fixes to position embeddings

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>
This commit is contained in:
Sukriti-Sharma4 2024-12-16 15:28:09 -07:00
parent a2e03b826f
commit d5f69e8a43

View file

@ -2624,6 +2624,16 @@ class BertModel(Model):
@Model.register("RobertaModel")
class RobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# we need the pad_token_id to know how to chop down position_embd matrix
if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
self._position_offset = 1 + pad_token_id
if "max_position_embeddings" in self.hparams:
self.hparams["max_position_embeddings"] -= self._position_offset
else:
self._position_offset = None
def set_vocab(self):
"""Support BPE tokenizers for roberta models"""
@ -2641,6 +2651,19 @@ class RobertaModel(BertModel):
else:
return super().set_vocab()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# if name starts with "roberta.", remove the prefix
# e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
if name.startswith("roberta."):
name = name[8:]
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
if name == "embeddings.position_embeddings.weight":
if self._position_offset is not None:
data_torch = data_torch[self._position_offset:,:]
return super().modify_tensors(data_torch, name, bid)
@Model.register("NomicBertModel")
class NomicBertModel(BertModel):