server.py: default tools work!
This commit is contained in:
parent
ffc74360e2
commit
d5d9993679
15 changed files with 449 additions and 223 deletions
3
.gitmodules
vendored
3
.gitmodules
vendored
|
@ -1,6 +1,3 @@
|
|||
[submodule "kompute"]
|
||||
path = kompute
|
||||
url = https://github.com/nomic-ai/kompute.git
|
||||
[submodule "examples/agents/hermes_function_calling"]
|
||||
path = examples/agents/hermes_function_calling
|
||||
url = https://github.com/NousResearch/Hermes-Function-Calling
|
||||
|
|
|
@ -1,15 +0,0 @@
|
|||
|
||||
Edit `examples/agents/hermes_function_calling/utils.py`:
|
||||
|
||||
```py
|
||||
log_folder = os.environ.get('LOG_FOLDER', os.path.join(script_dir, "inference_logs"))
|
||||
```
|
||||
|
||||
Then run:
|
||||
|
||||
```bash
|
||||
REQUIREMENTS_FILE=<( cat examples/agents/hermes_function_calling/requirements.txt | grep -vE "bitsandbytes|flash-attn" ) \
|
||||
examples/agents/run_sandboxed_tools.sh \
|
||||
examples/agents/hermes_function_calling/functions.py \
|
||||
-e LOG_FOLDER=/data/inference_logs
|
||||
```
|
|
@ -1 +0,0 @@
|
|||
Subproject commit b4f757e27d87f4ab408f706f482c25a8e1508d59
|
|
@ -1,3 +0,0 @@
|
|||
jsonargparse
|
||||
pydantic
|
||||
typer[all]
|
|
@ -1,15 +1,45 @@
|
|||
# examples.openai: OpenAI API-compatible server
|
||||
# examples.openai: OpenAI API-compatible server + agent / tools examples
|
||||
|
||||
A simple Python server that sits above the C++ [../server](examples/server) and offers improved OAI compatibility.
|
||||
|
||||
## Usage
|
||||
|
||||
Run a simple test:
|
||||
|
||||
```bash
|
||||
python -m examples.openai -m some-model.gguf
|
||||
|
||||
|
||||
# Spawns a Python server (which spawns a C++ Server) then hits it w/ a tool-calling request
|
||||
examples/openai/test.sh
|
||||
```
|
||||
|
||||
To simply run the Python server (+ C++ server under the hood):
|
||||
|
||||
```bash
|
||||
python -m examples.openai
|
||||
```
|
||||
|
||||
## Tools usage (WIP)
|
||||
|
||||
```bash
|
||||
git clone https://github.com/NousResearch/Hermes-Function-Calling examples/openai/hermes_function_calling
|
||||
```
|
||||
|
||||
Then edit `examples/agents/hermes_function_calling/utils.py`:
|
||||
|
||||
```py
|
||||
log_folder = os.environ.get('LOG_FOLDER', os.path.join(script_dir, "inference_logs"))
|
||||
```
|
||||
|
||||
Then run tools in a sandbox:
|
||||
|
||||
```bash
|
||||
REQUIREMENTS_FILE=<( cat examples/agents/hermes_function_calling/requirements.txt | grep -vE "bitsandbytes|flash-attn" ) \
|
||||
examples/agents/run_sandboxed_tools.sh \
|
||||
examples/agents/hermes_function_calling/functions.py \
|
||||
-e LOG_FOLDER=/data/inference_logs
|
||||
```
|
||||
|
||||
TODO: reactor that reads OpenAPI definitions and does the tool calling
|
||||
|
||||
## Features
|
||||
|
||||
The new examples/openai/server.py:
|
||||
|
|
|
@ -1,9 +1,14 @@
|
|||
from typing import Any, Optional
|
||||
from typing import Any, Dict, Optional
|
||||
from pydantic import BaseModel, Json
|
||||
|
||||
class ToolCall(BaseModel):
|
||||
name: str
|
||||
arguments: Dict[str, Any]
|
||||
|
||||
class Message(BaseModel):
|
||||
role: str
|
||||
content: str
|
||||
content: Optional[str]
|
||||
tool_calls: Optional[list[ToolCall]] = None
|
||||
|
||||
class ToolFunction(BaseModel):
|
||||
name: str
|
||||
|
|
|
@ -1,59 +0,0 @@
|
|||
from enum import StrEnum
|
||||
import jinja2
|
||||
|
||||
from examples.openai.gguf_kvs import GGUFKeyValues, Keys
|
||||
|
||||
def raise_exception(msg: str):
|
||||
raise Exception(msg)
|
||||
|
||||
class ToolStyle(StrEnum):
|
||||
# https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
|
||||
DEFAULT="Default",
|
||||
# https://github.com/MeetKai/functionary
|
||||
# TODO: look at https://github.com/ggerganov/llama.cpp/pull/5695
|
||||
# https://github.com/MeetKai/functionary/blob/main/functionary/prompt_template/prompt_template_v2.py
|
||||
FUNCTIONARY_V2="Functionary V2",
|
||||
# https://github.com/NousResearch/Hermes-Function-Calling
|
||||
NOUS_RESEARCH_HERMES="Nous-Research-Hermes-Function-Calling",
|
||||
|
||||
class ChatFormat: #(BaseModel):
|
||||
def __init__(self, template: str, eos_token: str, bos_token: str):
|
||||
env = jinja2.Environment(loader=jinja2.BaseLoader(), trim_blocks=True, lstrip_blocks=True)
|
||||
self.template = env.from_string(template)
|
||||
self.eos_token = eos_token
|
||||
self.bos_token = bos_token
|
||||
|
||||
self.strict_user_assistant_alternation = "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception" in template
|
||||
|
||||
if "<|recipient|>' + tool_call['function']['name']" in template:
|
||||
self.tool_style = ToolStyle.FUNCTIONARY_V2
|
||||
else:
|
||||
self.tool_style = ToolStyle.DEFAULT
|
||||
|
||||
|
||||
def __str__(self):
|
||||
return f"ChatFormat(template={self.template}, eos_token={self.eos_token}, bos_token={self.bos_token})"
|
||||
|
||||
|
||||
@staticmethod
|
||||
def from_gguf(metadata: GGUFKeyValues):
|
||||
return ChatFormat(
|
||||
template = metadata[Keys.Tokenizer.CHAT_TEMPLATE],
|
||||
bos_token = metadata[Keys.Tokenizer.BOS_ID],
|
||||
eos_token = metadata[Keys.Tokenizer.EOS_ID])
|
||||
# @staticmethod
|
||||
# def from_gguf(model: Path):
|
||||
# reader = GGUFReader(model.as_posix())
|
||||
# return ChatFormat(
|
||||
# template = reader.fields[Keys.Tokenizer.CHAT_TEMPLATE].read(),
|
||||
# bos_token = reader.fields[Keys.Tokenizer.BOS_ID].read(),
|
||||
# eos_token = reader.fields[Keys.Tokenizer.EOS_ID].read())
|
||||
|
||||
def render(self, messages: list[dict], add_generation_prompt: bool, omit_bos: bool = False):
|
||||
return self.template.render(
|
||||
messages=messages,
|
||||
eos_token=self.eos_token,
|
||||
bos_token='' if omit_bos else self.bos_token,
|
||||
raise_exception=raise_exception,
|
||||
add_generation_prompt=add_generation_prompt,
|
||||
)
|
|
@ -8,8 +8,6 @@ from anyio import Path
|
|||
import fastapi, uvicorn
|
||||
import typer
|
||||
|
||||
# from langchain_core.tools import BaseTool
|
||||
|
||||
def load_source_as_module(source):
|
||||
i = 0
|
||||
while (module_name := f'mod_{i}') in sys.modules:
|
43
examples/openai/prompt1.txt
Normal file
43
examples/openai/prompt1.txt
Normal file
|
@ -0,0 +1,43 @@
|
|||
<|im_start|>system
|
||||
Role:
|
||||
You are a function calling AI agent with self-recursion.
|
||||
You can call only one function at a time and analyse data you get from function response.
|
||||
You are provided with function signatures within <tools></tools> XML tags.
|
||||
The current date is: March 25, 2024.
|
||||
|
||||
Objective:
|
||||
You may use agentic frameworks for reasoning and planning to help with user query.
|
||||
Please call a function and wait for function results to be provided to you in the next iteration.
|
||||
Don't make assumptions about what values to plug into function arguments.
|
||||
Once you have called a function, results will be fed back to you within <tool_response></tool_response> XML tags.
|
||||
Don't make assumptions about tool results if <tool_response> XML tags are not present since function hasn't been executed yet.
|
||||
Analyze the data once you get the results and call another function.
|
||||
At each iteration please continue adding the your analysis to previous summary.
|
||||
Your final response should directly answer the user query with an anlysis or summary of the results of function calls.
|
||||
|
||||
Tools:
|
||||
Here are the available tools:
|
||||
<tools>
|
||||
{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"format":{"type":"string","enum":["celsius","fahrenheit"],"description":"The temperature unit to use. Infer this from the users location."}},"required":["location","format"]}}}
|
||||
{"type":"function","function":{"name":"get_n_day_weather_forecast","description":"Get an N-day weather forecast","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"format":{"type":"string","enum":["celsius","fahrenheit"],"description":"The temperature unit to use. Infer this from the users location."},"num_days":{"type":"integer","description":"The number of days to forecast"}},"required":["location","format","num_days"]}}}
|
||||
</tools>
|
||||
If the provided function signatures doesn't have the function you must call, you may write executable python code in markdown syntax and call code_interpreter() function as follows:
|
||||
<tool_call>
|
||||
{"arguments": {"code_markdown": <python-code>, "name": "code_interpreter"}}
|
||||
</tool_call>
|
||||
Make sure that the json object above with code markdown block is parseable with json.loads() and the XML block with XML ElementTree.
|
||||
|
||||
Instructions:
|
||||
At the very first turn you don't have <tool_results> so you shouldn't not make up the results.
|
||||
Please keep a running summary with analysis of previous function results and summaries from previous iterations.
|
||||
Do not stop calling functions until the task has been accomplished or you've reached max iteration of 10.
|
||||
Calling multiple functions at once can overload the system and increase cost so call one function at a time please.
|
||||
If you plan to continue with analysis, always call another function.
|
||||
For each function call return a valid json object (using doulbe quotes) with function name and arguments within <tool_call></tool_call> XML tags as follows:
|
||||
<tool_call>
|
||||
{"arguments": <args-dict>, "name": <function-name>}
|
||||
</tool_call>
|
||||
<|im_end|>
|
||||
<|im_start|>user
|
||||
what is the weather going to be like in San Francisco and Glasgow over the next 4 days (temperature in celsius for both)<|im_end|>
|
||||
<|im_start|>assistant
|
242
examples/openai/prompting.py
Normal file
242
examples/openai/prompting.py
Normal file
|
@ -0,0 +1,242 @@
|
|||
from enum import Enum
|
||||
import jinja2
|
||||
import json
|
||||
from pathlib import Path
|
||||
import sys
|
||||
from typing import Optional, Tuple, Callable
|
||||
from typeguard import typechecked
|
||||
|
||||
from examples.json_schema_to_grammar import SchemaConverter
|
||||
from examples.openai.api import Tool, Message
|
||||
from examples.openai.gguf_kvs import GGUFKeyValues, Keys
|
||||
from examples.openai.ts_converter import SchemaToTypeScriptConverter
|
||||
|
||||
@typechecked
|
||||
def raise_exception(msg: str):
|
||||
raise Exception(msg)
|
||||
|
||||
class ChatFormat:
|
||||
def __init__(self, template: str, eos_token: str, bos_token: str):
|
||||
env = jinja2.Environment(loader=jinja2.BaseLoader(), trim_blocks=True, lstrip_blocks=True)
|
||||
self.template = env.from_string(template)
|
||||
self.eos_token = eos_token
|
||||
self.bos_token = bos_token
|
||||
|
||||
self.strict_user_assistant_alternation = "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception" in template
|
||||
|
||||
if "<|recipient|>' + tool_call['function']['name']" in template:
|
||||
self.tool_style = ToolsPromptStyle.TYPESCRIPT_FUNCTIONARY_V2
|
||||
else:
|
||||
self.tool_style = ToolsPromptStyle.TOOLS_LONG
|
||||
|
||||
def __str__(self):
|
||||
return f"ChatFormat(template={self.template}, eos_token={self.eos_token}, bos_token={self.bos_token})"
|
||||
|
||||
@staticmethod
|
||||
def from_gguf(metadata: GGUFKeyValues):
|
||||
return ChatFormat(
|
||||
template = metadata[Keys.Tokenizer.CHAT_TEMPLATE],
|
||||
bos_token = metadata[Keys.Tokenizer.BOS_ID],
|
||||
eos_token = metadata[Keys.Tokenizer.EOS_ID])
|
||||
|
||||
def render(self, messages: list[dict], add_generation_prompt: bool, omit_bos: bool = False):
|
||||
return self.template.render(
|
||||
messages=messages,
|
||||
eos_token=self.eos_token,
|
||||
bos_token='' if omit_bos else self.bos_token,
|
||||
raise_exception=raise_exception,
|
||||
add_generation_prompt=add_generation_prompt,
|
||||
)
|
||||
|
||||
# While the API will be usable with a generic tools usage like OpenAI,
|
||||
# (see https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models),
|
||||
# each model may need specific prompting (and/or constrained output,
|
||||
# especially for models not fine-tuned for tool usage / function calling).
|
||||
class ToolsPromptStyle(Enum):
|
||||
# Short prompt w/ <tools>schemas</tools>
|
||||
TOOLS_SHORT = 1
|
||||
|
||||
# Longer prompt w/ <tools>schemas</tools>
|
||||
TOOLS_LONG = 2
|
||||
|
||||
# Large prompt for https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B
|
||||
# Requires:
|
||||
# - git clone https://github.com/NousResearch/Hermes-Function-Calling examples/openai/hermes_function_calling
|
||||
# - Set large context length as their prompts are super long
|
||||
TOOLS_HERMES_2_PRO = 3
|
||||
|
||||
# Short prompt w/ TypeScript definitions for https://github.com/MeetKai/functionary
|
||||
# https://github.com/MeetKai/functionary/blob/main/functionary/prompt_template/prompt_template_v2.py
|
||||
# Note: see this prior attempt to support Functionary: https://github.com/ggerganov/llama.cpp/pull/5695
|
||||
TYPESCRIPT_FUNCTIONARY_V2 = 4
|
||||
|
||||
@typechecked
|
||||
def make_tools_prompt(chat_format: ChatFormat, tools: list[Tool], indent=2) -> Message:
|
||||
|
||||
if chat_format.tool_style == ToolsPromptStyle.TOOLS_SHORT:
|
||||
return Message(
|
||||
role="system",
|
||||
content='\n'.join([
|
||||
'Here are the tools available:',
|
||||
'<tools>',
|
||||
*(json.dumps(tool.model_dump(), indent=indent) for tool in tools),
|
||||
'</tools>',
|
||||
])
|
||||
)
|
||||
|
||||
elif chat_format.tool_style == ToolsPromptStyle.TOOLS_LONG:
|
||||
return Message(
|
||||
role="system",
|
||||
content='\n'.join([
|
||||
'''You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.''',
|
||||
'''You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:''',
|
||||
'''<tools>''',
|
||||
*(json.dumps(tool.model_dump(), indent=indent) for tool in tools),
|
||||
'''</tools>''',
|
||||
'',
|
||||
'''Use the following json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"}''',
|
||||
'',
|
||||
'''For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:''',
|
||||
'''<tool_call>''',
|
||||
'''{"arguments": <args-dict>, "name": <function-name>}''',
|
||||
'''</tool_call>''',
|
||||
])
|
||||
)
|
||||
|
||||
elif chat_format.tool_style == ToolsPromptStyle.TYPESCRIPT_FUNCTIONARY_V2:
|
||||
ts_converter = SchemaToTypeScriptConverter()
|
||||
|
||||
return Message(
|
||||
role="system",
|
||||
content='\n'.join([
|
||||
'// Supported function definitions that should be called when necessary.'
|
||||
'namespace functions {',
|
||||
*[
|
||||
'// ' + tool.function.description.replace('\n', '\n// ') + '\n' + ''
|
||||
'type ' + tool.function.name + ' = (_: ' + ts_converter.visit(tool.function.parameters) + ") => any;\n"
|
||||
for tool in tools
|
||||
],
|
||||
'} // namespace functions',
|
||||
])
|
||||
)
|
||||
|
||||
elif chat_format.tool_style == ToolsPromptStyle.TOOLS_HERMES_2_PRO:
|
||||
# Hackily import https://github.com/NousResearch/Hermes-Function-Calling
|
||||
path = str(Path(__file__).parent / "hermes_function_calling")
|
||||
if path not in sys.path: sys.path.insert(0, path)
|
||||
try:
|
||||
from examples.openai.hermes_function_calling.prompter import PromptManager
|
||||
except ImportError:
|
||||
raise ImportError(f"Please `git clone https://github.com/NousResearch/Hermes-Function-Calling {path}`")
|
||||
|
||||
prompt = PromptManager().generate_prompt(user_prompt=[], tools=[json.dumps(tool) for tool in tools])
|
||||
assert len(prompt) == 1 and prompt[0]["role"] == "system"
|
||||
return Message(**prompt[0])
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unsupported tool call style: {chat_format.tool_style}")
|
||||
|
||||
@typechecked
|
||||
def _outputs_tool_call_tags(style: ToolsPromptStyle) -> bool:
|
||||
return style in (
|
||||
ToolsPromptStyle.TOOLS_SHORT,
|
||||
ToolsPromptStyle.TOOLS_LONG,
|
||||
ToolsPromptStyle.TOOLS_HERMES_2_PRO,
|
||||
)
|
||||
|
||||
@typechecked
|
||||
def make_grammar(chat_format: ChatFormat, tools: list[Tool], response_schema: Optional[dict], indent=2) -> Tuple[Optional[str], Callable[[str], Optional[Message]]]:
|
||||
|
||||
converter = SchemaConverter(prop_order={}, allow_fetch=False, dotall=False, raw_pattern=False)
|
||||
|
||||
response_rule = converter.visit(response_schema, "response") if response_schema else None
|
||||
|
||||
delimiter = '<%$[SAMPLE]$%>'
|
||||
empty_prompt = chat_format.render([], add_generation_prompt=True).strip()
|
||||
planted_prompt = chat_format.render([{"role": "assistant", "content": delimiter}], add_generation_prompt=False).strip()
|
||||
assert planted_prompt.startswith(empty_prompt), f"Planted prompt does not start with empty prompt: {planted_prompt} vs {empty_prompt}"
|
||||
[prefix, suffix] = planted_prompt[len(empty_prompt):].split(delimiter)
|
||||
|
||||
if tools:
|
||||
if _outputs_tool_call_tags(chat_format.tool_style):
|
||||
tool_rules = [
|
||||
converter.visit(
|
||||
dict(
|
||||
type="object",
|
||||
properties=dict(
|
||||
name=dict(const=tool.function.name),
|
||||
arguments=tool.function.parameters,
|
||||
),
|
||||
required=['name', 'arguments']
|
||||
),
|
||||
f'{tool.function.name}-tool-call'
|
||||
)
|
||||
for tool in tools
|
||||
]
|
||||
|
||||
# Constrain the output to be a non-tool-call message (constrained to a JSON schema or not)
|
||||
# OR a tool-call message respecting the schema of any of the tools
|
||||
converter._add_rule(
|
||||
"root",
|
||||
converter._format_literal(prefix) + " (" +
|
||||
(response_rule or converter.not_literal("<tool_call>")) + " | " +
|
||||
converter._format_literal("<tool_call>") + " (" +
|
||||
' | '.join(tool_rules) +
|
||||
") " + converter._format_literal("</tool_call>") +
|
||||
")") # + converter._format_literal(suffix))
|
||||
|
||||
@typechecked
|
||||
def parse(s: str) -> Optional[Message]:
|
||||
ls = s.lstrip()
|
||||
if '<tool_call>'.startswith(ls) or ls.startswith('<tool_call>'):
|
||||
if ls.startswith('<tool_call>') and ls.endswith('</tool_call>' + suffix):
|
||||
tool_call = ls[len('<tool_call>'):-len('</tool_call>' + suffix)]
|
||||
return Message(role="assistant", content=None, tool_calls=[json.loads(tool_call)])
|
||||
return None
|
||||
else:
|
||||
return Message(role="assistant", content=s)
|
||||
|
||||
return (converter.format_grammar(), parse)
|
||||
|
||||
elif chat_format.tool_style == ToolsPromptStyle.TYPESCRIPT_FUNCTIONARY_V2:
|
||||
# Only allowing a single tool call at a time for now.
|
||||
# Note that if there were more, they'd be separated by a '<|from|>assistant' literal
|
||||
converter._add_rule(
|
||||
"root",
|
||||
converter._format_literal(prefix) + " (" +
|
||||
(response_rule or converter.not_literal("<|recipient|>")) + " | " +
|
||||
(' | '.join(
|
||||
converter._format_literal(f"<|recipient|>{tool.function.name}\n<|content|>") + " " +
|
||||
converter.visit(tool.function.parameters, tool.function.name + '-args')
|
||||
for tool in tools
|
||||
)) +
|
||||
") " +
|
||||
")") # + converter._format_literal(suffix))
|
||||
|
||||
@typechecked
|
||||
def parse(s: str) -> Optional[Message]:
|
||||
raise NotImplementedError(f'TODO: parse tool_style {chat_format.tool_style}: {s}')
|
||||
|
||||
return (converter.format_grammar(), parse)
|
||||
|
||||
elif response_schema:
|
||||
converter._add_rule("root", response_rule + ' ' + converter._format_literal(suffix))
|
||||
|
||||
@typechecked
|
||||
def parse(s: str) -> Optional[Message]:
|
||||
if response_rule.endswith(suffix):
|
||||
return Message(role="assistant", content=s[:-len(suffix)])
|
||||
|
||||
return (converter.format_grammar(), parse)
|
||||
|
||||
else:
|
||||
converter._add_rule("root", converter._format_literal(prefix) + ' ' + converter._format_literal(suffix))
|
||||
|
||||
@typechecked
|
||||
def parse(s: str) -> Optional[Message]:
|
||||
if s.endswith(suffix):
|
||||
return Message(role="assistant", content=s[:-len(suffix)])
|
||||
return None
|
||||
|
||||
return (None, parse)
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
fastapi[all]
|
||||
gguf
|
||||
jinja2
|
||||
jsonargparse
|
||||
pydantic
|
||||
sse-starlette
|
||||
uvicorn[all]
|
||||
typer[all]
|
|
@ -2,9 +2,9 @@
|
|||
#
|
||||
# Runs a Python script in a sandboxed environment and makes its functions available as a web service.
|
||||
#
|
||||
# git submodule add https://github.com/NousResearch/Hermes-Function-Calling examples/agents/hermes_function_calling
|
||||
# python examples/agents/fastify.py examples/agents/hermes_function_calling/functions.py
|
||||
# REQUIREMENTS_FILE=<( cat examples/agents/hermes_function_calling/requirements.txt | grep -vE "bitsandbytes|flash-attn" ) examples/agents/run_sandboxed_tools.sh examples/agents/hermes_function_calling/functions.py -e LOG_FOLDER=/data/inference_logs
|
||||
# git submodule add https://github.com/NousResearch/Hermes-Function-Calling examples/openai/hermes_function_calling
|
||||
# python examples/openai/fastify.py examples/openai/hermes_function_calling/functions.py
|
||||
# REQUIREMENTS_FILE=<( cat examples/openai/hermes_function_calling/requirements.txt | grep -vE "bitsandbytes|flash-attn" ) examples/agents/run_sandboxed_tools.sh examples/agents/hermes_function_calling/functions.py -e LOG_FOLDER=/data/inference_logs
|
||||
set -euo pipefail
|
||||
|
||||
script="$( realpath "$1" )"
|
|
@ -1,35 +1,39 @@
|
|||
# https://gist.github.com/ochafik/a3d4a5b9e52390544b205f37fb5a0df3
|
||||
# pip install "fastapi[all]" "uvicorn[all]" sse-starlette jsonargparse jinja2 pydantic
|
||||
|
||||
import json, sys, subprocess, atexit
|
||||
from pathlib import Path
|
||||
|
||||
# sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
||||
|
||||
from examples.openai.llama_cpp_server_api import LlamaCppServerCompletionRequest
|
||||
from examples.json_schema_to_grammar import SchemaConverter
|
||||
|
||||
from typing import Optional
|
||||
import httpx
|
||||
from fastapi import Depends, FastAPI, Request, Response
|
||||
from starlette.responses import StreamingResponse
|
||||
from fastapi.responses import JSONResponse
|
||||
from jsonargparse import CLI
|
||||
|
||||
from examples.openai.ts_converter import SchemaToTypeScriptConverter
|
||||
from examples.openai.gguf_kvs import GGUFKeyValues, Keys
|
||||
from examples.openai.api import Message, Tool, ToolFunction, ResponseFormat, ChatCompletionRequest
|
||||
from examples.openai.chat_format import ChatFormat, ToolStyle
|
||||
from examples.openai.api import Message, ChatCompletionRequest
|
||||
from examples.openai.prompting import ChatFormat, make_grammar, make_tools_prompt
|
||||
|
||||
def _add_system_prompt(messages: list['Message'], system_prompt: str):
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import JSONResponse
|
||||
import httpx
|
||||
from starlette.responses import StreamingResponse
|
||||
from typing import Annotated, Optional
|
||||
import typer
|
||||
from typeguard import typechecked
|
||||
|
||||
@typechecked
|
||||
def _add_system_prompt(messages: list[Message], system_prompt: Message) -> list[Message]:
|
||||
assert system_prompt.role == "system"
|
||||
# TODO: add to last system message, or create a new one just before the last user message
|
||||
system_message = next(((i, m) for i, m in enumerate(messages) if m.role == "system"), None)
|
||||
if system_message is not None:
|
||||
(i, m) = system_message
|
||||
messages[i].content = m.content + '\n' + system_prompt
|
||||
return messages[:i] + [Message(role="system", content=m.content + '\n' + system_prompt.content)] + messages[i+1:]
|
||||
else:
|
||||
messages.insert(0, Message(role="system", content=system_prompt))
|
||||
return messages
|
||||
return [Message(role="system", content=system_prompt)] + messages
|
||||
|
||||
def main(
|
||||
model: Path = Path("/Users/ochafik/AI/Models/Hermes-2-Pro-Mistral-7B.Q8_0.gguf"),
|
||||
model: Annotated[Optional[Path], typer.Option("--model", "-m")] = "models/7B/ggml-model-f16.gguf",
|
||||
# model: Path = Path("/Users/ochafik/AI/Models/Hermes-2-Pro-Mistral-7B.Q8_0.gguf"),
|
||||
# model_url: Annotated[Optional[str], typer.Option("--model-url", "-mu")] = None,
|
||||
host: str = "localhost",
|
||||
port: int = 8080,
|
||||
main_server_endpoint: Optional[str] = None,
|
||||
|
@ -48,7 +52,7 @@ def main(
|
|||
"./server", "-m", model,
|
||||
"--host", main_server_host, "--port", f'{main_server_port}',
|
||||
'-ctk', 'q4_0', '-ctv', 'f16',
|
||||
"-c", f"8192",
|
||||
"-c", f"{2*8192}",
|
||||
# "-c", f"{context_length}",
|
||||
])
|
||||
atexit.register(server_process.kill)
|
||||
|
@ -70,110 +74,10 @@ def main(
|
|||
response_schema = None
|
||||
|
||||
messages = chat_request.messages
|
||||
parser=None
|
||||
grammar=None
|
||||
|
||||
converter = SchemaConverter(prop_order={}, allow_fetch=False, dotall=False, raw_pattern=False)
|
||||
|
||||
response_rule = converter.visit(response_schema, "response") if response_schema else None
|
||||
|
||||
|
||||
delimiter = '<%$[SAMPLE]$%>'
|
||||
empty_prompt = chat_format.render([], add_generation_prompt=True)
|
||||
planted_prompt = chat_format.render([{"role": "assistant", "content": delimiter}], add_generation_prompt=False)
|
||||
assert planted_prompt.startswith(empty_prompt), f"Planted prompt does not start with empty prompt: {planted_prompt} vs {empty_prompt}"
|
||||
[prefix, suffix] = planted_prompt[len(empty_prompt):].split(delimiter)
|
||||
|
||||
if chat_request.tools:
|
||||
if chat_format.tool_style in (ToolStyle.DEFAULT, ToolStyle.NOUS_RESEARCH_HERMES):
|
||||
messages = _add_system_prompt(messages, '\n'.join([
|
||||
'Here are the tools available:',
|
||||
'<tools>',
|
||||
*(tool.model_dump_json() for tool in chat_request.tools),
|
||||
'</tools>',
|
||||
]))
|
||||
messages = _add_system_prompt(messages, make_tools_prompt(chat_format, chat_request.tools))
|
||||
|
||||
tool_rules = [
|
||||
converter.visit(
|
||||
dict(
|
||||
type="object",
|
||||
properties=dict(
|
||||
name=dict(const=tool.function.name),
|
||||
arguments=tool.function.parameters,
|
||||
),
|
||||
required=['name', 'arguments']
|
||||
),
|
||||
f'{tool.function.name}-tool-call'
|
||||
)
|
||||
for tool in chat_request.tools
|
||||
]
|
||||
|
||||
# Constrain the output to be a non-tool-call message (constrained to a JSON schema or not)
|
||||
# OR a tool-call message respecting the schema of any of the tools
|
||||
converter._add_rule(
|
||||
"root",
|
||||
converter._format_literal(prefix) + " (" +
|
||||
(response_rule or converter.not_literal("<tool_call>")) + " | " +
|
||||
converter._format_literal("<tool_call>") + " (" +
|
||||
' | '.join(tool_rules) +
|
||||
") " + converter._format_literal("</tool_call>") +
|
||||
") " + converter._format_literal(suffix))
|
||||
grammar = converter.format_grammar()
|
||||
|
||||
def parse(s: str):
|
||||
if '<tool_call>'.startswith(s):
|
||||
if s.startswith('<tool_call>') and s.endswith('</tool_call>' + suffix):
|
||||
s = s[len('<tool_call>'):-len('</tool_call>' + suffix)]
|
||||
return {"role": "assistant", "tool_calls": [json.loads(s)]}
|
||||
return None
|
||||
else:
|
||||
return {"role": "assistant", "content": s}
|
||||
|
||||
parser = parse
|
||||
|
||||
elif chat_format.tool_style == ToolStyle.FUNCTIONARY_V2:
|
||||
|
||||
ts_converter = SchemaToTypeScriptConverter()
|
||||
|
||||
messages = _add_system_prompt(messages, '\n'.join([
|
||||
'// Supported function definitions that should be called when necessary.'
|
||||
'namespace functions {',
|
||||
*[
|
||||
'// ' + tool.function.description.replace('\n', '\n// ') + '\n' + ''
|
||||
'type ' + tool.function.name + ' = (_: ' + ts_converter.visit(tool.function.parameters) + ") => any;\n"
|
||||
for tool in chat_request.tools
|
||||
],
|
||||
'} // namespace functions',
|
||||
]))
|
||||
|
||||
# Only allowing a single tool call at a time for now.
|
||||
# Note that if there were more, they'd be separated by a '<|from|>assistant' literal
|
||||
converter._add_rule(
|
||||
"root",
|
||||
converter._format_literal(prefix) + " (" +
|
||||
(response_rule or converter.not_literal("<|recipient|>")) + " | " +
|
||||
(' | '.join(
|
||||
converter._format_literal(f"<|recipient|>{tool.function.name}\n<|content|>") + " " +
|
||||
converter.visit(tool.function.parameters, tool.function.name + '-args')
|
||||
for tool in chat_request.tools
|
||||
)) +
|
||||
") " +
|
||||
") " + converter._format_literal(suffix))
|
||||
grammar = converter.format_grammar()
|
||||
else:
|
||||
raise NotImplementedError(f'Unsupported tool_style: {chat_format.tool_style}')
|
||||
|
||||
elif response_schema:
|
||||
converter._add_rule('root', response_rule)
|
||||
grammar = converter.format_grammar()
|
||||
|
||||
def parse(s):
|
||||
if s.endswith(suffix):
|
||||
s = s[:-len(suffix)]
|
||||
return {"role": "assistant", "content": s}
|
||||
return None
|
||||
|
||||
parser = parse
|
||||
(grammar, parser) = make_grammar(chat_format, chat_request.tools, response_schema)
|
||||
|
||||
if chat_format.strict_user_assistant_alternation:
|
||||
print("TODO: merge system messages into user messages")
|
||||
|
@ -182,11 +86,9 @@ def main(
|
|||
# TODO: Test whether the template supports formatting tool_calls
|
||||
|
||||
prompt = chat_format.render(messages, add_generation_prompt=True)
|
||||
# print(prompt)
|
||||
# print(grammar)
|
||||
print(json.dumps(dict(
|
||||
prompt=prompt,
|
||||
stream=chat_request.stream,
|
||||
prompt=prompt,
|
||||
grammar=grammar,
|
||||
), indent=2))
|
||||
async with httpx.AsyncClient() as client:
|
||||
|
@ -195,14 +97,23 @@ def main(
|
|||
json=LlamaCppServerCompletionRequest(
|
||||
prompt=prompt,
|
||||
stream=chat_request.stream,
|
||||
n_predict=100,
|
||||
n_predict=300,
|
||||
grammar=grammar,
|
||||
).model_dump(),
|
||||
headers=headers,
|
||||
timeout=None)
|
||||
|
||||
return StreamingResponse(generate_chunks(response), media_type="text/event-stream") if chat_request.stream \
|
||||
else JSONResponse(response.json())
|
||||
if chat_request.stream:
|
||||
# TODO: Remove suffix from streamed response using partial parser.
|
||||
assert not chat_request.tools and not chat_request.response_format, "Streaming not supported yet with tools or response_format"
|
||||
return StreamingResponse(generate_chunks(response), media_type="text/event-stream")
|
||||
else:
|
||||
result = response.json()
|
||||
print(json.dumps(result, indent=2))
|
||||
message = parser(result["content"])
|
||||
assert message is not None, f"Failed to parse response: {response.text}"
|
||||
return JSONResponse(message.model_dump())
|
||||
# return JSONResponse(response.json())
|
||||
|
||||
async def generate_chunks(response):
|
||||
async for chunk in response.aiter_bytes():
|
||||
|
@ -211,5 +122,4 @@ def main(
|
|||
uvicorn.run(app, host=host, port=port)
|
||||
|
||||
if __name__ == "__main__":
|
||||
CLI(main)
|
||||
|
||||
typer.run(main)
|
||||
|
|
79
examples/openai/test.sh
Executable file
79
examples/openai/test.sh
Executable file
|
@ -0,0 +1,79 @@
|
|||
#!/bin/bash
|
||||
set -euo pipefail
|
||||
|
||||
SERVER_PID=""
|
||||
function cleanup() {
|
||||
if [ -n "$SERVER_PID" ]; then
|
||||
echo "# Killing server"
|
||||
kill $SERVER_PID
|
||||
wait $SERVER_PID
|
||||
fi
|
||||
}
|
||||
trap cleanup EXIT
|
||||
|
||||
echo "# Starting the server"
|
||||
python -m examples.openai --model ~/AI/Models/Hermes-2-Pro-Mistral-7B.Q8_0.gguf &
|
||||
SERVER_PID=$!
|
||||
|
||||
sleep 5
|
||||
|
||||
echo "# Send a message to the chat API"
|
||||
|
||||
curl http://localhost:8080/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer $OPENAI_API_KEY" \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA"
|
||||
},
|
||||
"format": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
"description": "The temperature unit to use. Infer this from the users location."
|
||||
}
|
||||
},
|
||||
"required": ["location", "format"]
|
||||
}
|
||||
}
|
||||
}, {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_n_day_weather_forecast",
|
||||
"description": "Get an N-day weather forecast",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA"
|
||||
},
|
||||
"format": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
"description": "The temperature unit to use. Infer this from the users location."
|
||||
},
|
||||
"num_days": {
|
||||
"type": "integer",
|
||||
"description": "The number of days to forecast"
|
||||
}
|
||||
},
|
||||
"required": ["location", "format", "num_days"]
|
||||
}
|
||||
}
|
||||
}],
|
||||
"messages": [
|
||||
{"role": "system", "content": "Do not make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."},
|
||||
{"role": "user", "content": "what is the weather going to be like in San Francisco and Glasgow over the next 4 days. Give the temperatyre in celsius for both locations."}
|
||||
]
|
||||
}'
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue