug and any additional information that you think could be useful for fixing it.
|
||||
If you can narrow down the bug to specific hardware, compile flags, or command line arguments,
|
||||
that information would be very much appreciated by us.
|
||||
placeholder: >
|
||||
e.g. when I run llama-cli with -ngl 99 I get garbled outputs.
|
||||
When I use -ngl 0 it works correctly.
|
||||
Here are the exact commands that I used: ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
Please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
78
.github/ISSUE_TEMPLATE/019-bug-misc.yml
vendored
Normal file
78
.github/ISSUE_TEMPLATE/019-bug-misc.yml
vendored
Normal file
|
@ -0,0 +1,78 @@
|
|||
name: Bug (misc.)
|
||||
description: Something is not working the way it should (and it's not covered by any of the above cases).
|
||||
title: "Misc. bug: "
|
||||
labels: ["bug-unconfirmed"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for miscellaneous bugs that don't fit into any other category.
|
||||
If you encountered the issue while using an external UI (e.g. ollama),
|
||||
please reproduce your issue using one of the examples/binaries in this repository.
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: module
|
||||
attributes:
|
||||
label: Which llama.cpp modules do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- libllama (core library)
|
||||
- llama-cli
|
||||
- llama-server
|
||||
- llama-bench
|
||||
- llama-quantize
|
||||
- Python/Bash scripts
|
||||
- Other (Please specify in the next section)
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: steps_to_reproduce
|
||||
attributes:
|
||||
label: Steps to Reproduce
|
||||
description: >
|
||||
Please tell us how to reproduce the bug and any additional information that you think could be useful for fixing it.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
Please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
50
.github/ISSUE_TEMPLATE/02-bug-medium.yml
vendored
50
.github/ISSUE_TEMPLATE/02-bug-medium.yml
vendored
|
@ -1,50 +0,0 @@
|
|||
name: Medium Severity Bug
|
||||
description: Used to report medium severity bugs in llama.cpp (e.g. Malfunctioning Features but generally still useable)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "medium severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
|
@ -1,5 +1,5 @@
|
|||
name: Enhancement
|
||||
description: Used to request enhancements for llama.cpp
|
||||
description: Used to request enhancements for llama.cpp.
|
||||
title: "Feature Request: "
|
||||
labels: ["enhancement"]
|
||||
body:
|
50
.github/ISSUE_TEMPLATE/03-bug-high.yml
vendored
50
.github/ISSUE_TEMPLATE/03-bug-high.yml
vendored
|
@ -1,50 +0,0 @@
|
|||
name: High Severity Bug
|
||||
description: Used to report high severity bugs in llama.cpp (e.g. Malfunctioning features hindering important common workflow)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "high severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
|
@ -1,5 +1,5 @@
|
|||
name: Research
|
||||
description: Track new technical research area
|
||||
description: Track new technical research area.
|
||||
title: "Research: "
|
||||
labels: ["research 🔬"]
|
||||
body:
|
50
.github/ISSUE_TEMPLATE/04-bug-critical.yml
vendored
50
.github/ISSUE_TEMPLATE/04-bug-critical.yml
vendored
|
@ -1,50 +0,0 @@
|
|||
name: Critical Severity Bug
|
||||
description: Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "critical severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
|
@ -1,5 +1,5 @@
|
|||
name: Refactor (Maintainers)
|
||||
description: Used to track refactoring opportunities
|
||||
description: Used to track refactoring opportunities.
|
||||
title: "Refactor: "
|
||||
labels: ["refactor"]
|
||||
body:
|
9
.github/workflows/build.yml
vendored
9
.github/workflows/build.yml
vendored
|
@ -986,13 +986,14 @@ jobs:
|
|||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
echo "cp oneAPI running time dll files in ${{ env.ONEAPI_ROOT }} to ./build/bin"
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.4.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.5.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_core.2.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_win_proxy_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl7.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl8.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
|
||||
|
|
|
@ -3,12 +3,60 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
|
|||
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
|
||||
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
|
||||
|
||||
set(GGML_STATIC @GGML_STATIC@)
|
||||
set(GGML_NATIVE @GGML_NATIVE@)
|
||||
set(GGML_LTO @GGML_LTO@)
|
||||
set(GGML_CCACHE @GGML_CCACHE@)
|
||||
set(GGML_AVX @GGML_AVX@)
|
||||
set(GGML_AVX2 @GGML_AVX2@)
|
||||
set(GGML_AVX512 @GGML_AVX512@)
|
||||
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
|
||||
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
|
||||
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
|
||||
set(GGML_AMX_TILE @GGML_AMX_TILE@)
|
||||
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
|
||||
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
|
||||
set(GGML_FMA @GGML_FMA@)
|
||||
set(GGML_LASX @GGML_LASX@)
|
||||
set(GGML_LSX @GGML_LSX@)
|
||||
set(GGML_RVV @GGML_RVV@)
|
||||
set(GGML_SVE @GGML_SVE@)
|
||||
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_CPU_HBM @GGML_CPU_HBM@)
|
||||
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
|
||||
|
||||
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
|
||||
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
|
||||
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
|
||||
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
|
||||
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
|
||||
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
|
||||
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
|
||||
|
||||
set(GGML_HIP_UMA @GGML_HIP_UMA@)
|
||||
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
|
||||
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
|
||||
|
||||
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
|
||||
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
|
||||
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
|
||||
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
|
||||
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
|
||||
set(GGML_METAL_STD @GGML_METAL_STD@)
|
||||
|
||||
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
|
||||
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
|
||||
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
|
||||
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
|
@ -20,6 +68,7 @@ find_package(Threads REQUIRED)
|
|||
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "")
|
||||
set(_llama_link_opts "")
|
||||
foreach(_ggml_lib ggml ggml-base)
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
|
@ -49,12 +98,26 @@ foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
|
|||
endif()
|
||||
endforeach()
|
||||
|
||||
if (NOT LLAMA_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND _llama_link_deps memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
|
||||
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
|
@ -65,25 +128,33 @@ if (GGML_METAL)
|
|||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND _llama_link_deps Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND _llama_link_deps DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
endif()
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
|
@ -97,6 +168,7 @@ set_target_properties(llama
|
|||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
|
||||
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||
|
|
|
@ -34,9 +34,10 @@ The SYCL backend would be broken by some PRs due to no online CI.
|
|||
|
||||
The following release is verified with good quality:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform|
|
||||
|-|-|-|-|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|
||||
|
||||
## News
|
||||
|
|
|
@ -6,21 +6,21 @@
|
|||
#include <clocale>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <cstdlib>
|
||||
#include <iterator>
|
||||
#include <map>
|
||||
#include <numeric>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
|
@ -36,8 +36,7 @@ static uint64_t get_time_ns() {
|
|||
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
|
||||
}
|
||||
|
||||
template<class T>
|
||||
static std::string join(const std::vector<T> & values, const std::string & delim) {
|
||||
template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
|
||||
std::ostringstream str;
|
||||
for (size_t i = 0; i < values.size(); i++) {
|
||||
str << values[i];
|
||||
|
@ -48,15 +47,13 @@ static std::string join(const std::vector<T> & values, const std::string & delim
|
|||
return str.str();
|
||||
}
|
||||
|
||||
template<typename T, typename F>
|
||||
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
|
||||
template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
|
||||
std::vector<std::string> str_values;
|
||||
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
|
||||
return str_values;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static T avg(const std::vector<T> & v) {
|
||||
template <typename T> static T avg(const std::vector<T> & v) {
|
||||
if (v.empty()) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -64,8 +61,7 @@ static T avg(const std::vector<T> & v) {
|
|||
return sum / (T) v.size();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static T stdev(const std::vector<T> & v) {
|
||||
template <typename T> static T stdev(const std::vector<T> & v) {
|
||||
if (v.size() <= 1) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -104,13 +100,20 @@ enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
|
|||
|
||||
static const char * output_format_str(output_formats format) {
|
||||
switch (format) {
|
||||
case NONE: return "none";
|
||||
case CSV: return "csv";
|
||||
case JSON: return "json";
|
||||
case JSONL: return "jsonl";
|
||||
case MARKDOWN: return "md";
|
||||
case SQL: return "sql";
|
||||
default: GGML_ABORT("invalid output format");
|
||||
case NONE:
|
||||
return "none";
|
||||
case CSV:
|
||||
return "csv";
|
||||
case JSON:
|
||||
return "json";
|
||||
case JSONL:
|
||||
return "jsonl";
|
||||
case MARKDOWN:
|
||||
return "md";
|
||||
case SQL:
|
||||
return "sql";
|
||||
default:
|
||||
GGML_ABORT("invalid output format");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -135,10 +138,14 @@ static bool output_format_from_str(const std::string & s, output_formats & forma
|
|||
|
||||
static const char * split_mode_str(llama_split_mode mode) {
|
||||
switch (mode) {
|
||||
case LLAMA_SPLIT_MODE_NONE: return "none";
|
||||
case LLAMA_SPLIT_MODE_LAYER: return "layer";
|
||||
case LLAMA_SPLIT_MODE_ROW: return "row";
|
||||
default: GGML_ABORT("invalid split mode");
|
||||
case LLAMA_SPLIT_MODE_NONE:
|
||||
return "none";
|
||||
case LLAMA_SPLIT_MODE_LAYER:
|
||||
return "layer";
|
||||
case LLAMA_SPLIT_MODE_ROW:
|
||||
return "row";
|
||||
default:
|
||||
GGML_ABORT("invalid split mode");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -218,38 +225,59 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
printf("options:\n");
|
||||
printf(" -h, --help\n");
|
||||
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
|
||||
printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
|
||||
printf(" -pg <pp,tg> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub, --ubatch-size <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk, --cache-type-k <t> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
|
||||
join(cmd_params_defaults.cpu_mask, ",").c_str());
|
||||
printf(" --cpu-strict <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.cpu_strict, ",").c_str());
|
||||
printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
if (llama_supports_rpc()) {
|
||||
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
|
||||
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
|
||||
join(cmd_params_defaults.rpc_servers, ",").c_str());
|
||||
}
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n",
|
||||
join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -fa, --flash-attn <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.flash_attn, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n",
|
||||
join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
|
||||
printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
|
||||
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
||||
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
|
||||
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n",
|
||||
output_format_str(cmd_params_defaults.output_format));
|
||||
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n",
|
||||
output_format_str(cmd_params_defaults.output_format_stderr));
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
|
||||
printf("\n");
|
||||
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
|
||||
printf(
|
||||
"Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter "
|
||||
"multiple times.\n");
|
||||
}
|
||||
|
||||
static ggml_type ggml_type_from_name(const std::string & s) {
|
||||
|
@ -281,7 +309,6 @@ static ggml_type ggml_type_from_name(const std::string & s) {
|
|||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
|
||||
static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
cmd_params params;
|
||||
std::string arg;
|
||||
|
@ -476,10 +503,16 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
break;
|
||||
} else {
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
|
||||
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
|
||||
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
|
||||
else { invalid_param = true; break; }
|
||||
/**/ if (value == "distribute" || value == "") {
|
||||
params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
|
||||
} else if (value == "isolate") {
|
||||
params.numa = GGML_NUMA_STRATEGY_ISOLATE;
|
||||
} else if (value == "numactl") {
|
||||
params.numa = GGML_NUMA_STRATEGY_NUMACTL;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else if (arg == "-fa" || arg == "--flash-attn") {
|
||||
if (++i >= argc) {
|
||||
|
@ -570,27 +603,69 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// set defaults
|
||||
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
|
||||
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
||||
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
||||
if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
|
||||
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
||||
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
|
||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
|
||||
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
||||
if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
|
||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
|
||||
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
|
||||
if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
|
||||
if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
|
||||
if (params.model.empty()) {
|
||||
params.model = cmd_params_defaults.model;
|
||||
}
|
||||
if (params.n_prompt.empty()) {
|
||||
params.n_prompt = cmd_params_defaults.n_prompt;
|
||||
}
|
||||
if (params.n_gen.empty()) {
|
||||
params.n_gen = cmd_params_defaults.n_gen;
|
||||
}
|
||||
if (params.n_pg.empty()) {
|
||||
params.n_pg = cmd_params_defaults.n_pg;
|
||||
}
|
||||
if (params.n_batch.empty()) {
|
||||
params.n_batch = cmd_params_defaults.n_batch;
|
||||
}
|
||||
if (params.n_ubatch.empty()) {
|
||||
params.n_ubatch = cmd_params_defaults.n_ubatch;
|
||||
}
|
||||
if (params.type_k.empty()) {
|
||||
params.type_k = cmd_params_defaults.type_k;
|
||||
}
|
||||
if (params.type_v.empty()) {
|
||||
params.type_v = cmd_params_defaults.type_v;
|
||||
}
|
||||
if (params.n_gpu_layers.empty()) {
|
||||
params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
|
||||
}
|
||||
if (params.rpc_servers.empty()) {
|
||||
params.rpc_servers = cmd_params_defaults.rpc_servers;
|
||||
}
|
||||
if (params.split_mode.empty()) {
|
||||
params.split_mode = cmd_params_defaults.split_mode;
|
||||
}
|
||||
if (params.main_gpu.empty()) {
|
||||
params.main_gpu = cmd_params_defaults.main_gpu;
|
||||
}
|
||||
if (params.no_kv_offload.empty()) {
|
||||
params.no_kv_offload = cmd_params_defaults.no_kv_offload;
|
||||
}
|
||||
if (params.flash_attn.empty()) {
|
||||
params.flash_attn = cmd_params_defaults.flash_attn;
|
||||
}
|
||||
if (params.tensor_split.empty()) {
|
||||
params.tensor_split = cmd_params_defaults.tensor_split;
|
||||
}
|
||||
if (params.use_mmap.empty()) {
|
||||
params.use_mmap = cmd_params_defaults.use_mmap;
|
||||
}
|
||||
if (params.embeddings.empty()) {
|
||||
params.embeddings = cmd_params_defaults.embeddings;
|
||||
}
|
||||
if (params.n_threads.empty()) {
|
||||
params.n_threads = cmd_params_defaults.n_threads;
|
||||
}
|
||||
if (params.cpu_mask.empty()) {
|
||||
params.cpu_mask = cmd_params_defaults.cpu_mask;
|
||||
}
|
||||
if (params.cpu_strict.empty()) {
|
||||
params.cpu_strict = cmd_params_defaults.cpu_strict;
|
||||
}
|
||||
if (params.poll.empty()) {
|
||||
params.poll = cmd_params_defaults.poll;
|
||||
}
|
||||
|
||||
return params;
|
||||
}
|
||||
|
@ -633,12 +708,8 @@ struct cmd_params_instance {
|
|||
}
|
||||
|
||||
bool equal_mparams(const cmd_params_instance & other) const {
|
||||
return model == other.model &&
|
||||
n_gpu_layers == other.n_gpu_layers &&
|
||||
rpc_servers == other.rpc_servers &&
|
||||
split_mode == other.split_mode &&
|
||||
main_gpu == other.main_gpu &&
|
||||
use_mmap == other.use_mmap &&
|
||||
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
|
||||
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
|
||||
tensor_split == other.tensor_split;
|
||||
}
|
||||
|
||||
|
@ -662,6 +733,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
std::vector<cmd_params_instance> instances;
|
||||
|
||||
// this ordering minimizes the number of times that each model needs to be reloaded
|
||||
// clang-format off
|
||||
for (const auto & m : params.model)
|
||||
for (const auto & nl : params.n_gpu_layers)
|
||||
for (const auto & rpc : params.rpc_servers)
|
||||
|
@ -767,6 +839,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
instances.push_back(instance);
|
||||
}
|
||||
}
|
||||
// clang-format on
|
||||
|
||||
return instances;
|
||||
}
|
||||
|
@ -834,28 +907,21 @@ struct test {
|
|||
(void) ctx;
|
||||
}
|
||||
|
||||
uint64_t avg_ns() const {
|
||||
return ::avg(samples_ns);
|
||||
}
|
||||
uint64_t avg_ns() const { return ::avg(samples_ns); }
|
||||
|
||||
uint64_t stdev_ns() const {
|
||||
return ::stdev(samples_ns);
|
||||
}
|
||||
uint64_t stdev_ns() const { return ::stdev(samples_ns); }
|
||||
|
||||
std::vector<double> get_ts() const {
|
||||
int n_tokens = n_prompt + n_gen;
|
||||
std::vector<double> ts;
|
||||
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
|
||||
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
|
||||
[n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
|
||||
return ts;
|
||||
}
|
||||
|
||||
double avg_ts() const {
|
||||
return ::avg(get_ts());
|
||||
}
|
||||
double avg_ts() const { return ::avg(get_ts()); }
|
||||
|
||||
double stdev_ts() const {
|
||||
return ::stdev(get_ts());
|
||||
}
|
||||
double stdev_ts() const { return ::stdev(get_ts()); }
|
||||
|
||||
static std::string get_backend() {
|
||||
std::vector<std::string> backends;
|
||||
|
@ -871,17 +937,11 @@ struct test {
|
|||
|
||||
static const std::vector<std::string> & get_fields() {
|
||||
static const std::vector<std::string> fields = {
|
||||
"build_commit", "build_number",
|
||||
"cpu_info", "gpu_info", "backends",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_ubatch",
|
||||
"n_threads", "cpu_mask", "cpu_strict", "poll",
|
||||
"type_k", "type_v",
|
||||
"n_gpu_layers", "split_mode",
|
||||
"main_gpu", "no_kv_offload", "flash_attn",
|
||||
"tensor_split", "use_mmap", "embeddings",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
|
||||
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
|
||||
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
|
||||
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap",
|
||||
"embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts",
|
||||
};
|
||||
return fields;
|
||||
|
@ -890,17 +950,14 @@ struct test {
|
|||
enum field_type { STRING, BOOL, INT, FLOAT };
|
||||
|
||||
static field_type get_field_type(const std::string & field) {
|
||||
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
|
||||
field == "n_threads" || field == "poll" ||
|
||||
field == "model_size" || field == "model_n_params" ||
|
||||
field == "n_gpu_layers" || field == "main_gpu" ||
|
||||
field == "n_prompt" || field == "n_gen" ||
|
||||
field == "avg_ns" || field == "stddev_ns") {
|
||||
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
|
||||
field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
|
||||
field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" ||
|
||||
field == "stddev_ns") {
|
||||
return INT;
|
||||
}
|
||||
if (field == "f16_kv" || field == "no_kv_offload" ||
|
||||
field == "cpu_strict" ||
|
||||
field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
|
||||
if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
|
||||
field == "use_mmap" || field == "embeddings") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
|
@ -925,20 +982,38 @@ struct test {
|
|||
tensor_split_str += "/";
|
||||
}
|
||||
}
|
||||
std::vector<std::string> values = {
|
||||
build_commit, std::to_string(build_number),
|
||||
cpu_info, gpu_info, get_backend(),
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_ubatch),
|
||||
std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
|
||||
ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
||||
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
|
||||
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||
};
|
||||
std::vector<std::string> values = { build_commit,
|
||||
std::to_string(build_number),
|
||||
cpu_info,
|
||||
gpu_info,
|
||||
get_backend(),
|
||||
model_filename,
|
||||
model_type,
|
||||
std::to_string(model_size),
|
||||
std::to_string(model_n_params),
|
||||
std::to_string(n_batch),
|
||||
std::to_string(n_ubatch),
|
||||
std::to_string(n_threads),
|
||||
cpu_mask,
|
||||
std::to_string(cpu_strict),
|
||||
std::to_string(poll),
|
||||
ggml_type_name(type_k),
|
||||
ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers),
|
||||
split_mode_str(split_mode),
|
||||
std::to_string(main_gpu),
|
||||
std::to_string(no_kv_offload),
|
||||
std::to_string(flash_attn),
|
||||
tensor_split_str,
|
||||
std::to_string(use_mmap),
|
||||
std::to_string(embeddings),
|
||||
std::to_string(n_prompt),
|
||||
std::to_string(n_gen),
|
||||
test_time,
|
||||
std::to_string(avg_ns()),
|
||||
std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()),
|
||||
std::to_string(stdev_ts()) };
|
||||
return values;
|
||||
}
|
||||
|
||||
|
@ -946,8 +1021,8 @@ struct test {
|
|||
std::map<std::string, std::string> map;
|
||||
auto fields = get_fields();
|
||||
auto values = get_values();
|
||||
std::transform(fields.begin(), fields.end(), values.begin(),
|
||||
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
|
||||
std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
|
||||
std::make_pair<const std::string &, const std::string &>);
|
||||
return map;
|
||||
}
|
||||
};
|
||||
|
@ -961,8 +1036,11 @@ struct printer {
|
|||
virtual ~printer() {}
|
||||
|
||||
FILE * fout;
|
||||
|
||||
virtual void print_header(const cmd_params & params) { (void) params; }
|
||||
|
||||
virtual void print_test(const test & t) = 0;
|
||||
|
||||
virtual void print_footer() {}
|
||||
};
|
||||
|
||||
|
@ -992,7 +1070,6 @@ struct csv_printer : public printer {
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
static std::string escape_json(const std::string & value) {
|
||||
std::string escaped;
|
||||
for (auto c : value) {
|
||||
|
@ -1033,7 +1110,8 @@ struct json_printer : public printer {
|
|||
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
|
||||
assert(fields.size() == values.size());
|
||||
for (size_t i = 0; i < fields.size(); i++) {
|
||||
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
|
||||
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
|
||||
format_json_value(fields.at(i), values.at(i)).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1051,12 +1129,9 @@ struct json_printer : public printer {
|
|||
fflush(fout);
|
||||
}
|
||||
|
||||
void print_footer() override {
|
||||
fprintf(fout, "\n]\n");
|
||||
}
|
||||
void print_footer() override { fprintf(fout, "\n]\n"); }
|
||||
};
|
||||
|
||||
|
||||
struct jsonl_printer : public printer {
|
||||
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
|
||||
assert(fields.size() == values.size());
|
||||
|
@ -1303,7 +1378,8 @@ struct sql_printer : public printer {
|
|||
std::vector<std::string> fields = test::get_fields();
|
||||
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
|
||||
for (size_t i = 0; i < fields.size(); i++) {
|
||||
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
|
||||
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
|
||||
i < fields.size() - 1 ? "," : "");
|
||||
}
|
||||
fprintf(fout, ");\n");
|
||||
fprintf(fout, "\n");
|
||||
|
@ -1505,13 +1581,15 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if (t.n_prompt > 0) {
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count,
|
||||
i + 1, params.reps);
|
||||
}
|
||||
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
|
||||
}
|
||||
if (t.n_gen > 0) {
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count,
|
||||
i + 1, params.reps);
|
||||
}
|
||||
test_gen(ctx, t.n_gen, t.n_threads);
|
||||
}
|
||||
|
|
|
@ -252,6 +252,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
|
|||
}
|
||||
|
||||
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (size == 0) {
|
||||
|
@ -266,6 +267,7 @@ void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, siz
|
|||
}
|
||||
|
||||
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (size == 0) {
|
||||
|
@ -884,9 +886,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
// do not overwrite user assignments
|
||||
if (*node_backend_id == -1) {
|
||||
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||
|
|
|
@ -3,6 +3,33 @@ if ("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOM
|
|||
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
|
||||
endif()
|
||||
|
||||
# Auto-detech Soc type and Soc version, if detect failed, will abort build
|
||||
set(SOC_VERSION "")
|
||||
function(detect_ascend_soc_type SOC_VERSION)
|
||||
execute_process(
|
||||
COMMAND bash -c "npu-smi info|awk -F' ' 'NF > 0 && NR==7 {print $3}'"
|
||||
OUTPUT_VARIABLE npu_info
|
||||
RESULT_VARIABLE npu_result
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
if("${npu_info}" STREQUAL "" OR ${npu_result})
|
||||
message(FATAL_ERROR "Auto-detech ascend soc type failed, please specify manually or check ascend device working normally.")
|
||||
endif()
|
||||
set(${SOC_VERSION} "Ascend${npu_info}" PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
if(NOT SOC_TYPE)
|
||||
detect_ascend_soc_type(SOC_VERSION)
|
||||
set(SOC_TYPE "${SOC_VERSION}")
|
||||
message(STATUS "CANN: SOC_VERSION auto-detected is:${SOC_VERSION}")
|
||||
else()
|
||||
string(TOLOWER ${SOC_TYPE} SOC_VERSION)
|
||||
endif()
|
||||
|
||||
# Construct Soc specify compile option: ASCEND_#Soc_Major_SN. Such as ASCEND_910B, ASCEND310P.
|
||||
string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
|
||||
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
if (NOT UNIX)
|
||||
|
@ -39,6 +66,8 @@ if (CANN_INSTALL_DIR)
|
|||
target_include_directories(ggml-cann PRIVATE . .. ${CANN_INCLUDE_DIRS})
|
||||
target_link_directories(ggml-cann PRIVATE ${CANN_INSTALL_DIR}/lib64)
|
||||
|
||||
target_compile_definitions(ggml-cann PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
||||
|
||||
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
|
||||
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
|
||||
else()
|
||||
|
|
|
@ -2314,6 +2314,14 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
|||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
#ifdef ASCEND_310P
|
||||
// Special operation for get_row_f32 kernel of 310P: clear the content of dest data buffer when row is not aligned to 32 bytes
|
||||
if ((src0->ne[0] % 8) != 0) {
|
||||
size_t dst_len = src1->ne[0] * src1->ne[1] * src1->ne[2] * src0->ne[0] * ggml_type_size(GGML_TYPE_F32);
|
||||
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
|
||||
}
|
||||
#endif
|
||||
aclrtlaunch_ascendc_get_row_f32(
|
||||
24, ctx.stream(), src0->data, src1->data, dst->data,
|
||||
((ggml_tensor*)src0->extra)->ne,
|
||||
|
@ -2322,7 +2330,16 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
|||
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
|
||||
((ggml_tensor*)dst->extra)->nb);
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
#ifdef ASCEND_310P
|
||||
// Special operation for get_row_f16 kernel of 310P: clear the content of dest data buffer when row is not aligned to 32 bytes
|
||||
if ((src0->ne[0] % 16) != 0) {
|
||||
size_t dst_len = src1->ne[0] * src1->ne[1] * src1->ne[2] * src0->ne[0] * ggml_type_size(GGML_TYPE_F32); // out is also f32, even input is f16
|
||||
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
|
||||
}
|
||||
#endif
|
||||
aclrtlaunch_ascendc_get_row_f16(
|
||||
24, ctx.stream(), src0->data, src1->data, dst->data,
|
||||
((ggml_tensor*)src0->extra)->ne,
|
||||
|
@ -2331,6 +2348,7 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
|||
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
|
||||
((ggml_tensor*)dst->extra)->nb);
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_Q4_0:
|
||||
aclrtlaunch_ascendc_get_row_q4_0(
|
||||
24, ctx.stream(), src0->data, src1->data, dst->data,
|
||||
|
|
|
@ -1,7 +1,3 @@
|
|||
if (NOT SOC_TYPE)
|
||||
set (SOC_TYPE "Ascend910B3")
|
||||
endif()
|
||||
|
||||
file(GLOB SRC_FILES
|
||||
get_row_f32.cpp
|
||||
get_row_f16.cpp
|
||||
|
@ -13,7 +9,6 @@ file(GLOB SRC_FILES
|
|||
dup.cpp
|
||||
)
|
||||
|
||||
string(TOLOWER ${SOC_TYPE} SOC_VERSION)
|
||||
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
|
||||
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
|
||||
|
||||
|
@ -30,4 +25,6 @@ ascendc_library(ascendc_kernels STATIC
|
|||
${SRC_FILES}
|
||||
)
|
||||
|
||||
message(STATUS "CANN: compile ascend kernels witch SOC_VERSION:${SOC_VERSION}.")
|
||||
ascendc_compile_definitions(ascendc_kernels PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
||||
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
const int64_t SUPPORTED_MAX_DIM = 65535; // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
|
||||
|
||||
template <typename SRC_T, typename DST_T>
|
||||
class DupByRows {
|
||||
|
@ -19,6 +20,7 @@ class DupByRows {
|
|||
// Input has four dims.
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
assert(op_block_idx < SUPPORTED_MAX_DIM && op_block_idx >= 0, "Invalid block index:%d, max is:%d\n", op_block_idx, SUPPORTED_MAX_DIM);
|
||||
|
||||
// param
|
||||
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
|
||||
|
@ -51,24 +53,36 @@ class DupByRows {
|
|||
|
||||
__aicore__ inline void copy_in() {
|
||||
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
|
||||
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = num_elem * sizeof(SRC_T);
|
||||
DataCopyPadExtParams<SRC_T> padParams;
|
||||
DataCopyPad(src_local, src_gm, dataCopyParams, padParams);
|
||||
|
||||
const size_t elem_per_block = 32 / sizeof(SRC_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
|
||||
DataCopy(src_local, src_gm, cpy_elements_len);
|
||||
src_queue.EnQue(src_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out() {
|
||||
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
|
||||
|
||||
#ifdef ASCEND_310P
|
||||
const size_t elem_per_block = 32 / sizeof(DST_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t len = num_elem & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(dst_gm, dst_local, len);
|
||||
}
|
||||
if(tail != 0) {
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
dst_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(dst_gm[len], dst_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
}
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
|
||||
DataCopyPad(dst_gm, dst_local, dataCopyParams);
|
||||
|
||||
#endif
|
||||
dst_queue.FreeTensor(dst_local);
|
||||
}
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ class GET_ROW_F16 {
|
|||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
// TODO, use template for F16/f32
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
|
@ -59,32 +59,42 @@ class GET_ROW_F16 {
|
|||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
size_t origin_len = len;
|
||||
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
||||
size_t tail = len % 32;
|
||||
len = len & ~31;
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
const size_t elem_per_block = 32 / sizeof(half);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(half);
|
||||
DataCopyPadExtParams<half> padParams;
|
||||
DataCopyPad(input_local[len], input_gm[offset + len],
|
||||
dataCopyParams, padParams);
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
size_t tail = len % 32;
|
||||
len = len & ~31;
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
@ -150,6 +160,7 @@ class GET_ROW_F16 {
|
|||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -13,7 +13,7 @@ class GET_ROW_F32 {
|
|||
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
|
@ -55,31 +55,40 @@ class GET_ROW_F32 {
|
|||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
||||
size_t tail = len % 32;
|
||||
len = len & ~31;
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPadExtParams<float> padParams;
|
||||
DataCopyPad(input_local[len], input_gm[offset + len],
|
||||
dataCopyParams, padParams);
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
size_t tail = len % 32;
|
||||
len = len & ~31;
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
@ -144,6 +153,7 @@ class GET_ROW_F32 {
|
|||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -110,9 +110,12 @@ class GET_ROW_Q4_0 {
|
|||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
// TODO: cast more data to speed up.
|
||||
#ifdef ASCEND_310P
|
||||
// TODO: 310P support quantification
|
||||
#else
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
|
||||
|
||||
#endif
|
||||
// Only mul need compile by group.
|
||||
half scale = scale_gm.GetValue(scale_offset);
|
||||
|
||||
|
|
|
@ -1,57 +1,69 @@
|
|||
#include "common.cuh"
|
||||
#include "argmax.cuh"
|
||||
#include "sum.cuh"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
|
||||
static __global__ void argmax_f32(
|
||||
const float * x, int32_t * dst, const int64_t ncols, const int64_t nrows) {
|
||||
#include "argmax.cuh"
|
||||
#include "common.cuh"
|
||||
#include "sum.cuh"
|
||||
|
||||
int argmax_thread = 0;
|
||||
const int64_t row0 = (int64_t)blockIdx.x*WARP_SIZE;
|
||||
|
||||
#pragma unroll
|
||||
for (int64_t row1 = 0; row1 < WARP_SIZE; ++row1) {
|
||||
const int64_t row = row0 + row1;
|
||||
|
||||
if (row >= nrows) {
|
||||
break;
|
||||
}
|
||||
static __global__ void argmax_f32(const float * __restrict__ x, int32_t * __restrict__ dst, const int64_t ncols) {
|
||||
const int64_t row = blockIdx.x;
|
||||
|
||||
float maxval = -FLT_MAX;
|
||||
int argmax = -1;
|
||||
const float * rowx = x + row * ncols;
|
||||
|
||||
for (int32_t col = threadIdx.x; col < ncols; col += WARP_SIZE) {
|
||||
const float val = x[row*ncols + col];
|
||||
const int bigger = val > maxval;
|
||||
const int not_bigger = bigger ^ 0x00000001;
|
||||
|
||||
maxval = maxval*not_bigger + val*bigger;
|
||||
argmax = argmax*not_bigger + col*bigger;
|
||||
for (int32_t col = threadIdx.x; col < ncols; col += blockDim.x) {
|
||||
const float val = rowx[col];
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, mask, WARP_SIZE);
|
||||
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, mask, WARP_SIZE);
|
||||
const int bigger = val > maxval;
|
||||
const int not_bigger = bigger ^ 0x00000001;
|
||||
|
||||
maxval = maxval*not_bigger + val*bigger;
|
||||
argmax = argmax*not_bigger + col*bigger;
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
|
||||
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
}
|
||||
|
||||
const int store = row1 == threadIdx.x;
|
||||
argmax_thread += store*argmax;
|
||||
const int n_warps = blockDim.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
if (n_warps > 1) {
|
||||
constexpr int max_warps = 1024 / WARP_SIZE;
|
||||
__shared__ float shared_maxval[max_warps];
|
||||
__shared__ int shared_argmax[max_warps];
|
||||
if (lane_id == 0) {
|
||||
shared_maxval[warp_id] = maxval;
|
||||
shared_argmax[warp_id] = argmax;
|
||||
}
|
||||
|
||||
const int row = row0 + threadIdx.x;
|
||||
__syncthreads();
|
||||
|
||||
if (row >= nrows) {
|
||||
return;
|
||||
if (warp_id == 0) {
|
||||
if (lane_id < n_warps) {
|
||||
maxval = shared_maxval[lane_id];
|
||||
argmax = shared_argmax[lane_id];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
|
||||
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dst[row] = argmax_thread;
|
||||
if (warp_id == 0 && lane_id == 0) {
|
||||
dst[row] = argmax;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
@ -70,10 +82,10 @@ void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t num_blocks = (nrows + WARP_SIZE - 1) / WARP_SIZE;
|
||||
|
||||
const dim3 blocks_dim(WARP_SIZE, 1, 1);
|
||||
const int64_t num_blocks = nrows;
|
||||
const int64_t num_threads = std::min<int64_t>(1024, (ne00 + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE);
|
||||
const dim3 blocks_dim(num_threads, 1, 1);
|
||||
const dim3 blocks_num(num_blocks, 1, 1);
|
||||
|
||||
argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00, nrows);
|
||||
argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00);
|
||||
}
|
||||
|
|
|
@ -180,8 +180,8 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
|||
return __reduce_add_sync(0xffffffff, x);
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
|
||||
}
|
||||
return x;
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
|
@ -189,17 +189,17 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
|||
|
||||
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
||||
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
a.x += __shfl_xor_sync(0xffffffff, a.x, offset, 32);
|
||||
a.y += __shfl_xor_sync(0xffffffff, a.y, offset, 32);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
@ -209,16 +209,16 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
|||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
const half2 a_other = __shfl_xor_sync(0xffffffff, a, offset, 32);
|
||||
reinterpret_cast<half&>(a.x) += __low2half(a_other);
|
||||
reinterpret_cast<half&>(a.y) += __high2half(a_other);
|
||||
}
|
||||
return a;
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, 32));
|
||||
}
|
||||
return a;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
@ -231,8 +231,8 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
|||
|
||||
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
@ -275,8 +275,8 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
|
|||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
|
||||
}
|
||||
return x;
|
||||
#else
|
||||
|
|
|
@ -69,8 +69,8 @@ static __global__ void quantize_mmq_q8_1(
|
|||
|
||||
// Exchange max. abs. value between vals_per_scale/4 threads.
|
||||
#pragma unroll
|
||||
for (int mask = vals_per_scale/8; mask > 0; mask >>= 1) {
|
||||
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, WARP_SIZE));
|
||||
for (int offset = vals_per_scale/8; offset > 0; offset >>= 1) {
|
||||
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
float sum;
|
||||
|
@ -79,8 +79,8 @@ static __global__ void quantize_mmq_q8_1(
|
|||
|
||||
// Exchange calculate sum across vals_per_sum/4 threads.
|
||||
#pragma unroll
|
||||
for (int mask = vals_per_sum/8; mask > 0; mask >>= 1) {
|
||||
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, WARP_SIZE);
|
||||
for (int offset = vals_per_sum/8; offset > 0; offset >>= 1) {
|
||||
sum += __shfl_xor_sync(0xFFFFFFFF, sum, offset, WARP_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -295,6 +295,9 @@ struct ggml_cgraph {
|
|||
enum ggml_cgraph_eval_order order;
|
||||
};
|
||||
|
||||
// returns a slice of cgraph with nodes [i0, i1)
|
||||
// the slice does not have leafs or gradients
|
||||
// if you need the gradients, get them from the original graph
|
||||
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
|
||||
// Memory allocation
|
||||
|
|
|
@ -14,51 +14,51 @@
|
|||
#include <vector>
|
||||
|
||||
struct ggml_opt_dataset {
|
||||
struct ggml_context * ctx;
|
||||
ggml_backend_buffer_t buf;
|
||||
struct ggml_tensor * data;
|
||||
struct ggml_tensor * labels;
|
||||
struct ggml_context * ctx = nullptr;
|
||||
ggml_backend_buffer_t buf = nullptr;
|
||||
struct ggml_tensor * data = nullptr;
|
||||
struct ggml_tensor * labels = nullptr;
|
||||
|
||||
int64_t ndata;
|
||||
int64_t ndata_shard;
|
||||
size_t nbs_data;
|
||||
size_t nbs_labels;
|
||||
int64_t ndata = -1;
|
||||
int64_t ndata_shard = -1;
|
||||
size_t nbs_data = -1;
|
||||
size_t nbs_labels = -1;
|
||||
|
||||
std::vector<int64_t> permutation;
|
||||
};
|
||||
|
||||
struct ggml_opt_context {
|
||||
ggml_backend_sched_t backend_sched;
|
||||
ggml_cgraph * allocated_graph;
|
||||
ggml_cgraph * allocated_graph_copy;
|
||||
struct ggml_context * ctx_static;
|
||||
struct ggml_context * ctx_static_cpu;
|
||||
struct ggml_context * ctx_compute;
|
||||
struct ggml_context * ctx_copy;
|
||||
ggml_backend_buffer_t buf_static;
|
||||
ggml_backend_buffer_t buf_static_cpu;
|
||||
ggml_backend_sched_t backend_sched = nullptr;
|
||||
ggml_cgraph * allocated_graph = nullptr;
|
||||
ggml_cgraph * allocated_graph_copy = nullptr;
|
||||
struct ggml_context * ctx_static = nullptr;
|
||||
struct ggml_context * ctx_static_cpu = nullptr;
|
||||
struct ggml_context * ctx_compute = nullptr;
|
||||
struct ggml_context * ctx_copy = nullptr;
|
||||
ggml_backend_buffer_t buf_static = nullptr;
|
||||
ggml_backend_buffer_t buf_static_cpu = nullptr;
|
||||
std::mt19937 rng;
|
||||
|
||||
struct ggml_tensor * inputs;
|
||||
struct ggml_tensor * outputs;
|
||||
struct ggml_tensor * labels;
|
||||
struct ggml_tensor * inputs = nullptr;
|
||||
struct ggml_tensor * outputs = nullptr;
|
||||
struct ggml_tensor * labels = nullptr;
|
||||
|
||||
struct ggml_tensor * loss;
|
||||
struct ggml_tensor * pred;
|
||||
struct ggml_tensor * ncorrect;
|
||||
struct ggml_tensor * loss = nullptr;
|
||||
struct ggml_tensor * pred = nullptr;
|
||||
struct ggml_tensor * ncorrect = nullptr;
|
||||
|
||||
struct ggml_cgraph * gf;
|
||||
struct ggml_cgraph * gb_grad;
|
||||
struct ggml_cgraph * gb_opt;
|
||||
struct ggml_cgraph * gf = nullptr;
|
||||
struct ggml_cgraph * gb_grad = nullptr;
|
||||
struct ggml_cgraph * gb_opt = nullptr;
|
||||
|
||||
int64_t iter;
|
||||
int32_t opt_period;
|
||||
int32_t opt_i;
|
||||
bool loss_per_datapoint;
|
||||
int64_t iter = 1;
|
||||
int32_t opt_period = 1;
|
||||
int32_t opt_i = 0;
|
||||
bool loss_per_datapoint = false;
|
||||
|
||||
ggml_opt_get_optimizer_params get_opt_pars;
|
||||
void * get_opt_pars_ud;
|
||||
struct ggml_tensor * adamw_params;
|
||||
ggml_opt_get_optimizer_params get_opt_pars = nullptr;
|
||||
void * get_opt_pars_ud = nullptr;
|
||||
struct ggml_tensor * adamw_params = nullptr;
|
||||
};
|
||||
|
||||
struct ggml_opt_result {
|
||||
|
@ -67,8 +67,8 @@ struct ggml_opt_result {
|
|||
std::vector<int32_t> pred;
|
||||
int64_t ncorrect = 0;
|
||||
|
||||
bool loss_per_datapoint = false;
|
||||
int64_t opt_period = -1;
|
||||
bool loss_per_datapoint = false;
|
||||
};
|
||||
|
||||
// ====== Dataset ======
|
||||
|
@ -237,25 +237,33 @@ static ggml_tensor * map_tensor(std::map<ggml_tensor *, ggml_tensor *> & tensor_
|
|||
return new_tensor;
|
||||
}
|
||||
|
||||
static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * graph) {
|
||||
static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * src) {
|
||||
std::map<ggml_tensor *, ggml_tensor *> tensor_map;
|
||||
|
||||
ggml_cgraph * new_graph = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true);
|
||||
ggml_cgraph * dst = ggml_new_graph_custom(ctx, src->size, /*grads =*/ true);
|
||||
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->leafs[i]));
|
||||
for (int i = 0; i < src->n_leafs; i++) {
|
||||
ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->leafs[i]));
|
||||
}
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->nodes[i]));
|
||||
GGML_ASSERT(dst->n_leafs == src->n_leafs);
|
||||
for (int i = 0; i < src->n_nodes; i++) {
|
||||
ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->nodes[i]));
|
||||
}
|
||||
for (int i = 0; i < graph->n_nodes; ++i) {
|
||||
const size_t igrad_src = ggml_hash_find(&graph->visited_hash_set, graph->nodes[i]);
|
||||
const size_t igrad_dst = ggml_hash_find(&new_graph->visited_hash_set, new_graph->nodes[i]);
|
||||
graph->grads[igrad_dst] = new_graph->grads[igrad_src];
|
||||
graph->grad_accs[igrad_dst] = new_graph->grad_accs[igrad_src];
|
||||
GGML_ASSERT(dst->n_nodes == src->n_nodes);
|
||||
for (int i = 0; i < src->n_nodes; ++i) {
|
||||
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
|
||||
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
|
||||
|
||||
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
|
||||
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
|
||||
|
||||
dst->grads[igrad_dst] = src->grads[igrad_src];
|
||||
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
|
||||
}
|
||||
|
||||
return new_graph;
|
||||
return dst;
|
||||
}
|
||||
|
||||
static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) {
|
||||
|
@ -285,15 +293,10 @@ static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph
|
|||
ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
||||
ggml_opt_context_t result = new struct ggml_opt_context;
|
||||
result->backend_sched = params.backend_sched;
|
||||
result->allocated_graph = nullptr;
|
||||
result->allocated_graph_copy = nullptr;
|
||||
result->ctx_compute = params.ctx_compute;
|
||||
result->ctx_copy = nullptr;
|
||||
result->inputs = params.inputs;
|
||||
result->outputs = params.outputs;
|
||||
result->iter = 1;
|
||||
result->opt_period = params.opt_period;
|
||||
result->opt_i = 0;
|
||||
result->get_opt_pars = params.get_opt_pars;
|
||||
result->get_opt_pars_ud = params.get_opt_pars_ud;
|
||||
|
||||
|
@ -348,7 +351,6 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
|
||||
switch (params.loss_type) {
|
||||
case GGML_OPT_LOSS_TYPE_MEAN: {
|
||||
result->labels = nullptr;
|
||||
result->loss = ggml_sum(result->ctx_static, result->outputs);
|
||||
ggml_set_name(result->loss, "loss_sum");
|
||||
const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
|
||||
|
@ -358,7 +360,6 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
break;
|
||||
}
|
||||
case GGML_OPT_LOSS_TYPE_SUM: {
|
||||
result->labels = nullptr;
|
||||
result->loss = ggml_sum(result->ctx_static, result->outputs);
|
||||
ggml_set_name(result->loss, "loss_sum");
|
||||
result->loss_per_datapoint = false;
|
||||
|
@ -413,14 +414,7 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
}
|
||||
|
||||
if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
|
||||
result->gb_grad = nullptr;
|
||||
result->gb_opt = nullptr;
|
||||
|
||||
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
|
||||
result->buf_static_cpu = nullptr;
|
||||
|
||||
ggml_opt_alloc_graph(result, result->gf);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -429,14 +423,8 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate);
|
||||
|
||||
if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) {
|
||||
result->gb_opt = nullptr;
|
||||
|
||||
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
|
||||
result->buf_static_cpu = nullptr;
|
||||
|
||||
ggml_opt_alloc_graph(result, result->gb_grad);
|
||||
ggml_graph_reset(result->gb_grad);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -466,7 +454,6 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|||
|
||||
result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type());
|
||||
|
||||
ggml_opt_alloc_graph(result, result->gb_opt);
|
||||
ggml_graph_reset(result->gb_opt);
|
||||
|
||||
return result;
|
||||
|
|
|
@ -158,6 +158,7 @@ struct vk_device_struct {
|
|||
std::string name;
|
||||
uint64_t max_memory_allocation_size;
|
||||
bool fp16;
|
||||
bool pipeline_robustness;
|
||||
vk::Device device;
|
||||
uint32_t vendor_id;
|
||||
vk_queue compute_queue;
|
||||
|
@ -654,7 +655,7 @@ static uint32_t compile_count = 0;
|
|||
static std::mutex compile_count_mutex;
|
||||
static std::condition_variable compile_count_cond;
|
||||
|
||||
static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants, uint32_t align) {
|
||||
static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants, uint32_t align, bool disable_robustness) {
|
||||
VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")");
|
||||
GGML_ASSERT(parameter_count > 0);
|
||||
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
|
||||
|
@ -724,6 +725,15 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
|
|||
vk::PipelineCreateFlags(),
|
||||
pipeline_shader_create_info,
|
||||
pipeline->layout);
|
||||
|
||||
vk::PipelineRobustnessCreateInfoEXT rci;
|
||||
|
||||
if (device->pipeline_robustness && disable_robustness) {
|
||||
rci.storageBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled;
|
||||
rci.uniformBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled;
|
||||
compute_pipeline_create_info.setPNext(&rci);
|
||||
}
|
||||
|
||||
pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
|
||||
|
||||
{
|
||||
|
@ -1261,7 +1271,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
device->pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL] = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
|
||||
std::vector<std::future<void>> compiles;
|
||||
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants, uint32_t align) {
|
||||
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants, uint32_t align, bool disable_robustness = false) {
|
||||
{
|
||||
// wait until fewer than N compiles are in progress
|
||||
uint32_t N = std::max(1u, std::thread::hardware_concurrency());
|
||||
|
@ -1271,7 +1281,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
}
|
||||
compile_count++;
|
||||
}
|
||||
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint, parameter_count, push_constant_size, wg_denoms, specialization_constants, align));
|
||||
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint, parameter_count, push_constant_size, wg_denoms, specialization_constants, align, disable_robustness));
|
||||
};
|
||||
|
||||
if (device->fp16) {
|
||||
|
@ -1370,45 +1380,45 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
// computing two rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0.
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
||||
|
||||
// dequant shaders
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
||||
|
@ -1591,12 +1601,15 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
|
||||
bool fp16_storage = false;
|
||||
bool fp16_compute = false;
|
||||
bool pipeline_robustness = false;
|
||||
|
||||
for (const auto& properties : ext_props) {
|
||||
if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
|
||||
fp16_storage = true;
|
||||
} else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
|
||||
fp16_compute = true;
|
||||
} else if (strcmp("VK_EXT_pipeline_robustness", properties.extensionName) == 0) {
|
||||
pipeline_robustness = true;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1642,10 +1655,22 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
|
||||
vk11_features.pNext = &vk12_features;
|
||||
|
||||
VkPhysicalDevicePipelineRobustnessFeaturesEXT pl_robustness_features;
|
||||
pl_robustness_features.pNext = nullptr;
|
||||
pl_robustness_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT;
|
||||
pl_robustness_features.pipelineRobustness = VK_FALSE;
|
||||
|
||||
if (pipeline_robustness) {
|
||||
vk12_features.pNext = &pl_robustness_features;
|
||||
device_extensions.push_back("VK_EXT_pipeline_robustness");
|
||||
}
|
||||
|
||||
vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2);
|
||||
|
||||
device->fp16 = device->fp16 && vk12_features.shaderFloat16;
|
||||
|
||||
device->pipeline_robustness = pl_robustness_features.pipelineRobustness;
|
||||
|
||||
if (!vk11_features.storageBuffer16BitAccess) {
|
||||
std::cerr << "ggml_vulkan: device " << GGML_VK_NAME << idx << " does not support 16-bit storage." << std::endl;
|
||||
throw std::runtime_error("Unsupported device");
|
||||
|
@ -3190,7 +3215,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
|
||||
if (ne01 > max_groups_x) {
|
||||
groups_z = 64;
|
||||
groups_x /= groups_z;
|
||||
groups_x = CEIL_DIV(groups_x, groups_z);
|
||||
}
|
||||
|
||||
// compute
|
||||
|
@ -3767,7 +3792,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
|
||||
if (ne01 > max_groups_x) {
|
||||
groups_z = 64;
|
||||
groups_x /= groups_z;
|
||||
groups_x = CEIL_DIV(groups_x, groups_z);
|
||||
}
|
||||
|
||||
// compute
|
||||
|
|
|
@ -2,6 +2,15 @@
|
|||
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
|
||||
#endif
|
||||
|
||||
#include "types.comp"
|
||||
|
||||
#if defined(A_TYPE_PACKED16)
|
||||
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
|
||||
#endif
|
||||
#if defined(A_TYPE_PACKED32)
|
||||
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_F32)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]);
|
||||
|
@ -20,6 +29,11 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
|||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
|
||||
}
|
||||
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a_packed16[a_offset + ib].d);
|
||||
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
|
||||
return (vec4(vui & 0xF, (vui >> 4) & 0xF, (vui >> 8) & 0xF, (vui >> 12) & 0xF) - 8.0f) * d;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q4_1)
|
||||
|
@ -29,6 +43,12 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
|||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return vec2(vui & 0xF, vui >> 4) * d + m;
|
||||
}
|
||||
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a_packed16[a_offset + ib].d);
|
||||
const float m = float(data_a_packed16[a_offset + ib].m);
|
||||
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
|
||||
return vec4(vui & 0xF, (vui >> 4) & 0xF, (vui >> 8) & 0xF, (vui >> 12) & 0xF) * d + m;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q5_0)
|
||||
|
@ -39,6 +59,14 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
|||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
|
||||
}
|
||||
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a_packed16[a_offset + ib].d);
|
||||
const uint uint_qh = uint(data_a_packed16[a_offset + ib].qh[1]) << 16 | data_a_packed16[a_offset + ib].qh[0];
|
||||
const ivec2 qh0 = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
|
||||
const ivec2 qh1 = ivec2(((uint_qh >> (iqs + 1)) << 4) & 0x10, (uint_qh >> (iqs + 13)) & 0x10);
|
||||
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
|
||||
return (vec4(((vui >> 0) & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, ((vui >> 12) & 0xF) | qh1.y) - 16.0f) * d;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q5_1)
|
||||
|
@ -50,6 +78,15 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
|||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
|
||||
}
|
||||
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a_packed16[a_offset + ib].d);
|
||||
const float m = float(data_a_packed16[a_offset + ib].m);
|
||||
const uint uint_qh = data_a_packed16[a_offset + ib].qh;
|
||||
const ivec2 qh0 = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
|
||||
const ivec2 qh1 = ivec2(((uint_qh >> (iqs + 1)) << 4) & 0x10, (uint_qh >> (iqs + 13)) & 0x10);
|
||||
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
|
||||
return vec4(((vui >> 0) & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, ((vui >> 12) & 0xF) | qh1.y) * d + m;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q8_0)
|
||||
|
@ -57,6 +94,12 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
|||
const float d = float(data_a[a_offset + ib].d);
|
||||
return vec2(int(data_a[a_offset + ib].qs[iqs]), int(data_a[a_offset + ib].qs[iqs + 1])) * d;
|
||||
}
|
||||
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a_packed16[a_offset + ib].d);
|
||||
uint32_t v0 = data_a_packed16[a_offset + ib].qs[iqs/2];
|
||||
uint32_t v1 = data_a_packed16[a_offset + ib].qs[iqs/2 + 1];
|
||||
return vec4(int8_t(v0 & 0xFF), int8_t((v0 >> 8) & 0xFF), int8_t(v1 & 0xFF), int8_t((v1 >> 8) & 0xFF)) * d;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_IQ4_NL)
|
||||
|
@ -65,4 +108,9 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
|||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return vec2(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[vui >> 4]) * d;
|
||||
}
|
||||
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a_packed16[a_offset + ib].d);
|
||||
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
|
||||
return vec4(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[(vui >> 4) & 0xF], kvalues_iq4nl[(vui >> 8) & 0xF], kvalues_iq4nl[(vui >> 12) & 0xF]) * d;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -10,6 +10,8 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
|||
void main() {
|
||||
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
|
||||
|
||||
init_iq4nl_shmem();
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x % 64;
|
||||
const uint il = tid/32;
|
||||
const uint ir = tid%32;
|
||||
|
|
|
@ -12,6 +12,10 @@ void main() {
|
|||
const uint i11 = (gl_GlobalInvocationID.z)/p.ne12;
|
||||
const uint i12 = (gl_GlobalInvocationID.z)%p.ne12;
|
||||
|
||||
#if defined(DATA_A_IQ4_NL)
|
||||
init_iq4nl_shmem();
|
||||
#endif
|
||||
|
||||
if (i00 >= p.ne00) {
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
#ifdef FLOAT16
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
|
||||
#endif
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types : require
|
||||
|
||||
#include "mul_mat_vec_base.comp"
|
||||
|
||||
|
@ -12,16 +12,48 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
|||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
|
||||
#define K_PER_ITER 8
|
||||
#else
|
||||
#define K_PER_ITER 2
|
||||
#endif
|
||||
|
||||
|
||||
uint a_offset, b_offset, d_offset, y_offset;
|
||||
|
||||
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
|
||||
{
|
||||
const uint col = i*BLOCK_SIZE + 2*tid;
|
||||
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
|
||||
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
|
||||
const uint iybs = col - col%QUANT_K; // y block start index
|
||||
|
||||
#if K_PER_ITER == 8
|
||||
#if QUANT_R == 2
|
||||
B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4];
|
||||
B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4];
|
||||
FLOAT_TYPE b0 = FLOAT_TYPE(bv02.x);
|
||||
FLOAT_TYPE b1 = FLOAT_TYPE(bv13.x);
|
||||
FLOAT_TYPE b2 = FLOAT_TYPE(bv02.y);
|
||||
FLOAT_TYPE b3 = FLOAT_TYPE(bv13.y);
|
||||
FLOAT_TYPE b4 = FLOAT_TYPE(bv02.z);
|
||||
FLOAT_TYPE b5 = FLOAT_TYPE(bv13.z);
|
||||
FLOAT_TYPE b6 = FLOAT_TYPE(bv02.w);
|
||||
FLOAT_TYPE b7 = FLOAT_TYPE(bv13.w);
|
||||
#else
|
||||
B_TYPE_VEC4 bv0 = data_b_v4[(b_offset + iybs + iqs) / 4];
|
||||
B_TYPE_VEC4 bv1 = data_b_v4[(b_offset + iybs + iqs) / 4 + 1];
|
||||
FLOAT_TYPE b0 = FLOAT_TYPE(bv0.x);
|
||||
FLOAT_TYPE b1 = FLOAT_TYPE(bv0.y);
|
||||
FLOAT_TYPE b2 = FLOAT_TYPE(bv0.z);
|
||||
FLOAT_TYPE b3 = FLOAT_TYPE(bv0.w);
|
||||
FLOAT_TYPE b4 = FLOAT_TYPE(bv1.x);
|
||||
FLOAT_TYPE b5 = FLOAT_TYPE(bv1.y);
|
||||
FLOAT_TYPE b6 = FLOAT_TYPE(bv1.z);
|
||||
FLOAT_TYPE b7 = FLOAT_TYPE(bv1.w);
|
||||
#endif
|
||||
#else
|
||||
// Check if the second of the pair of elements is OOB, and don't fetch B or
|
||||
// accumulate it. We still fetch a pair of elements for A, which is fine for
|
||||
// quantized formats since they'll be within the same block. We should
|
||||
|
@ -34,9 +66,24 @@ void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_
|
|||
if (!OOB) {
|
||||
b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
|
||||
}
|
||||
#endif
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib = ((first_row + n)*p.ncols + col)/QUANT_K; // block index
|
||||
|
||||
#if K_PER_ITER == 8
|
||||
const vec4 v = dequantize4(ib, iqs, a_offset);
|
||||
const vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
|
||||
|
||||
// matrix multiplication
|
||||
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
|
||||
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
|
||||
temp[n] = fma(FLOAT_TYPE(v.z), b2, temp[n]);
|
||||
temp[n] = fma(FLOAT_TYPE(v.w), b3, temp[n]);
|
||||
temp[n] = fma(FLOAT_TYPE(v2.x), b4, temp[n]);
|
||||
temp[n] = fma(FLOAT_TYPE(v2.y), b5, temp[n]);
|
||||
temp[n] = fma(FLOAT_TYPE(v2.z), b6, temp[n]);
|
||||
temp[n] = fma(FLOAT_TYPE(v2.w), b7, temp[n]);
|
||||
#else
|
||||
const vec2 v = dequantize(ib, iqs, a_offset);
|
||||
|
||||
// matrix multiplication
|
||||
|
@ -44,6 +91,7 @@ void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_
|
|||
if (!OOB) {
|
||||
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -61,22 +109,33 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
|||
temp[i] = FLOAT_TYPE(0);
|
||||
}
|
||||
|
||||
const int unroll_count = 8;
|
||||
|
||||
const uint num_iters = (p.ncols >= 2*tid) ? ((p.ncols - 2*tid + BLOCK_SIZE - 1) / BLOCK_SIZE) : 0;
|
||||
const uint unrolled_iters = num_iters & ~(2*unroll_count - 1);
|
||||
uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE);
|
||||
if (num_iters * K_PER_ITER * BLOCK_SIZE + K_PER_ITER*tid < p.ncols) {
|
||||
num_iters++;
|
||||
}
|
||||
int unroll_count = 4;
|
||||
uint unrolled_iters = num_iters & ~(unroll_count - 1);
|
||||
|
||||
uint i = 0;
|
||||
while (i < unrolled_iters) {
|
||||
// Manually partially unroll the loop
|
||||
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
|
||||
iter(temp, first_row, num_rows, tid, i, false);
|
||||
i += 2;
|
||||
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
unroll_count = 2;
|
||||
unrolled_iters = num_iters & ~(unroll_count - 1);
|
||||
while (i < unrolled_iters) {
|
||||
// Manually partially unroll the loop
|
||||
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
|
||||
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
while (i < num_iters) {
|
||||
iter(temp, first_row, num_rows, tid, i, true);
|
||||
i += 2;
|
||||
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, true);
|
||||
i++;
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
|
@ -102,10 +161,17 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
|||
void main() {
|
||||
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
||||
|
||||
#if defined(DATA_A_IQ4_NL)
|
||||
init_iq4nl_shmem();
|
||||
#endif
|
||||
|
||||
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
||||
if (first_row + NUM_ROWS <= p.stride_d) {
|
||||
compute_outputs(first_row, NUM_ROWS);
|
||||
} else {
|
||||
if (first_row >= p.stride_d) {
|
||||
return;
|
||||
}
|
||||
compute_outputs(first_row, p.stride_d - first_row);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -12,6 +12,9 @@
|
|||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
|
||||
layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];};
|
||||
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
|
||||
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
|
||||
#ifdef MUL_MAT_ID
|
||||
layout (binding = 3) readonly buffer IDS {int data_ids[];};
|
||||
|
|
|
@ -9,6 +9,10 @@ shared FLOAT_TYPE tmp[32];
|
|||
void main() {
|
||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
||||
|
||||
if (row >= p.stride_d) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
|
||||
|
|
|
@ -9,6 +9,10 @@ shared FLOAT_TYPE tmp[32];
|
|||
void main() {
|
||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
||||
|
||||
if (row >= p.stride_d) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
|
||||
|
|
|
@ -8,30 +8,14 @@ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
|
|||
|
||||
shared FLOAT_TYPE tmp[32];
|
||||
|
||||
// Declare aliased versions of A and B bindings that can use 16b/32b loads for
|
||||
// the quantized values, and vec4 loads for B.
|
||||
struct block_q4_K_u32
|
||||
{
|
||||
f16vec2 d;
|
||||
uint32_t scales[3*QUANT_K/64/4];
|
||||
uint32_t qs[QUANT_K/2/4];
|
||||
};
|
||||
|
||||
struct block_q4_K_u16
|
||||
{
|
||||
f16vec2 d;
|
||||
uint16_t scales[3*QUANT_K/64/2];
|
||||
uint16_t qs[QUANT_K/2/2];
|
||||
};
|
||||
|
||||
layout (binding = 0) readonly buffer A_u32 {block_q4_K_u32 data_a_u32[];};
|
||||
layout (binding = 0) readonly buffer A_u16 {block_q4_K_u16 data_a_u16[];};
|
||||
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
|
||||
|
||||
// This shader assumes K_QUANTS_PER_ITERATION == 2 for alignment of loads
|
||||
void main() {
|
||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
||||
|
||||
if (row >= p.stride_d) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
|
||||
|
@ -64,9 +48,9 @@ void main() {
|
|||
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
|
||||
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
|
||||
|
||||
uint32_t scale0_u32 = data_a_u16[ib0 + i].scales[v_im ];
|
||||
uint32_t scale4_u32 = data_a_u16[ib0 + i].scales[v_im + 2];
|
||||
uint32_t scale8_u32 = data_a_u16[ib0 + i].scales[v_im + 4];
|
||||
uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
|
||||
uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
|
||||
uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
|
||||
uvec4 scale0 = uvec4(unpack8(scale0_u32));
|
||||
uvec4 scale4 = uvec4(unpack8(scale4_u32));
|
||||
uvec4 scale8 = uvec4(unpack8(scale8_u32));
|
||||
|
@ -80,8 +64,8 @@ void main() {
|
|||
const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2));
|
||||
const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2));
|
||||
|
||||
uint32_t qs0_u32 = data_a_u32[ib0 + i].qs[q_offset / 4];
|
||||
uint32_t qs64_u32 = data_a_u32[ib0 + i].qs[q_offset / 4 + 16];
|
||||
uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4];
|
||||
uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16];
|
||||
|
||||
uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F;
|
||||
uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F;
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types : require
|
||||
|
||||
#include "mul_mat_vec_base.comp"
|
||||
|
||||
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
|
||||
|
@ -9,6 +11,10 @@ shared FLOAT_TYPE tmp[32];
|
|||
void main() {
|
||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
||||
|
||||
if (row >= p.stride_d) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
|
||||
|
@ -31,70 +37,106 @@ void main() {
|
|||
const uint8_t hm1 = uint8_t(1 << (2*v_im));
|
||||
const uint8_t hm2 = uint8_t(hm1 << 4);
|
||||
|
||||
tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
||||
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
||||
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += 2) {
|
||||
const uint y1_idx = i * QUANT_K + y_offset;
|
||||
const uint y2_idx = y1_idx + 128;
|
||||
|
||||
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
|
||||
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
|
||||
f16vec2 d = data_a[ib0 + i].d;
|
||||
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
|
||||
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
|
||||
|
||||
const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f);
|
||||
const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f);
|
||||
const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f);
|
||||
const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f);
|
||||
const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2));
|
||||
const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
|
||||
const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
|
||||
const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
|
||||
uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
|
||||
uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
|
||||
uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
|
||||
uvec4 scale0 = uvec4(unpack8(scale0_u32));
|
||||
uvec4 scale4 = uvec4(unpack8(scale4_u32));
|
||||
uvec4 scale8 = uvec4(unpack8(scale8_u32));
|
||||
|
||||
const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf);
|
||||
const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf);
|
||||
const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] & 0xf);
|
||||
const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] & 0xf);
|
||||
const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4);
|
||||
const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4);
|
||||
const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] >> 4);
|
||||
const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] >> 4);
|
||||
const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
|
||||
const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
|
||||
const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] & 0xf);
|
||||
const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] & 0xf);
|
||||
const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4);
|
||||
const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4);
|
||||
const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] >> 4);
|
||||
const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] >> 4);
|
||||
const uint32_t sc0 = ( scale0.x & 0x3f);
|
||||
const uint32_t sc1 = ( scale0.y & 0x3f);
|
||||
const uint32_t sc2 = ( scale4.x & 0x3f);
|
||||
const uint32_t sc3 = ( scale4.y & 0x3f);
|
||||
const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2));
|
||||
const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2));
|
||||
const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2));
|
||||
const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2));
|
||||
|
||||
uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16);
|
||||
uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16);
|
||||
|
||||
uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F;
|
||||
uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F;
|
||||
uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F;
|
||||
uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F;
|
||||
|
||||
uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4));
|
||||
uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4));
|
||||
uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4));
|
||||
uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4));
|
||||
|
||||
const uint32_t q4_0 = qs0_16_lo4.x;
|
||||
const uint32_t q4_1 = qs0_16_lo4.y;
|
||||
const uint32_t q4_2 = qs0_16_lo4.z;
|
||||
const uint32_t q4_3 = qs0_16_lo4.w;
|
||||
const uint32_t q4_4 = qs0_16_hi4.x;
|
||||
const uint32_t q4_5 = qs0_16_hi4.y;
|
||||
const uint32_t q4_6 = qs0_16_hi4.z;
|
||||
const uint32_t q4_7 = qs0_16_hi4.w;
|
||||
const uint32_t q4_8 = qs64_80_lo4.x;
|
||||
const uint32_t q4_9 = qs64_80_lo4.y;
|
||||
const uint32_t q4_10 = qs64_80_lo4.z;
|
||||
const uint32_t q4_11 = qs64_80_lo4.w;
|
||||
const uint32_t q4_12 = qs64_80_hi4.x;
|
||||
const uint32_t q4_13 = qs64_80_hi4.y;
|
||||
const uint32_t q4_14 = qs64_80_hi4.z;
|
||||
const uint32_t q4_15 = qs64_80_hi4.w;
|
||||
|
||||
B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2];
|
||||
B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24];
|
||||
B_TYPE_VEC2 by20 = data_b_v2[(b_offset + y2_idx) / 2];
|
||||
B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24];
|
||||
|
||||
uint32_t qh0 = data_a_packed16[ib0 + i].qh[l0 / 2];
|
||||
uint32_t qh1 = qh0 >> 8;
|
||||
uint32_t qh16 = data_a_packed16[ib0 + i].qh[l0 / 2 + 8];
|
||||
uint32_t qh17 = qh16 >> 8;
|
||||
|
||||
const FLOAT_TYPE sx =
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]), (q4_0 + (((data_a[ib0 + i].qh[l0 ] & hm1) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 1]), (q4_1 + (((data_a[ib0 + i].qh[l0 + 1] & hm1) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 16]), (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0)),
|
||||
FLOAT_TYPE(data_b[b_offset + y1_idx + 17]) * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0)))));
|
||||
fma(FLOAT_TYPE(by10.x), (q4_0 + (((qh0 & hm1) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(by10.y), (q4_1 + (((qh1 & hm1) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(by116.x), (q4_2 + (((qh16 & hm1) != 0) ? 16 : 0)),
|
||||
FLOAT_TYPE(by116.y) * (q4_3 + (((qh17 & hm1) != 0) ? 16 : 0)))));
|
||||
const FLOAT_TYPE sy =
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]), (q4_4 + (((data_a[ib0 + i].qh[l0 ] & (hm1 << 1)) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 33]), (q4_5 + (((data_a[ib0 + i].qh[l0 + 1] & (hm1 << 1)) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 48]), (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0)),
|
||||
FLOAT_TYPE(data_b[b_offset + y1_idx + 49]) * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0)))));
|
||||
fma(FLOAT_TYPE(by132.x), (q4_4 + (((qh0 & (hm1 << 1)) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(by132.y), (q4_5 + (((qh1 & (hm1 << 1)) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(by148.x), (q4_6 + (((qh16 & (hm1 << 1)) != 0) ? 16 : 0)),
|
||||
FLOAT_TYPE(by148.y) * (q4_7 + (((qh17 & (hm1 << 1)) != 0) ? 16 : 0)))));
|
||||
const FLOAT_TYPE sz =
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]), (q4_8 + (((data_a[ib0 + i].qh[l0 ] & hm2) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 1]), (q4_9 + (((data_a[ib0 + i].qh[l0 + 1] & hm2) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 16]), (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0)),
|
||||
FLOAT_TYPE(data_b[b_offset + y2_idx + 17]) * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0)))));
|
||||
fma(FLOAT_TYPE(by20.x), (q4_8 + (((qh0 & hm2) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(by20.y), (q4_9 + (((qh1 & hm2) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(by216.x), (q4_10 + (((qh16 & hm2) != 0) ? 16 : 0)),
|
||||
FLOAT_TYPE(by216.y) * (q4_11 + (((qh17 & hm2) != 0) ? 16 : 0)))));
|
||||
const FLOAT_TYPE sw =
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]), (q4_12 + (((data_a[ib0 + i].qh[l0 ] & (hm2 << 1)) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 33]), (q4_13 + (((data_a[ib0 + i].qh[l0 + 1] & (hm2 << 1)) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 48]), (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0)),
|
||||
FLOAT_TYPE(data_b[b_offset + y2_idx + 49]) * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0)))));
|
||||
fma(FLOAT_TYPE(by232.x), (q4_12 + (((qh0 & (hm2 << 1)) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(by232.y), (q4_13 + (((qh1 & (hm2 << 1)) != 0) ? 16 : 0)),
|
||||
fma(FLOAT_TYPE(by248.x), (q4_14 + (((qh16 & (hm2 << 1)) != 0) ? 16 : 0)),
|
||||
FLOAT_TYPE(by248.y) * (q4_15 + (((qh17 & (hm2 << 1)) != 0) ? 16 : 0)))));
|
||||
const FLOAT_TYPE smin =
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 1 ]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 17]), sc2,
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 49]), sc3,
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 1 ]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 17]), sc6,
|
||||
(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 49])) * sc7)));
|
||||
const uint tmp_idx = 16 * ix + tid;
|
||||
tmp[tmp_idx] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, tmp[tmp_idx]));
|
||||
fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2,
|
||||
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
|
||||
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
|
||||
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
|
||||
temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp));
|
||||
}
|
||||
|
||||
tmp[gl_LocalInvocationID.x] = temp;
|
||||
|
||||
// sum up partial sums and write back result
|
||||
barrier();
|
||||
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types : require
|
||||
|
||||
#include "mul_mat_vec_base.comp"
|
||||
|
||||
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
|
||||
|
@ -9,6 +11,10 @@ shared FLOAT_TYPE tmp[32];
|
|||
void main() {
|
||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
||||
|
||||
if (row >= p.stride_d) {
|
||||
return;
|
||||
}
|
||||
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
|
||||
|
@ -36,35 +42,60 @@ void main() {
|
|||
const uint s_offset = 8*v_im + is;
|
||||
const uint y_offset = 128*v_im + l0;
|
||||
|
||||
tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
||||
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
||||
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
const uint y_idx = i * QUANT_K + y_offset;
|
||||
|
||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 1
|
||||
const uint tmp_idx = 16 * ix + tid;
|
||||
tmp[tmp_idx] = fma(FLOAT_TYPE(data_b[b_offset + y_idx + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32), tmp[tmp_idx]))))))));
|
||||
#else
|
||||
FLOAT_TYPE scales[4];
|
||||
scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]);
|
||||
scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]);
|
||||
scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]);
|
||||
scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]);
|
||||
|
||||
uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16);
|
||||
uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16);
|
||||
|
||||
uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F;
|
||||
uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F;
|
||||
uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F;
|
||||
uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F;
|
||||
|
||||
uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16);
|
||||
uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4;
|
||||
uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2;
|
||||
uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0;
|
||||
uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2;
|
||||
|
||||
uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32;
|
||||
uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32;
|
||||
uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32;
|
||||
uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32;
|
||||
|
||||
uvec4 q0 = uvec4(unpack8(q0_u32));
|
||||
uvec4 q1 = uvec4(unpack8(q1_u32));
|
||||
uvec4 q2 = uvec4(unpack8(q2_u32));
|
||||
uvec4 q3 = uvec4(unpack8(q3_u32));
|
||||
|
||||
B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4];
|
||||
B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8];
|
||||
B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16];
|
||||
B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24];
|
||||
|
||||
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 4; ++l) {
|
||||
sum = fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32),
|
||||
fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32), sum))));
|
||||
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
|
||||
fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32),
|
||||
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
|
||||
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
|
||||
}
|
||||
tmp[16 * ix + tid] += sum;
|
||||
#endif
|
||||
temp += sum * d;
|
||||
}
|
||||
|
||||
tmp[gl_LocalInvocationID.x] = temp;
|
||||
|
||||
// sum up partial sums and write back result
|
||||
barrier();
|
||||
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
|
||||
|
|
|
@ -75,6 +75,10 @@ shared u16vec2 row_ids[3072];
|
|||
#endif
|
||||
|
||||
void main() {
|
||||
#if defined(DATA_A_IQ4_NL)
|
||||
init_iq4nl_shmem();
|
||||
#endif
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
const uint expert_idx = gl_GlobalInvocationID.z;
|
||||
#else
|
||||
|
|
|
@ -73,7 +73,9 @@ void soft_max(uint num_iters) {
|
|||
|
||||
FLOAT_TYPE v = a * p.scale + slope * b;
|
||||
|
||||
if (col < p.KX) {
|
||||
max_val = max(max_val, v);
|
||||
}
|
||||
|
||||
if (idx < DATA_CACHE_SIZE) {
|
||||
data_cache[idx] = v;
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
|
||||
#endif
|
||||
|
||||
#if !defined(GGML_TYPES_COMP)
|
||||
#define GGML_TYPES_COMP
|
||||
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types : require
|
||||
|
||||
#if defined(DATA_A_F32)
|
||||
#define QUANT_K 1
|
||||
|
@ -38,8 +40,14 @@ struct block_q4_0
|
|||
float16_t d;
|
||||
uint8_t qs[16];
|
||||
};
|
||||
struct block_q4_0_packed16
|
||||
{
|
||||
float16_t d;
|
||||
uint16_t qs[16/2];
|
||||
};
|
||||
|
||||
#define A_TYPE block_q4_0
|
||||
#define A_TYPE_PACKED16 block_q4_0_packed16
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q4_1)
|
||||
|
@ -54,7 +62,15 @@ struct block_q4_1
|
|||
uint8_t qs[16];
|
||||
};
|
||||
|
||||
struct block_q4_1_packed16
|
||||
{
|
||||
float16_t d;
|
||||
float16_t m;
|
||||
uint16_t qs[16/2];
|
||||
};
|
||||
|
||||
#define A_TYPE block_q4_1
|
||||
#define A_TYPE_PACKED16 block_q4_1_packed16
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q5_0)
|
||||
|
@ -70,7 +86,15 @@ struct block_q5_0
|
|||
uint8_t qs[16];
|
||||
};
|
||||
|
||||
struct block_q5_0_packed16
|
||||
{
|
||||
float16_t d;
|
||||
uint16_t qh[2];
|
||||
uint16_t qs[16/2];
|
||||
};
|
||||
|
||||
#define A_TYPE block_q5_0
|
||||
#define A_TYPE_PACKED16 block_q5_0_packed16
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q5_1)
|
||||
|
@ -87,7 +111,16 @@ struct block_q5_1
|
|||
uint8_t qs[16];
|
||||
};
|
||||
|
||||
struct block_q5_1_packed16
|
||||
{
|
||||
float16_t d;
|
||||
float16_t m;
|
||||
uint qh;
|
||||
uint16_t qs[16/2];
|
||||
};
|
||||
|
||||
#define A_TYPE block_q5_1
|
||||
#define A_TYPE_PACKED16 block_q5_1_packed16
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q8_0)
|
||||
|
@ -100,8 +133,14 @@ struct block_q8_0
|
|||
float16_t d;
|
||||
int8_t qs[32];
|
||||
};
|
||||
struct block_q8_0_packed16
|
||||
{
|
||||
float16_t d;
|
||||
uint16_t qs[32/2];
|
||||
};
|
||||
|
||||
#define A_TYPE block_q8_0
|
||||
#define A_TYPE_PACKED16 block_q8_0_packed16
|
||||
#endif
|
||||
|
||||
// K-quants
|
||||
|
@ -116,7 +155,23 @@ struct block_q2_K
|
|||
f16vec2 d;
|
||||
};
|
||||
|
||||
struct block_q2_K_packed16
|
||||
{
|
||||
uint16_t scales[QUANT_K/16/2];
|
||||
uint16_t qs[QUANT_K/4/2];
|
||||
f16vec2 d;
|
||||
};
|
||||
|
||||
struct block_q2_K_packed32
|
||||
{
|
||||
uint32_t scales[QUANT_K/16/4];
|
||||
uint32_t qs[QUANT_K/4/4];
|
||||
f16vec2 d;
|
||||
};
|
||||
|
||||
#define A_TYPE block_q2_K
|
||||
#define A_TYPE_PACKED16 block_q2_K_packed16
|
||||
#define A_TYPE_PACKED32 block_q2_K_packed32
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q3_K)
|
||||
|
@ -131,7 +186,16 @@ struct block_q3_K
|
|||
float16_t d;
|
||||
};
|
||||
|
||||
struct block_q3_K_packed16
|
||||
{
|
||||
uint16_t hmask[QUANT_K/8/2];
|
||||
uint16_t qs[QUANT_K/4/2];
|
||||
uint16_t scales[12/2];
|
||||
float16_t d;
|
||||
};
|
||||
|
||||
#define A_TYPE block_q3_K
|
||||
#define A_TYPE_PACKED16 block_q3_K_packed16
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q4_K)
|
||||
|
@ -145,7 +209,23 @@ struct block_q4_K
|
|||
uint8_t qs[QUANT_K/2];
|
||||
};
|
||||
|
||||
struct block_q4_K_packed16
|
||||
{
|
||||
f16vec2 d;
|
||||
uint16_t scales[3*QUANT_K/64/2];
|
||||
uint16_t qs[QUANT_K/2/2];
|
||||
};
|
||||
|
||||
struct block_q4_K_packed32
|
||||
{
|
||||
f16vec2 d;
|
||||
uint32_t scales[3*QUANT_K/64/4];
|
||||
uint32_t qs[QUANT_K/2/4];
|
||||
};
|
||||
|
||||
#define A_TYPE block_q4_K
|
||||
#define A_TYPE_PACKED16 block_q4_K_packed16
|
||||
#define A_TYPE_PACKED32 block_q4_K_packed32
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q5_K)
|
||||
|
@ -160,7 +240,16 @@ struct block_q5_K
|
|||
uint8_t qs[QUANT_K/2];
|
||||
};
|
||||
|
||||
struct block_q5_K_packed16
|
||||
{
|
||||
f16vec2 d;
|
||||
uint16_t scales[12/2];
|
||||
uint16_t qh[QUANT_K/8/2];
|
||||
uint16_t qs[QUANT_K/2/2];
|
||||
};
|
||||
|
||||
#define A_TYPE block_q5_K
|
||||
#define A_TYPE_PACKED16 block_q5_K_packed16
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q6_K)
|
||||
|
@ -175,7 +264,16 @@ struct block_q6_K
|
|||
float16_t d;
|
||||
};
|
||||
|
||||
struct block_q6_K_packed16
|
||||
{
|
||||
uint16_t ql[QUANT_K/2/2];
|
||||
uint16_t qh[QUANT_K/4/2];
|
||||
int8_t scales[QUANT_K/16];
|
||||
float16_t d;
|
||||
};
|
||||
|
||||
#define A_TYPE block_q6_K
|
||||
#define A_TYPE_PACKED16 block_q6_K_packed16
|
||||
#endif
|
||||
|
||||
// IQuants
|
||||
|
@ -191,10 +289,30 @@ struct block_iq4_nl
|
|||
uint8_t qs[QUANT_K/2];
|
||||
};
|
||||
|
||||
#define A_TYPE block_iq4_nl
|
||||
struct block_iq4_nl_packed16
|
||||
{
|
||||
float16_t d;
|
||||
uint16_t qs[QUANT_K/2/2];
|
||||
};
|
||||
|
||||
const int8_t kvalues_iq4nl[16] = {
|
||||
#define A_TYPE block_iq4_nl
|
||||
#define A_TYPE_PACKED16 block_iq4_nl_packed16
|
||||
|
||||
const int8_t kvalues_iq4nl_const[16] = {
|
||||
int8_t(-127), int8_t(-104), int8_t(-83), int8_t(-65), int8_t(-49), int8_t(-35), int8_t(-22), int8_t(-10),
|
||||
int8_t(1), int8_t(13), int8_t(25), int8_t(38), int8_t(53), int8_t(69), int8_t(89), int8_t(113)
|
||||
};
|
||||
|
||||
shared FLOAT_TYPE kvalues_iq4nl[16];
|
||||
|
||||
void init_iq4nl_shmem()
|
||||
{
|
||||
// copy the table into shared memory and sync
|
||||
if (gl_LocalInvocationIndex.x < 16) {
|
||||
kvalues_iq4nl[gl_LocalInvocationIndex.x] = FLOAT_TYPE(kvalues_iq4nl_const[gl_LocalInvocationIndex.x]);
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // !defined(GGML_TYPES_COMP)
|
||||
|
|
|
@ -317,10 +317,10 @@ void process_shaders() {
|
|||
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
|
||||
std::string shader = (string_ends_with(tname, "_k")) ? "mul_mat_vec_" + tname + ".comp" : "mul_mat_vec.comp";
|
||||
|
||||
string_to_spv("mul_mat_vec_" + tname + "_f32_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
|
||||
string_to_spv("mul_mat_vec_" + tname + "_f16_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}}));
|
||||
string_to_spv("mul_mat_vec_" + tname + "_f32_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
|
||||
string_to_spv("mul_mat_vec_" + tname + "_f16_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}}));
|
||||
|
||||
string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
|
||||
string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
|
||||
|
||||
// Dequant shaders
|
||||
if (tname != "f16") {
|
||||
|
@ -331,11 +331,11 @@ void process_shaders() {
|
|||
shader = (tname == "f32" || tname == "f16") ? "get_rows.comp" : "get_rows_quant.comp";
|
||||
|
||||
if (tname == "f16") {
|
||||
string_to_spv("get_rows_" + tname, shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
|
||||
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}));
|
||||
} else {
|
||||
string_to_spv("get_rows_" + tname, shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}}));
|
||||
}
|
||||
string_to_spv("get_rows_" + tname + "_f32", shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("get_rows_" + tname + "_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float"}}));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -2255,6 +2255,7 @@ struct ggml_tensor * ggml_argmax(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a) {
|
||||
GGML_ASSERT(ggml_is_matrix(a));
|
||||
GGML_ASSERT(a->ne[0] <= INT32_MAX);
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
|
||||
|
||||
|
@ -4138,6 +4139,7 @@ struct ggml_tensor * ggml_argsort(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_sort_order order) {
|
||||
GGML_ASSERT(a->ne[0] <= INT32_MAX);
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
|
||||
|
||||
ggml_set_op_params_i32(result, 0, (int32_t) order);
|
||||
|
@ -5019,8 +5021,10 @@ static void ggml_hash_map_free(struct hash_map * map) {
|
|||
}
|
||||
|
||||
// utility functions to change gradients
|
||||
// if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
|
||||
// else if a is in zero_table, replace a
|
||||
// isrc is the index of tensor in cgraph->visited_has_set.keys
|
||||
// the corresponding gradient (accumulators) are also at position isrc
|
||||
// if tensor has a gradient accumulator, modify that accumulator in-place
|
||||
// else if there is no gradient for tensor, set the corresponding value
|
||||
// else, just add/subtract/etc. the gradients
|
||||
|
||||
static void ggml_add_or_set(
|
||||
|
@ -5028,11 +5032,14 @@ static void ggml_add_or_set(
|
|||
struct ggml_cgraph * cgraph,
|
||||
size_t isrc,
|
||||
struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
|
||||
GGML_ASSERT(src);
|
||||
if (cgraph->grads[isrc]) {
|
||||
cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
|
||||
cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, /*inplace =*/ cgraph->grad_accs[isrc]);
|
||||
} else {
|
||||
cgraph->grads[isrc] = tensor;
|
||||
}
|
||||
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
|
||||
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
|
||||
}
|
||||
|
||||
|
@ -5040,18 +5047,20 @@ static void ggml_acc_or_set(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * cgraph,
|
||||
size_t isrc,
|
||||
struct ggml_tensor * src,
|
||||
struct ggml_tensor * tensor,
|
||||
const size_t nb1,
|
||||
const size_t nb2,
|
||||
const size_t nb3,
|
||||
const size_t offset) {
|
||||
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
|
||||
GGML_ASSERT(src);
|
||||
if (cgraph->grads[isrc]) {
|
||||
cgraph->grads[isrc] = ggml_acc_impl(ctx, cgraph->grads[isrc], tensor, nb1, nb2, nb3, offset, cgraph->grad_accs[isrc]);
|
||||
} else {
|
||||
struct ggml_tensor * a_zero = ggml_scale(ctx, src, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
|
||||
cgraph->grads[isrc] = ggml_acc_impl(ctx, a_zero, tensor, nb1, nb2, nb3, offset, false);
|
||||
}
|
||||
ggml_format_name(cgraph->grads[isrc], "grad for %s", cgraph->visited_hash_set.keys[isrc]->name);
|
||||
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
|
||||
}
|
||||
|
||||
|
@ -5059,13 +5068,15 @@ static void ggml_add1_or_set(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * cgraph,
|
||||
size_t isrc,
|
||||
struct ggml_tensor * src,
|
||||
struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
|
||||
GGML_ASSERT(src);
|
||||
if (cgraph->grads[isrc]) {
|
||||
cgraph->grads[isrc] = ggml_add1_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
|
||||
} else {
|
||||
cgraph->grads[isrc] = ggml_repeat(ctx, tensor, src);
|
||||
}
|
||||
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
|
||||
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
|
||||
}
|
||||
|
||||
|
@ -5074,11 +5085,14 @@ static void ggml_sub_or_set(
|
|||
struct ggml_cgraph * cgraph,
|
||||
size_t isrc,
|
||||
struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
|
||||
GGML_ASSERT(src);
|
||||
if (cgraph->grads[isrc]) {
|
||||
cgraph->grads[isrc] = ggml_sub_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
|
||||
} else {
|
||||
cgraph->grads[isrc] = ggml_neg(ctx, tensor);
|
||||
}
|
||||
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
|
||||
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
|
||||
}
|
||||
|
||||
|
@ -5095,12 +5109,12 @@ static void ggml_compute_backward(
|
|||
struct ggml_tensor * src1 = tensor->src[1];
|
||||
struct ggml_tensor * src2 = tensor->src[2];
|
||||
struct ggml_hash_set * hash_set = &cgraph->visited_hash_set;
|
||||
const size_t isrc0 = ggml_hash_find(hash_set, src0);
|
||||
const size_t isrc1 = ggml_hash_find(hash_set, src1);
|
||||
const size_t isrc2 = ggml_hash_find(hash_set, src2);
|
||||
const bool src0_needs_grads = isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0];
|
||||
const bool src1_needs_grads = isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1];
|
||||
const bool src2_needs_grads = isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2];
|
||||
const size_t isrc0 = src0 ? ggml_hash_find(hash_set, src0) : (size_t) -1;
|
||||
const size_t isrc1 = src1 ? ggml_hash_find(hash_set, src1) : (size_t) -1;
|
||||
const size_t isrc2 = src2 ? ggml_hash_find(hash_set, src2) : (size_t) -1;
|
||||
const bool src0_needs_grads = src0 && isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0];
|
||||
const bool src1_needs_grads = src1 && isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1];
|
||||
const bool src2_needs_grads = src2 && isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2];
|
||||
|
||||
switch (tensor->op) {
|
||||
case GGML_OP_DUP: {
|
||||
|
@ -5200,7 +5214,7 @@ static void ggml_compute_backward(
|
|||
} break;
|
||||
case GGML_OP_SUM: {
|
||||
if (src0_needs_grads) {
|
||||
ggml_add1_or_set(ctx, cgraph, isrc0, src0, grad);
|
||||
ggml_add1_or_set(ctx, cgraph, isrc0, grad);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_SUM_ROWS: {
|
||||
|
@ -5210,7 +5224,7 @@ static void ggml_compute_backward(
|
|||
} break;
|
||||
case GGML_OP_MEAN: {
|
||||
if (src0_needs_grads) {
|
||||
ggml_add1_or_set(ctx, cgraph, isrc0, src0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false));
|
||||
ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false));
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_REPEAT: {
|
||||
|
@ -5363,7 +5377,7 @@ static void ggml_compute_backward(
|
|||
nb3 = (nb3 / n0) * ng;
|
||||
}
|
||||
|
||||
ggml_acc_or_set(ctx, cgraph, isrc0, src0, grad, nb1, nb2, nb3, offset);
|
||||
ggml_acc_or_set(ctx, cgraph, isrc0, grad, nb1, nb2, nb3, offset);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_PERMUTE: {
|
||||
|
@ -5597,10 +5611,9 @@ void ggml_build_backward_expand(
|
|||
|
||||
const int n_nodes_f = cgraph->n_nodes;
|
||||
|
||||
const size_t hash_size = ggml_hash_size(2*cgraph->size);
|
||||
memset(cgraph->grads, 0, hash_size*sizeof(struct ggml_tensor *));
|
||||
memset(cgraph->grad_accs, 0, hash_size*sizeof(struct ggml_tensor *));
|
||||
bool * grads_needed = calloc(hash_size, sizeof(bool));
|
||||
memset(cgraph->grads, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
|
||||
memset(cgraph->grad_accs, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
|
||||
bool * grads_needed = calloc(cgraph->visited_hash_set.size, sizeof(bool));
|
||||
|
||||
{
|
||||
bool any_params = false;
|
||||
|
@ -5621,7 +5634,7 @@ void ggml_build_backward_expand(
|
|||
continue;
|
||||
}
|
||||
|
||||
bool node_needs_grad = node->flags & GGML_TENSOR_FLAG_PARAM;
|
||||
bool node_needs_grad = (node->flags & GGML_TENSOR_FLAG_PARAM) || (node->flags & GGML_TENSOR_FLAG_LOSS);
|
||||
bool ignore_src[GGML_MAX_SRC] = {false};
|
||||
switch (node->op) {
|
||||
// gradients in node->src[0] for one reason or another have no effect on output gradients
|
||||
|
@ -5665,9 +5678,12 @@ void ggml_build_backward_expand(
|
|||
node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
|
||||
|
||||
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
|
||||
GGML_ASSERT(igrad != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, igrad));
|
||||
if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) {
|
||||
cgraph->grads[igrad] = ggml_dup_tensor(ctx_static, node);
|
||||
cgraph->grad_accs[igrad] = cgraph->grads[igrad];
|
||||
cgraph->grad_accs[igrad] = ggml_dup_tensor(ctx_static, node);
|
||||
cgraph->grads[igrad] = cgraph->grad_accs[igrad];
|
||||
ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name);
|
||||
}
|
||||
grads_needed[igrad] = true;
|
||||
}
|
||||
|
@ -5765,10 +5781,10 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1)
|
|||
/*.n_nodes =*/ i1 - i0,
|
||||
/*.n_leafs =*/ 0,
|
||||
/*.nodes =*/ cgraph0->nodes + i0,
|
||||
/*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
|
||||
/*.grad_accs =*/ cgraph0->grad_accs ? cgraph0->grad_accs + i0 : NULL,
|
||||
/*.grads =*/ NULL, // gradients would need visited_hash_set
|
||||
/*.grad_accs =*/ NULL,
|
||||
/*.leafs =*/ NULL,
|
||||
/*.hash_table =*/ { 0, NULL, NULL },
|
||||
/*.visited_hash_set =*/ { 0, NULL, NULL },
|
||||
/*.order =*/ cgraph0->order,
|
||||
};
|
||||
|
||||
|
@ -5799,12 +5815,22 @@ void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
|
|||
}
|
||||
}
|
||||
|
||||
if (dst->grads) {
|
||||
memset(dst->grads, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
|
||||
memset(dst->grad_accs, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
|
||||
}
|
||||
if (src->grads) {
|
||||
GGML_ASSERT(dst->grads != NULL);
|
||||
GGML_ASSERT(dst->grad_accs != NULL);
|
||||
for (int i = 0; i < src->n_nodes; ++i) {
|
||||
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
|
||||
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
|
||||
|
||||
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
|
||||
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
|
||||
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
|
||||
|
||||
dst->grads[igrad_dst] = src->grads[igrad_src];
|
||||
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
|
||||
}
|
||||
|
@ -5839,13 +5865,9 @@ void ggml_graph_reset(struct ggml_cgraph * cgraph) {
|
|||
|
||||
if (node->op == GGML_OP_OPT_STEP_ADAMW) {
|
||||
// clear momenta
|
||||
if (node->src[2]->data) {
|
||||
ggml_set_zero(node->src[2]);
|
||||
}
|
||||
if (node->src[3]->data) {
|
||||
ggml_set_zero(node->src[3]);
|
||||
}
|
||||
}
|
||||
|
||||
// initial gradients of loss should be 1, 0 otherwise
|
||||
if (grad_acc) {
|
||||
|
|
|
@ -1 +1 @@
|
|||
2884dd72fea8922910fe53387c3d17ab928d3a8e
|
||||
6fcbd60bc72ac3f7ad43f78c87e535f2e6206f58
|
||||
|
|
|
@ -18211,13 +18211,13 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|||
static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
||||
bool need_reserve = false;
|
||||
|
||||
// apply K-shift if needed
|
||||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
|
||||
if (lctx.kv_self.has_shift) {
|
||||
if (!llama_kv_cache_can_shift(&lctx)) {
|
||||
GGML_ABORT("Deepseek2 does not support K-shift");
|
||||
GGML_ABORT("The current context does not support K-shift");
|
||||
}
|
||||
|
||||
{
|
||||
// apply K-shift if needed
|
||||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
||||
ggml_backend_sched_reset(lctx.sched.get());
|
||||
|
||||
ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
|
||||
|
@ -20463,7 +20463,7 @@ void llama_kv_cache_update(struct llama_context * ctx) {
|
|||
}
|
||||
|
||||
bool llama_kv_cache_can_shift(struct llama_context * ctx) {
|
||||
return ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
return !ctx->kv_self.recurrent && ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
}
|
||||
|
||||
// deprecated
|
||||
|
|
|
@ -819,7 +819,6 @@ struct test_case {
|
|||
}
|
||||
}
|
||||
|
||||
// TODO: refactor so that this check is only needed once
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (!ggml_backend_supports_op(backend, t)) {
|
||||
printf("not supported [%s] ", ggml_backend_name(backend));
|
||||
|
@ -1155,6 +1154,26 @@ struct test_argmax : public test_case {
|
|||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
std::random_device rd;
|
||||
std::default_random_engine rng(rd());
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_F32) {
|
||||
// initialize with unique values to avoid ties
|
||||
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
||||
std::vector<float> data(t->ne[0]);
|
||||
for (int i = 0; i < t->ne[0]; i++) {
|
||||
data[i] = i;
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), rng);
|
||||
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
|
||||
}
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
return 0.0;
|
||||
}
|
||||
|
@ -3441,6 +3460,11 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
|
||||
|
||||
test_cases.emplace_back(new test_argmax());
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
|
||||
|
||||
test_cases.emplace_back(new test_count_equal());
|
||||
|
||||
for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
|
||||
|
@ -3831,6 +3855,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));
|
||||
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
|
||||
|
||||
for (int bs : {1, 512}) {
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue