Merge 'origin/master' into hipblas

This commit is contained in:
Henri Vasserman 2023-04-25 21:15:33 +03:00
commit d571d1629f
14 changed files with 1141 additions and 893 deletions

View file

@ -19,8 +19,8 @@ env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
jobs:
ubuntu-latest-make:
runs-on: ubuntu-latest
ubuntu-focal-make:
runs-on: ubuntu-20.04
steps:
- name: Clone
@ -31,12 +31,12 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential gcc-8
- name: Build
id: make_build
run: |
make
CC=gcc-8 make
ubuntu-latest-cmake:
runs-on: ubuntu-latest
@ -216,7 +216,7 @@ jobs:
runs-on: ubuntu-latest
needs:
- ubuntu-latest-make
- ubuntu-focal-make
- ubuntu-latest-cmake
- macOS-latest-make
- macOS-latest-cmake

View file

@ -109,9 +109,9 @@ ifdef LLAMA_CUBLAS
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64
OBJS += ggml-cuda.o
NVCC = nvcc
NVCCFLAGS = --forward-unknown-to-host-linker -arch=native
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -c $< -o $@
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif
ifdef LLAMA_HIPBLAS
ROCM_PATH ?= /opt/rocm

View file

@ -241,7 +241,7 @@ Here is an example of a few-shot interaction, invoked with the command
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
```
Note the use of `--color` to distinguish between user input and generated text.
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.
![image](https://user-images.githubusercontent.com/1991296/224575029-2af3c7dc-5a65-4f64-a6bb-517a532aea38.png)

View file

@ -34,4 +34,5 @@ else()
add_subdirectory(quantize-stats)
add_subdirectory(perplexity)
add_subdirectory(embedding)
add_subdirectory(save-load-state)
endif()

View file

@ -156,10 +156,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.interactive = true;
} else if (arg == "--embedding") {
params.embedding = true;
} else if (arg == "--interactive-start") {
params.interactive = true;
} else if (arg == "--interactive-first") {
params.interactive_start = true;
params.interactive_first = true;
} else if (arg == "-ins" || arg == "--instruct") {
params.instruct = true;
} else if (arg == "--color") {

View file

@ -43,7 +43,7 @@ struct gpt_params {
bool interactive = false; // interactive mode
bool embedding = false; // get only sentence embedding
bool interactive_start = false; // wait for user input immediately
bool interactive_first = false; // wait for user input immediately
bool instruct = false; // instruction mode (used for Alpaca models)
bool ignore_eos = false; // do not stop generating after eos

View file

@ -21,12 +21,20 @@ To get started right away, run the following command, making sure to use the cor
./main -m models/7B/ggml-model.bin --prompt "Once upon a time"
```
The following command generates "infinite" text from a starting prompt (you can use `Ctrl-C` to stop it):
```bash
./main -m models/7B/ggml-model.bin --ignore-eos --n_predict -1 --keep -1 --prompt "Once upon a time"
```
For an interactive experience, try this command:
```bash
./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " --prompt $'User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:'
```
Note that the newline characters in the prompt string above only work on Linux. On Windows, you will have to use the ``--file`` option (see below) to load a multi-line prompt from file instead.
## Common Options
In this section, we cover the most commonly used options for running the `main` program with the LLaMA models:
@ -84,6 +92,8 @@ Instruction mode is particularly useful when working with Alpaca models, which a
- `-ins, --instruct`: Enable instruction mode to leverage the capabilities of Alpaca models in completing tasks based on user-provided instructions.
Technical detail: the user's input is internally prefixed with the reverse prompt (or ``### Instruction:`` as the default), and followed by ``### Response:`` (except if you just press Return without any input, to keep generating a longer response).
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
## Context Management
@ -114,7 +124,7 @@ The following options are related to controlling the text generation process, in
The `--n_predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. A value of -1 will cause text to be generated without limit.
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n_predict` value.
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n_predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the ``--ignore-eos`` parameter.
### RNG Seed
@ -126,7 +136,7 @@ The RNG seed is used to initialize the random number generator that influences t
- `--temp N`: Adjust the randomness of the generated text (default: 0.8).
Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism.
Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run.
Example usage: `--temp 0.8`
@ -177,5 +187,5 @@ These options provide extra functionality and customization when running the LLa
- `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated.
- `--verbose-prompt`: Print the prompt before generating text.
- `--mtest`: Test the model's functionality by running a series of tests to ensure it's working properly.
- `--lora FNAME`: Apply a LoRA (Layer-wise Relevance Approximation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.

View file

@ -178,12 +178,12 @@ int main(int argc, char ** argv) {
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive_start = true;
params.interactive_first = true;
params.antiprompt.push_back("### Instruction:\n\n");
}
// enable interactive mode if reverse prompt or interactive start is specified
if (params.antiprompt.size() != 0 || params.interactive_start) {
if (params.antiprompt.size() != 0 || params.interactive_first) {
params.interactive = true;
}
@ -246,7 +246,7 @@ int main(int argc, char ** argv) {
#endif
" - Press Return to return control to LLaMa.\n"
" - If you want to submit another line, end your input in '\\'.\n\n");
is_interacting = params.interactive_start;
is_interacting = params.interactive_first;
}
bool is_antiprompt = false;

View file

@ -0,0 +1,4 @@
set(TARGET save-load-state)
add_executable(${TARGET} save-load-state.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,128 @@
#include <vector>
#include <cstdio>
#include <chrono>
#include "common.h"
#include "llama.h"
#include "llama.cpp"
using namespace std;
int main(int argc, char ** argv) {
gpt_params params;
params.model = "models/llama-7B/ggml-model.bin";
params.seed = 42;
params.n_threads = 4;
params.repeat_last_n = 64;
params.prompt = "The quick brown fox";
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_parts = params.n_parts;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
auto n_past = 0;
auto last_n_tokens_data = vector<llama_token>(params.repeat_last_n, 0);
// init
auto ctx = llama_init_from_file(params.model.c_str(), lparams);
auto tokens = vector<llama_token>(params.n_ctx);
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true);
if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
return 1;
}
// evaluate prompt
llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads);
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
n_past += n_prompt_tokens;
// Save state (rng, logits, embedding and kv_cache) to file
FILE *fp_write = fopen("dump_state.bin", "wb");
auto state_size = llama_get_state_size(ctx);
auto state_mem = new uint8_t[state_size];
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
fwrite(state_mem, 1, state_size, fp_write);
fclose(fp_write);
// save state (last tokens)
auto last_n_tokens_data_saved = vector<llama_token>(last_n_tokens_data);
auto n_past_saved = n_past;
// first run
printf("\n%s", params.prompt.c_str());
for (auto i = 0; i < params.n_predict; i++) {
auto next_token = llama_sample_top_p_top_k(
ctx,
&last_n_tokens_data.back() - params.repeat_last_n,
params.repeat_last_n,
40,
1.0,
1.0,
1.1);
auto next_token_str = llama_token_to_str(ctx, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str);
if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
return 1;
}
n_past += 1;
}
printf("\n\n");
// free old model
llama_free(ctx);
// load new model
auto ctx2 = llama_init_from_file(params.model.c_str(), lparams);
// Load state (rng, logits, embedding and kv_cache) from file
FILE *fp_read = fopen("dump_state.bin", "rb");
auto state_size2 = llama_get_state_size(ctx2);
if (state_size != state_size2) {
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
}
fread(state_mem, 1, state_size, fp_read);
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
fclose(fp_read);
// restore state (last tokens)
last_n_tokens_data = last_n_tokens_data_saved;
n_past = n_past_saved;
// second run
for (auto i = 0; i < params.n_predict; i++) {
auto next_token = llama_sample_top_p_top_k(
ctx2,
&last_n_tokens_data.back() - params.repeat_last_n,
params.repeat_last_n,
40,
1.0,
1.0,
1.1);
auto next_token_str = llama_token_to_str(ctx2, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str);
if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
return 1;
}
n_past += 1;
}
printf("\n\n");
return 0;
}

215
ggml.c
View file

@ -436,7 +436,7 @@ static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
{
// Load 8 bytes from memory
__m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
__m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
// Expand bytes into uint16_t values
__m128i bytes = _mm_cvtepu8_epi16( tmp );
@ -692,13 +692,17 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int l = 0; l < QK4_0; l++) {
const float v = x[i*QK4_0 + l];
amax = MAX(amax, fabsf(v));
if (amax < fabsf(v)) {
amax = fabsf(v);
max = v;
}
}
const float d = amax / ((1 << 3) - 1);
const float d = max / -8;
const float id = d ? 1.0f/d : 0.0f;
y[i].d = d;
@ -707,8 +711,8 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r
const float v0 = x[i*QK4_0 + l + 0]*id;
const float v1 = x[i*QK4_0 + l + 1]*id;
const uint8_t vi0 = (int8_t)roundf(v0) + 8;
const uint8_t vi1 = (int8_t)roundf(v1) + 8;
const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
assert(vi0 < 16);
assert(vi1 < 16);
@ -728,28 +732,42 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
#if defined(__POWER9_VECTOR__)
const vector float v85 = vec_splats(8.5f);
const vector signed int v15 = vec_splats(15);
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
float max = 0.0f;
float min = 0.0f;
vector float srcv [8];
vector float asrcv[8];
vector float amaxv[8];
vector float maxv[8];
vector float minv[8];
for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
//for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
//for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
amaxv[0] = vec_max(amaxv[0], amaxv[2]);
amaxv[4] = vec_max(amaxv[4], amaxv[6]);
//for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
amaxv[0] = vec_max(amaxv[0], amaxv[4]);
for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
//for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
maxv[0] = vec_max(maxv[0], maxv[2]);
maxv[4] = vec_max(maxv[4], maxv[6]);
//for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
maxv[0] = vec_max(maxv[0], maxv[4]);
amax = MAX(
MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
//for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
minv[0] = vec_min(minv[0], minv[2]);
minv[4] = vec_min(minv[4], minv[6]);
//for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
minv[0] = vec_min(minv[0], minv[4]);
const float d = amax / ((1 << 3) - 1);
max = MAX(
MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
min = MIN(
MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
const float magnitude = max >= fabsf(min) ? max : min;
const float d = magnitude / -8;
const float id = d ? 1.0/d : 0.0;
y[i].d = d;
@ -759,27 +777,33 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
for (int l = 0; l < 8; l++) {
const vector float vf = vec_madd(srcv[l], vid, v85);
const vector signed int vi = vec_signed(vf);
const vector signed int vc = vec_min(vi, v15);
pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
}
}
#elif __ARM_NEON
for (int i = 0; i < nb; i++) {
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
float32x4_t maxv[8];
float32x4_t minv[8];
for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
const float amax = vmaxvq_f32(amaxv[0]);
for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
const float d = amax / ((1 << 3) - 1);
const float max = vmaxvq_f32(maxv[0]);
const float min = vminvq_f32(minv[0]);
const float magnitude = max >= fabsf(min) ? max : min;
const float d = magnitude / -8;
const float id = d ? 1.0f/d : 0.0f;
y[i].d = d;
@ -788,9 +812,10 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
const float32x4_t v = vmulq_n_f32(srcv[l], id);
const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
const int32x4_t vi = vcvtq_s32_f32(vf);
const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
}
}
#elif defined(__AVX2__)
@ -802,22 +827,31 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
__m256 v3 = _mm256_loadu_ps( x + 24 );
x += 32;
// Compute max(abs(e)) for the block
const __m256 signBit = _mm256_set1_ps( -0.0f );
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
// Compute max for the block
__m256 max = _mm256_max_ps( v0, v1 );
__m256 maxTmp = _mm256_max_ps( v2, v3 );
max = _mm256_max_ps( max, maxTmp );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
const float maxScalar = _mm_cvtss_f32( max4 );
// Compute min for the block
__m256 min = _mm256_min_ps( v0, v1 );
__m256 minTmp = _mm256_min_ps( v2, v3 );
min = _mm256_min_ps( min, minTmp );
__m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
const float minScalar = _mm_cvtss_f32( min4 );
// Quantize these floats
const float d = maxScalar / 7.0f;
const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
const float d = magnitude / -8.0f;
y[i].d = d;
const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
const __m256 mul = _mm256_set1_ps( id );
// Apply the multiplier
@ -850,9 +884,11 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
i0 = _mm256_permutevar8x32_epi32( i0, perm );
// Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
// Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
const __m256i off = _mm256_set1_epi8( 8 );
i0 = _mm256_add_epi8( i0, off );
const __m256i maxNibble = _mm256_set1_epi8( 15 );
i0 = _mm256_min_epi8( i0, maxNibble );
// Compress the vector into 4 bit/value, and store
__m128i res = packNibbles( i0 );
@ -867,22 +903,31 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
__m256 v3 = _mm256_loadu_ps( x + 24 );
x += 32;
// Compute max(abs(e)) for the block
const __m256 signBit = _mm256_set1_ps( -0.0f );
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
// Compute max for the block
__m256 max = _mm256_max_ps( v0, v1 );
__m256 maxTmp = _mm256_max_ps( v2, v3 );
max = _mm256_max_ps( max, maxTmp );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
const float maxScalar = _mm_cvtss_f32( max4 );
// Compute min for the block
__m256 min = _mm256_min_ps( v0, v1 );
__m256 minTmp = _mm256_min_ps( v2, v3 );
min = _mm256_min_ps( min, minTmp );
__m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
const float minScalar = _mm_cvtss_f32( min4 );
// Quantize these floats
const float d = maxScalar / 7.0f;
const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
const float d = magnitude / -8.0f;
y[i].d = d;
const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
const __m256 mul = _mm256_set1_ps( id );
// Apply the multiplier
@ -923,10 +968,13 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
ni0 = _mm_packs_epi16( ni0, ni2 );
ni4 = _mm_packs_epi16( ni4, ni6 );
// Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
const __m128i off = _mm_set1_epi8( 8);
// Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
const __m128i off = _mm_set1_epi8( 8 );
ni0 = _mm_add_epi8( ni0, off );
ni4 = _mm_add_epi8( ni4, off );
const __m128i maxNibble = _mm_set1_epi8( 15 );
ni0 = _mm_min_epi8( ni0, maxNibble );
ni4 = _mm_min_epi8( ni4, maxNibble );
// Compress the vector into 4 bit/value, and store
__m128i res = packNibbles( ni0, ni4 );
@ -934,24 +982,32 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
}
#elif defined(__wasm_simd128__)
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
float max = 0.0f;
float min = 0.0f;
v128_t srcv [8];
v128_t asrcv[8];
v128_t amaxv[8];
v128_t maxv[8];
v128_t minv[8];
for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
amax = MAX(
MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
const float d = amax / ((1 << 3) - 1);
max = MAX(
MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
min = MIN(
MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
const float magnitude = max >= fabsf(min) ? max : min;
const float d = magnitude / -8;
const float id = d ? 1.0/d : 0.0;
y[i].d = d;
@ -960,9 +1016,10 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int
const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
}
}
#else
@ -1143,13 +1200,17 @@ static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * r
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int l = 0; l < QK4_2; l++) {
const float v = x[i*QK4_2 + l];
amax = MAX(amax, fabsf(v));
if (amax < fabsf(v)) {
amax = fabsf(v);
max = v;
}
}
const float d = amax / ((1 << 3) - 1);
const float d = max / -8;
const float id = d ? 1.0f/d : 0.0f;
@ -1159,8 +1220,8 @@ static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * r
const float v0 = x[i*QK4_2 + l + 0]*id;
const float v1 = x[i*QK4_2 + l + 1]*id;
const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
assert(vi0 < 16);
assert(vi1 < 16);
@ -1254,9 +1315,7 @@ static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int
block_q4_2 * restrict y = vy;
//quantize_row_q4_2_reference(x, y, k);
// This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
quantize_row_q4_2_rmse(x, y, k);
quantize_row_q4_2_reference(x, y, k);
}
static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
@ -1807,7 +1866,7 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
[GGML_TYPE_Q4_2] = {
.dequantize_row_q = dequantize_row_q4_2,
.quantize_row_q = quantize_row_q4_2,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
.quantize_row_q_dot = quantize_row_q8_0,
.vec_dot_q = ggml_vec_dot_q4_2_q8_0,
},
@ -6779,15 +6838,20 @@ static void ggml_compute_forward_sum_f32(
const size_t nb02 = src0->nb[2];
const size_t nb03 = src0->nb[3];
ggml_float sum = 0;
float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f32(ne00,
(float *) (dst->data),
&row_sum,
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
sum += row_sum;
}
}
}
((float *) dst->data)[0] = sum;
}
static void ggml_compute_forward_sum(
@ -12138,8 +12202,7 @@ size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t *
for (int j = 0; j < n; j += k) {
block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
//quantize_row_q4_2_reference(src + j, y, k);
quantize_row_q4_2_rmse(src + j, y, k);
quantize_row_q4_2_reference(src + j, y, k);
for (int i = 0; i < nb; i++) {
for (int l = 0; l < QK4_2; l += 2) {

471
ggml.h
View file

@ -169,14 +169,27 @@
//
//
#ifdef __cplusplus
extern "C" {
#ifdef GGML_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef GGML_BUILD
# define GGML_API __declspec(dllexport)
# else
# define GGML_API __declspec(dllimport)
# endif
# else
# define GGML_API __attribute__ ((visibility ("default")))
# endif
#else
# define GGML_API
#endif
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
#define GGML_FILE_VERSION 1
#define GGML_MAX_DIMS 4
#define GGML_MAX_NODES 4096
#define GGML_MAX_PARAMS 16
@ -184,22 +197,25 @@ extern "C" {
#define GGML_MAX_OPT 4
#define GGML_DEFAULT_N_THREADS 4
#ifdef __ARM_NEON
// we use the built-in 16-bit float type
typedef __fp16 ggml_fp16_t;
#else
typedef uint16_t ggml_fp16_t;
#ifdef __cplusplus
extern "C" {
#endif
// convert FP16 <-> FP32
float ggml_fp16_to_fp32(ggml_fp16_t x);
ggml_fp16_t ggml_fp32_to_fp16(float x);
#ifdef __ARM_NEON
// we use the built-in 16-bit float type
typedef __fp16 ggml_fp16_t;
#else
typedef uint16_t ggml_fp16_t;
#endif
struct ggml_object;
struct ggml_context;
// convert FP16 <-> FP32
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
enum ggml_type {
// explicitly numbered values are used in llama.cpp files
struct ggml_object;
struct ggml_context;
enum ggml_type {
GGML_TYPE_F32 = 0,
GGML_TYPE_F16 = 1,
GGML_TYPE_Q4_0 = 2,
@ -211,10 +227,10 @@ enum ggml_type {
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_COUNT,
};
};
// available tensor operations:
enum ggml_op {
// available tensor operations:
enum ggml_op {
GGML_OP_NONE = 0,
GGML_OP_DUP,
@ -260,23 +276,23 @@ enum ggml_op {
GGML_OP_MAP_BINARY,
GGML_OP_COUNT,
};
};
// ggml object
struct ggml_object {
// ggml object
struct ggml_object {
size_t offs;
size_t size;
struct ggml_object * next;
char padding[8];
};
};
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
// n-dimensional tensor
struct ggml_tensor {
// n-dimensional tensor
struct ggml_tensor {
enum ggml_type type;
int n_dims;
@ -306,10 +322,10 @@ struct ggml_tensor {
void * data;
char padding[8];
};
};
// computation graph
struct ggml_cgraph {
// computation graph
struct ggml_cgraph {
int n_nodes;
int n_leafs;
int n_threads;
@ -325,76 +341,80 @@ struct ggml_cgraph {
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
};
};
// scratch buffer
struct ggml_scratch {
// scratch buffer
struct ggml_scratch {
size_t offs;
size_t size;
void * data;
};
};
struct ggml_init_params {
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
};
void ggml_time_init(void); // call this once at the beginning of the program
int64_t ggml_time_ms(void);
int64_t ggml_time_us(void);
int64_t ggml_cycles(void);
int64_t ggml_cycles_per_ms(void);
// misc
void ggml_print_object (const struct ggml_object * obj);
void ggml_print_objects(const struct ggml_context * ctx);
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
GGML_API int64_t ggml_time_ms(void);
GGML_API int64_t ggml_time_us(void);
GGML_API int64_t ggml_cycles(void);
GGML_API int64_t ggml_cycles_per_ms(void);
int64_t ggml_nelements(const struct ggml_tensor * tensor);
size_t ggml_nbytes (const struct ggml_tensor * tensor);
GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
int ggml_blck_size (enum ggml_type type);
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
const char * ggml_type_name(enum ggml_type type);
GGML_API int ggml_blck_size (enum ggml_type type);
GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
size_t ggml_element_size(const struct ggml_tensor * tensor);
GGML_API const char * ggml_type_name(enum ggml_type type);
bool ggml_is_quantized(enum ggml_type type);
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
struct ggml_context * ggml_init(struct ggml_init_params params);
void ggml_free(struct ggml_context * ctx);
GGML_API bool ggml_is_quantized(enum ggml_type type);
size_t ggml_used_mem(const struct ggml_context * ctx);
// main
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
GGML_API void ggml_free(struct ggml_context * ctx);
struct ggml_tensor * ggml_new_tensor(
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
GGML_API size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t *ne);
struct ggml_tensor * ggml_new_tensor_1d(
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0);
struct ggml_tensor * ggml_new_tensor_2d(
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1);
struct ggml_tensor * ggml_new_tensor_3d(
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2);
struct ggml_tensor * ggml_new_tensor_4d(
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
@ -402,185 +422,184 @@ struct ggml_tensor * ggml_new_tensor_4d(
int64_t ne2,
int64_t ne3);
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
void * ggml_get_data (const struct ggml_tensor * tensor);
float * ggml_get_data_f32(const struct ggml_tensor * tensor);
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
//
// operations on tensors with backpropagation
//
//
// operations on tensors with backpropagation
//
struct ggml_tensor * ggml_dup(
GGML_API struct ggml_tensor * ggml_dup(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_add(
GGML_API struct ggml_tensor * ggml_add(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * ggml_add_inplace(
GGML_API struct ggml_tensor * ggml_add_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * ggml_sub(
GGML_API struct ggml_tensor * ggml_sub(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * ggml_mul(
GGML_API struct ggml_tensor * ggml_mul(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * ggml_div(
GGML_API struct ggml_tensor * ggml_div(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * ggml_sqr(
GGML_API struct ggml_tensor * ggml_sqr(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_sqrt(
GGML_API struct ggml_tensor * ggml_sqrt(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return scalar
// TODO: compute sum along rows
struct ggml_tensor * ggml_sum(
// return scalar
// TODO: compute sum along rows
GGML_API struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
struct ggml_tensor * a);
// mean along rows
struct ggml_tensor * ggml_mean(
// mean along rows
GGML_API struct ggml_tensor * ggml_mean(
struct ggml_context * ctx,
struct ggml_tensor * a);
// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
struct ggml_tensor * ggml_repeat(
// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
GGML_API struct ggml_tensor * ggml_repeat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * ggml_abs(
GGML_API struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_sgn(
GGML_API struct ggml_tensor * ggml_sgn(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_neg(
GGML_API struct ggml_tensor * ggml_neg(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_step(
GGML_API struct ggml_tensor * ggml_step(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_relu(
GGML_API struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a);
// TODO: double-check this computation is correct
struct ggml_tensor * ggml_gelu(
// TODO: double-check this computation is correct
GGML_API struct ggml_tensor * ggml_gelu(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_silu(
GGML_API struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a);
// normalize along rows
// TODO: eps is hardcoded to 1e-5 for now
struct ggml_tensor * ggml_norm(
// normalize along rows
// TODO: eps is hardcoded to 1e-5 for now
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_rms_norm(
GGML_API struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a);
// A: m rows, n columns
// B: p rows, n columns (i.e. we transpose it internally)
// result is m columns, p rows
struct ggml_tensor * ggml_mul_mat(
// A: m rows, n columns
// B: p rows, n columns (i.e. we transpose it internally)
// result is m columns, p rows
GGML_API struct ggml_tensor * ggml_mul_mat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
//
// operations on tensors without backpropagation
//
//
// operations on tensors without backpropagation
//
// in-place, returns view(a)
struct ggml_tensor * ggml_scale(
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// a -> b, return view(b)
struct ggml_tensor * ggml_cpy(
// a -> b, return view(b)
GGML_API struct ggml_tensor * ggml_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// make contiguous
struct ggml_tensor * ggml_cont(
// make contiguous
GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_tensor * ggml_reshape(
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_tensor * ggml_reshape_2d(
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_tensor * ggml_reshape_3d(
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
// offset in bytes
struct ggml_tensor * ggml_view_1d(
// offset in bytes
GGML_API struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
size_t offset);
struct ggml_tensor * ggml_view_2d(
GGML_API struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
@ -588,7 +607,7 @@ struct ggml_tensor * ggml_view_2d(
size_t nb1, // row stride in bytes
size_t offset);
struct ggml_tensor * ggml_view_3d(
GGML_API struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
@ -598,7 +617,7 @@ struct ggml_tensor * ggml_view_3d(
size_t nb2, // slice stride in bytes
size_t offset);
struct ggml_tensor * ggml_permute(
GGML_API struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
@ -606,62 +625,62 @@ struct ggml_tensor * ggml_permute(
int axis2,
int axis3);
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
struct ggml_tensor * ggml_transpose(
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
GGML_API struct ggml_tensor * ggml_transpose(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_get_rows(
GGML_API struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// set elements above the diagonal to -INF
// in-place, returns view(a)
struct ggml_tensor * ggml_diag_mask_inf(
// set elements above the diagonal to -INF
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
// in-place, returns view(a)
struct ggml_tensor * ggml_soft_max(
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx,
struct ggml_tensor * a);
// rotary position embedding
// in-place, returns view(a)
// if mode & 1 == 1, skip n_past elements
// if mode & 2 == 1, GPT-NeoX style
// TODO: avoid creating a new tensor every time
struct ggml_tensor * ggml_rope(
// rotary position embedding
// in-place, returns view(a)
// if mode & 1 == 1, skip n_past elements
// if mode & 2 == 1, GPT-NeoX style
// TODO: avoid creating a new tensor every time
GGML_API struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode);
// padding = 1
// TODO: we don't support extra parameters for now
// that's why we are hard-coding the stride, padding, and dilation
// not great ..
struct ggml_tensor * ggml_conv_1d_1s(
// padding = 1
// TODO: we don't support extra parameters for now
// that's why we are hard-coding the stride, padding, and dilation
// not great ..
GGML_API struct ggml_tensor * ggml_conv_1d_1s(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * ggml_conv_1d_2s(
GGML_API struct ggml_tensor * ggml_conv_1d_2s(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * ggml_flash_attn(
GGML_API struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
bool masked);
struct ggml_tensor * ggml_flash_ff(
GGML_API struct ggml_tensor * ggml_flash_ff(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b0,
@ -669,64 +688,64 @@ struct ggml_tensor * ggml_flash_ff(
struct ggml_tensor * c0,
struct ggml_tensor * c1);
// Mapping operations
typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
// Mapping operations
GGML_API typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
GGML_API typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
struct ggml_tensor * ggml_map_unary_f32(
GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun);
struct ggml_tensor * ggml_map_binary_f32(
GGML_API struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun);
//
// automatic differentiation
//
//
// automatic differentiation
//
void ggml_set_param(
GGML_API void ggml_set_param(
struct ggml_context * ctx,
struct ggml_tensor * tensor);
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
void ggml_graph_reset (struct ggml_cgraph * cgraph);
GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
// print info and performance information for the graph
void ggml_graph_print(const struct ggml_cgraph * cgraph);
// print info and performance information for the graph
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
// dump the graph into a file using the dot format
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
// dump the graph into a file using the dot format
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
//
// optimization
//
//
// optimization
//
// optimization methods
enum ggml_opt_type {
// optimization methods
enum ggml_opt_type {
GGML_OPT_ADAM,
GGML_OPT_LBFGS,
};
};
// linesearch methods
enum ggml_linesearch {
// linesearch methods
enum ggml_linesearch {
GGML_LINESEARCH_DEFAULT = 1,
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
};
};
// optimization return values
enum ggml_opt_result {
// optimization return values
enum ggml_opt_result {
GGML_OPT_OK = 0,
GGML_OPT_DID_NOT_CONVERGE,
GGML_OPT_NO_CONTEXT,
@ -738,13 +757,13 @@ enum ggml_opt_result {
GGML_LINESEARCH_MAXIMUM_STEP,
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
GGML_LINESEARCH_INVALID_PARAMETERS,
};
};
// optimization parameters
//
// see ggml.c (ggml_opt_default_params) for default values
//
struct ggml_opt_params {
// optimization parameters
//
// see ggml.c (ggml_opt_default_params) for default values
//
struct ggml_opt_params {
enum ggml_opt_type type;
int n_threads;
@ -795,71 +814,71 @@ struct ggml_opt_params {
enum ggml_linesearch linesearch;
} lbfgs;
};
};
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
// optimize the function defined by the tensor f
enum ggml_opt_result ggml_opt(
// optimize the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt(
struct ggml_context * ctx,
struct ggml_opt_params params,
struct ggml_tensor * f);
//
// quantization
//
//
// quantization
//
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
//
// system info
//
//
// system info
//
int ggml_cpu_has_avx(void);
int ggml_cpu_has_avx2(void);
int ggml_cpu_has_avx512(void);
int ggml_cpu_has_avx512_vbmi(void);
int ggml_cpu_has_avx512_vnni(void);
int ggml_cpu_has_fma(void);
int ggml_cpu_has_neon(void);
int ggml_cpu_has_arm_fma(void);
int ggml_cpu_has_f16c(void);
int ggml_cpu_has_fp16_va(void);
int ggml_cpu_has_wasm_simd(void);
int ggml_cpu_has_blas(void);
int ggml_cpu_has_cublas(void);
int ggml_cpu_has_sse3(void);
int ggml_cpu_has_vsx(void);
GGML_API int ggml_cpu_has_avx (void);
GGML_API int ggml_cpu_has_avx2 (void);
GGML_API int ggml_cpu_has_avx512 (void);
GGML_API int ggml_cpu_has_avx512_vbmi(void);
GGML_API int ggml_cpu_has_avx512_vnni(void);
GGML_API int ggml_cpu_has_fma (void);
GGML_API int ggml_cpu_has_neon (void);
GGML_API int ggml_cpu_has_arm_fma (void);
GGML_API int ggml_cpu_has_f16c (void);
GGML_API int ggml_cpu_has_fp16_va (void);
GGML_API int ggml_cpu_has_wasm_simd (void);
GGML_API int ggml_cpu_has_blas (void);
GGML_API int ggml_cpu_has_cublas (void);
GGML_API int ggml_cpu_has_sse3 (void);
GGML_API int ggml_cpu_has_vsx (void);
//
// Internal types and functions exposed for tests and benchmarks
//
//
// Internal types and functions exposed for tests and benchmarks
//
#ifdef __cplusplus
// restrict not standard in C++
// restrict not standard in C++
#define GGML_RESTRICT
#else
#define GGML_RESTRICT restrict
#endif
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
typedef struct {
typedef struct {
dequantize_row_q_t dequantize_row_q;
quantize_row_q_t quantize_row_q;
quantize_row_q_t quantize_row_q_reference;
quantize_row_q_t quantize_row_q_dot;
vec_dot_q_t vec_dot_q;
} quantize_fns_t;
} quantize_fns_t;
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
#ifdef __cplusplus
}

319
llama.cpp
View file

@ -54,7 +54,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
{ MODEL_7B, 512ull * MB },
{ MODEL_13B, 512ull * MB },
{ MODEL_30B, 512ull * MB },
{ MODEL_65B, 512ull * MB },
{ MODEL_65B, 1024ull * MB },
};
return _MEM_REQ_SCRATCH0;
}
@ -65,7 +65,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
{ MODEL_7B, 512ull * MB },
{ MODEL_13B, 512ull * MB },
{ MODEL_30B, 512ull * MB },
{ MODEL_65B, 512ull * MB },
{ MODEL_65B, 1024ull * MB },
};
return _MEM_REQ_SCRATCH1;
}
@ -2072,35 +2072,191 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
}
}
// Returns the KV cache that will contain the context for the
// ongoing prediction with the model.
const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
return ctx->model.kv_self.buf.addr;
}
// Returns the size of the KV cache
size_t llama_get_kv_cache_size(struct llama_context * ctx) {
return ctx->model.kv_self.buf.size;
}
int llama_get_kv_cache_token_count(struct llama_context * ctx) {
return ctx->model.kv_self.n;
}
// Sets the KV cache containing the current context for the model
void llama_set_kv_cache(
struct llama_context * ctx,
const uint8_t * kv_cache,
size_t n_size,
int n_token_count) {
// Make sure we have the same kv cache setup
LLAMA_ASSERT(ctx->model.kv_self.buf.size == n_size);
#define LLAMA_MAX_RNG_STATE 64*1024
// Returns the size of the state
size_t llama_get_state_size(struct llama_context * ctx) {
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = LLAMA_MAX_RNG_STATE;
const size_t s_logits_capacity = sizeof(size_t);
const size_t s_logits_size = sizeof(size_t);
const size_t s_logits = ctx->logits.capacity() * sizeof(float);
const size_t s_embedding_size = sizeof(size_t);
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = ctx->model.kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_logits_capacity
+ s_logits_size
+ s_logits
+ s_embedding_size
+ s_embedding
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
return s_total;
}
// Copies the state to the specified destination address
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest) {
uint8_t * out = dest;
// copy rng
{
std::stringstream rng_ss;
rng_ss << ctx->rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[LLAMA_MAX_RNG_STATE];
memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
}
// copy logits
{
const size_t logits_cap = ctx->logits.capacity();
const size_t logits_size = ctx->logits.size();
memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
if (logits_size) {
memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
}
out += logits_cap * sizeof(float);
}
// copy embeddings
{
const size_t embedding_size = ctx->embedding.size();
memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
if (embedding_size) {
memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
out += embedding_size * sizeof(float);
}
}
// copy kv cache
{
const size_t kv_size = ctx->model.kv_self.buf.size;
const int kv_ntok = llama_get_kv_cache_token_count(ctx);
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
if (kv_size) {
memcpy(out, ctx->model.kv_self.buf.addr, kv_size); out += kv_size;
}
}
const size_t written = out - dest;
const size_t expected = llama_get_state_size(ctx);
LLAMA_ASSERT(written == expected);
return written;
}
// Sets the state reading from the specified source address
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
const uint8_t * in = src;
// set rng
{
size_t rng_size;
char rng_buf[LLAMA_MAX_RNG_STATE];
memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size);
memcpy(&rng_buf[0], in, LLAMA_MAX_RNG_STATE); in += LLAMA_MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> ctx->rng;
LLAMA_ASSERT(rng_ss.fail() == false);
}
// set logits
{
size_t logits_cap;
size_t logits_size;
memcpy(&logits_cap, in, sizeof(logits_cap)); in += sizeof(logits_cap);
memcpy(&logits_size, in, sizeof(logits_size)); in += sizeof(logits_size);
LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
if (logits_size) {
ctx->logits.resize(logits_size);
memcpy(ctx->logits.data(), in, logits_size * sizeof(float));
}
in += logits_cap * sizeof(float);
}
// set embeddings
{
size_t embedding_size;
memcpy(&embedding_size, in, sizeof(embedding_size)); in += sizeof(embedding_size);
LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
if (embedding_size) {
memcpy(ctx->embedding.data(), in, embedding_size * sizeof(float));
in += embedding_size * sizeof(float);
}
}
// set kv cache
{
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
if (kv_size) {
LLAMA_ASSERT(ctx->model.kv_self.buf.size == kv_size);
void * k_data = ctx->model.kv_self.k->data; // remember data pointers
void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
memcpy(ctx->model.kv_self.buf.addr, kv_cache, n_size);
memcpy(ctx->model.kv_self.buf.addr, in, kv_size); in += kv_size;
ctx->model.kv_self.k->data = k_data; // restore correct data pointers
ctx->model.kv_self.v->data = v_data;
ctx->model.kv_self.n = n_token_count;
}
ctx->model.kv_self.n = kv_ntok;
}
const size_t nread = in - src;
const size_t expected = llama_get_state_size(ctx);
LLAMA_ASSERT(nread == expected);
return nread;
}
int llama_eval(
@ -2256,120 +2412,3 @@ std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_te
return ctx->model.tensors_by_name;
}
// Returns the size of the state
size_t llama_get_state_size(struct llama_context * ctx) {
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = 64*1024;
const size_t s_logits_capacity = sizeof(size_t);
const size_t s_logits_size = sizeof(size_t);
const size_t s_logits = ctx->logits.capacity() * sizeof(float);
const size_t s_embedding_size = sizeof(size_t);
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = llama_get_kv_cache_size(ctx);
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_logits_capacity
+ s_logits_size
+ s_logits
+ s_embedding_size
+ s_embedding
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
return s_total;
}
// Copies the state to the specified destination address
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest) {
std::stringstream rng_ss;
rng_ss << ctx->rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[64*1024];
memset(&rng_buf[0], 0, 64*1024);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
const size_t logits_capacity = ctx->logits.capacity();
const size_t logits_size = ctx->logits.size();
const size_t embedding_size = ctx->embedding.size();
const size_t kv_size = llama_get_kv_cache_size(ctx);
const int kv_ntok = llama_get_kv_cache_token_count(ctx);
uint8_t * out = dest;
memcpy(out, &rng_size, sizeof(size_t)); out += sizeof(size_t);
memcpy(out, &rng_buf[0], 64*1024); out += 64*1024;
memcpy(out, &logits_capacity, sizeof(size_t)); out += sizeof(size_t);
memcpy(out, &logits_size, sizeof(size_t)); out += sizeof(size_t);
if (logits_size) {
memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
}
out += logits_capacity * sizeof(float);
memcpy(out, &embedding_size, sizeof(size_t)); out += sizeof(size_t);
if (embedding_size) {
memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float)); out += embedding_size * sizeof(float);
}
memcpy(out, &kv_size, sizeof(size_t)); out += sizeof(size_t);
memcpy(out, &kv_ntok, sizeof(int)); out += sizeof(int);
if (kv_size) {
memcpy(out, llama_get_kv_cache(ctx), kv_size); out += kv_size;
}
const size_t written = out - dest;
const size_t expected = llama_get_state_size(ctx);
LLAMA_ASSERT(written == expected);
return written;
}
// Sets the state reading from the specified source address
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
size_t rng_size;
char rng_buf[64*1024];
std::stringstream rng_ss;
const uint8_t * in = src;
memcpy(&rng_size, in, sizeof(size_t)); in += sizeof(size_t);
memcpy(&rng_buf[0], in, 64*1024); in += 64*1024;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> ctx->rng;
LLAMA_ASSERT(rng_ss.fail() == false);
size_t logits_capacity;
size_t logits_size;
size_t embedding_size;
size_t kv_size;
int kv_ntok;
memcpy(&logits_capacity, in, sizeof(size_t)); in += sizeof(size_t);
memcpy(&logits_size, in, sizeof(size_t)); in += sizeof(size_t);
LLAMA_ASSERT(ctx->logits.capacity() == logits_capacity);
if (logits_size) {
ctx->logits.resize(logits_size);
memcpy(ctx->logits.data(), in, logits_size * sizeof(float));
}
in += logits_capacity * sizeof(float);
memcpy(&embedding_size, in, sizeof(size_t)); in += sizeof(size_t);
LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
if (embedding_size) {
memcpy(ctx->embedding.data(), in, embedding_size * sizeof(float));
in += embedding_size * sizeof(float);
}
memcpy(&kv_size, in, sizeof(size_t)); in += sizeof(size_t);
memcpy(&kv_ntok, in, sizeof(int)); in += sizeof(int);
if (kv_size) {
LLAMA_ASSERT(ctx->model.kv_self.buf.size == kv_size);
void * k_data = ctx->model.kv_self.k->data; // remember data pointers
void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
memcpy(ctx->model.kv_self.buf.addr, in, kv_size);
ctx->model.kv_self.k->data = k_data; // restore correct data pointers
ctx->model.kv_self.v->data = v_data;
in += kv_size;
}
ctx->model.kv_self.n = kv_ntok;
const size_t nread = in - src;
const size_t expected = llama_get_state_size(ctx);
LLAMA_ASSERT(nread == expected);
return nread;
}

14
llama.h
View file

@ -112,23 +112,9 @@ extern "C" {
const char * path_base_model,
int n_threads);
// Returns the KV cache that will contain the context for the
// ongoing prediction with the model.
LLAMA_API const uint8_t * llama_get_kv_cache(struct llama_context * ctx);
// Returns the size of the KV cache
LLAMA_API size_t llama_get_kv_cache_size(struct llama_context * ctx);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
// Sets the KV cache containing the current context for the model
LLAMA_API void llama_set_kv_cache(
struct llama_context * ctx,
const uint8_t * kv_cache,
size_t n_size,
int n_token_count);
// Returns the size in bytes of the state (rng, logits, embedding and kv_cache)
LLAMA_API size_t llama_get_state_size(struct llama_context * ctx);