Change memory pool synchronization mechanism to a spin lock

General code cleanup
This commit is contained in:
Slaren 2023-04-21 21:02:17 +02:00
parent c832e7c793
commit d774e05428
3 changed files with 67 additions and 54 deletions

View file

@ -31,9 +31,9 @@ static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2
#define QK4_3 16
typedef struct {
__half d; // delta
__half m; // min
uint8_t qs[QK4_3 / 2]; // nibbles / quants
__half d; // delta
__half m; // min
uint8_t qs[QK4_3 / 2]; // nibbles / quants
} block_q4_3;
static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
@ -151,29 +151,44 @@ void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t st
dequantize_block_q4_3<<<nb, 1, 0, stream>>>(vx, y);
}
// lock-free, thread safe buffer pool for cuda
// buffer pool for cuda
#define MAX_CUDA_BUFFERS 16
struct cuda_buffer {
std::atomic_uintptr_t ptr { 0 };
size_t size { 0 };
};
static cuda_buffer cuda_buffer_pool[MAX_CUDA_BUFFERS];
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
struct cuda_buffer * b = &cuda_buffer_pool[i];
if (b->size >= size) {
uintptr_t ptr = atomic_load(&b->ptr);
if (ptr) {
if (std::atomic_compare_exchange_strong(&b->ptr, &ptr, 0)) {
*actual_size = b->size;
return (void *) ptr;
}
}
struct scoped_spin_lock {
std::atomic_flag& lock;
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
while (lock.test_and_set(std::memory_order_acquire)) {
; // spin
}
}
~scoped_spin_lock() {
lock.clear(std::memory_order_release);
}
scoped_spin_lock(const scoped_spin_lock&) = delete;
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
};
struct cuda_buffer {
void * ptr = nullptr;
size_t size = 0;
};
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
cuda_buffer& b = g_cuda_buffer_pool[i];
if (b.size >= size && b.ptr != nullptr) {
void * ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
}
void * ptr;
CUDA_CHECK(cudaMalloc((void **) &ptr, size));
*actual_size = size;
@ -181,31 +196,31 @@ void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
}
void ggml_cuda_pool_free(void * ptr, size_t size) {
scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
struct cuda_buffer * b = &cuda_buffer_pool[i];
uintptr_t p = std::atomic_load(&b->ptr);
if (p == 0) {
if (std::atomic_compare_exchange_strong(&b->ptr, &p, (uintptr_t) ptr)) {
b->size = size;
return;
}
cuda_buffer& b = g_cuda_buffer_pool[i];
if (b.ptr == nullptr) {
b.ptr = ptr;
b.size = size;
return;
}
}
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
CUDA_CHECK(cudaFree(ptr));
}
cublasHandle_t cublasH = NULL;
cudaStream_t cudaStream = NULL;
cublasHandle_t g_cublasH = NULL;
cudaStream_t g_cudaStream = NULL;
void ggml_init_cublas(void) {
if (cublasH == NULL) {
if (g_cublasH == NULL) {
// create cublas handle, bind a stream
CUBLAS_CHECK(cublasCreate(&cublasH));
CUBLAS_CHECK(cublasCreate(&g_cublasH));
CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking));
CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream));
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));

View file

@ -24,10 +24,8 @@ extern "C" {
} \
} while (0)
extern cublasHandle_t cublasH;
extern cudaStream_t cudaStream;
extern cublasHandle_t g_cublasH;
extern cudaStream_t g_cudaStream;
void ggml_init_cublas(void);
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size);

32
ggml.c
View file

@ -7550,19 +7550,19 @@ static void ggml_compute_forward_mul_mat_f32(
#if defined(GGML_USE_CUBLAS)
// copy data to device
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
// compute
CUBLAS_CHECK(
cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, ne00,
d_Y, ne10,
&beta, d_D, ne01));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
#else
// zT = y * xT
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
@ -7574,7 +7574,7 @@ static void ggml_compute_forward_mul_mat_f32(
}
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
@ -7770,12 +7770,12 @@ static void ggml_compute_forward_mul_mat_f16_f32(
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// copy data to device
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
// compute
CUBLAS_CHECK(
cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, CUDA_R_16F, ne00,
d_Y, CUDA_R_16F, ne10,
@ -7784,7 +7784,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
CUBLAS_GEMM_DEFAULT));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
#else
const float * x = wdata;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
@ -7802,7 +7802,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
@ -8013,9 +8013,9 @@ static void ggml_compute_forward_mul_mat_q_f32(
// copy and dequantize on device
CUDA_CHECK(
cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, cudaStream));
GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, cudaStream);
dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
CUDA_CHECK(cudaGetLastError());
#else
{
@ -8031,18 +8031,18 @@ static void ggml_compute_forward_mul_mat_q_f32(
#if defined(GGML_USE_CUBLAS)
// copy data to device
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
// compute
CUBLAS_CHECK(
cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, ne00,
d_Y, ne10,
&beta, d_D, ne01));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
#else
// zT = y * xT
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
@ -8055,7 +8055,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);