Merge branch 'ggerganov:master' into master

This commit is contained in:
ZeusXuan 2024-06-24 10:43:39 +08:00 committed by GitHub
commit d8928ef619
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
50 changed files with 23777 additions and 22282 deletions

View file

@ -28,4 +28,5 @@ indent_size = 2
indent_style = tab indent_style = tab
[examples/cvector-generator/*.txt] [examples/cvector-generator/*.txt]
trim_trailing_whitespace = unset
insert_final_newline = unset insert_final_newline = unset

View file

@ -30,7 +30,7 @@ jobs:
strategy: strategy:
matrix: matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED] sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo] build_type: [RelWithDebInfo]
include: include:
- build_type: Release - build_type: Release

View file

@ -144,9 +144,6 @@ option(LLAMA_BUILD_SERVER "llama: build server example"
option(LLAMA_LASX "llama: enable lasx" ON) option(LLAMA_LASX "llama: enable lasx" ON)
option(LLAMA_LSX "llama: enable lsx" ON) option(LLAMA_LSX "llama: enable lsx" ON)
# add perf arguments
option(LLAMA_PERF "llama: enable perf" OFF)
# Required for relocatable CMake package # Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake) include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
@ -665,6 +662,7 @@ if (LLAMA_SYCL)
#todo: AOT #todo: AOT
find_package(IntelSYCL REQUIRED) find_package(IntelSYCL REQUIRED)
find_package(MKL REQUIRED)
message(STATUS "SYCL found") message(STATUS "SYCL found")
@ -679,11 +677,9 @@ if (LLAMA_SYCL)
endif() endif()
add_compile_options(-I./) #include DPCT add_compile_options(-I./) #include DPCT
add_compile_options(-I/${SYCL_INCLUDE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
if (LLAMA_SYCL_TARGET STREQUAL "NVIDIA") if (LLAMA_SYCL_TARGET STREQUAL "NVIDIA")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
endif() endif()
@ -693,8 +689,10 @@ if (LLAMA_SYCL)
list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp") list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp")
if (WIN32) if (WIN32)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl sycl7 OpenCL mkl_sycl_blas_dll.lib mkl_intel_ilp64_dll.lib mkl_sequential_dll.lib mkl_core_dll.lib) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
else() else()
add_compile_options(-I/${SYCL_INCLUDE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
if (LLAMA_SYCL_TARGET STREQUAL "INTEL") if (LLAMA_SYCL_TARGET STREQUAL "INTEL")
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
elseif (LLAMA_SYCL_TARGET STREQUAL "NVIDIA") elseif (LLAMA_SYCL_TARGET STREQUAL "NVIDIA")
@ -869,10 +867,6 @@ if (LLAMA_CPU_HBM)
target_link_libraries(ggml PUBLIC memkind) target_link_libraries(ggml PUBLIC memkind)
endif() endif()
if (LLAMA_PERF)
add_compile_definitions(GGML_PERF)
endif()
function(get_flags CCID CCVER) function(get_flags CCID CCVER)
set(C_FLAGS "") set(C_FLAGS "")
set(CXX_FLAGS "") set(CXX_FLAGS "")

View file

@ -11,9 +11,21 @@
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.." "CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
} }
}, },
{
"name": "sycl-base",
"hidden": true,
"generator": "Ninja",
"binaryDir": "${sourceDir}/build-${presetName}",
"cacheVariables": {
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
"CMAKE_CXX_COMPILER": "icx",
"LLAMA_SYCL": "ON",
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
}
},
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } }, { "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } }, { "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } }, { "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } },
{ {
@ -35,15 +47,18 @@
}, },
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] }, { "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "release" ] }, { "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "release", "static" ] }, { "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] }, { "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] }, { "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] }, { "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] }, { "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "release" ] }, { "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "release", "static" ] } { "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
] ]
} }

View file

@ -344,9 +344,6 @@ ifdef LLAMA_GPROF
MK_CFLAGS += -pg MK_CFLAGS += -pg
MK_CXXFLAGS += -pg MK_CXXFLAGS += -pg
endif endif
ifdef LLAMA_PERF
MK_CPPFLAGS += -DGGML_PERF
endif
# Architecture specific # Architecture specific
# TODO: probably these flags need to be tweaked on some architectures # TODO: probably these flags need to be tweaked on some architectures
@ -1051,7 +1048,7 @@ tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-grammar-integration: tests/test-grammar-integration.cpp ggml.o llama.o grammar-parser.o $(OBJS) tests/test-grammar-integration: tests/test-grammar-integration.cpp json-schema-to-grammar.o ggml.o llama.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)

View file

@ -410,15 +410,9 @@ Output (example):
4. Install build tools 4. Install build tools
a. Download & install cmake for Windows: https://cmake.org/download/ a. Download & install cmake for Windows: https://cmake.org/download/ (CMake can also be installed from Visual Studio Installer)
b. The new Visual Studio will install Ninja as default. (If not, please install it manually: https://ninja-build.org/)
b. Download & install mingw-w64 make for Windows provided by w64devkit
- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
- Extract `w64devkit` on your pc.
- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`).
### II. Build llama.cpp ### II. Build llama.cpp
@ -428,10 +422,10 @@ On the oneAPI command line window, step into the llama.cpp main directory and ru
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
# Option 1: Use FP32 (recommended for better performance in most cases) # Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release cmake -B build -G "Ninja" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
# Option 2: Or FP16 # Option 2: Or FP16
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON cmake -B build -G "Ninja" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
cmake --build build --config Release -j cmake --build build --config Release -j
``` ```
@ -441,9 +435,23 @@ Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former in
.\examples\sycl\win-build-sycl.bat .\examples\sycl\win-build-sycl.bat
``` ```
Or, use CMake presets to build:
```sh
cmake --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli
cmake -DLLAMA_SYCL_F16=ON --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli
cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
```
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
*Notes:* *Notes:*
- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make llama-cli`. - In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
### III. Run the inference ### III. Run the inference

View file

@ -6,7 +6,6 @@
#include "llama.h" #include "llama.h"
#include <algorithm> #include <algorithm>
#include <cassert>
#include <cinttypes> #include <cinttypes>
#include <cmath> #include <cmath>
#include <codecvt> #include <codecvt>
@ -542,6 +541,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
else { invalid_param = true; } else { invalid_param = true; }
return true; return true;
} }
@ -1870,6 +1870,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
options.push_back({ "backend" }); options.push_back({ "backend" });
options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" }); options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" });
if (llama_supports_mlock()) { if (llama_supports_mlock()) {
options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" }); options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" });
} }
@ -1988,8 +1989,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
options.push_back({ "cvector", " --completions-file FNAME", options.push_back({ "cvector", " --completions-file FNAME",
"completions file (default: '%s')", params.cvector_completions_file.c_str() }); "completions file (default: '%s')", params.cvector_completions_file.c_str() });
options.push_back({ "cvector", " --completions N", "number of lines of completions file to use (default: %d)", params.n_completions }); options.push_back({ "cvector", " --completions N", "number of lines of completions file to use (default: %d)", params.n_completions });
options.push_back({ "cvector", " --batch-pca N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch }); options.push_back({ "cvector", " --pca-batch N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch });
options.push_back({ "cvector", " --iter-pca N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations }); options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
printf("usage: %s [options]\n", argv[0]); printf("usage: %s [options]\n", argv[0]);
@ -2657,7 +2658,14 @@ static bool llama_download_file(const std::string & url, const std::string & pat
} }
// Set the output file // Set the output file
std::unique_ptr<FILE, decltype(&fclose)> outfile(fopen(path_temporary.c_str(), "wb"), fclose);
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) { if (!outfile) {
fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str()); fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false; return false;

View file

@ -214,7 +214,7 @@ src_func = f"""
""" """
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py") convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
convert_py = convert_py_pth.read_text() convert_py = convert_py_pth.read_text(encoding="utf-8")
convert_py = re.sub( convert_py = re.sub(
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)", r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
lambda m: m.group(1) + src_func + m.group(3), lambda m: m.group(1) + src_func + m.group(3),
@ -222,7 +222,7 @@ convert_py = re.sub(
flags=re.DOTALL | re.MULTILINE, flags=re.DOTALL | re.MULTILINE,
) )
convert_py_pth.write_text(convert_py) convert_py_pth.write_text(convert_py, encoding="utf-8")
logger.info("+++ convert-hf-to-gguf.py was updated") logger.info("+++ convert-hf-to-gguf.py was updated")

View file

@ -967,7 +967,11 @@ class XverseModel(Model):
from transformers import AutoTokenizer from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model) tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
# because vocab_size is the count of items, and indexes start at 0.
max_vocab_index = max(tokenizer.get_vocab().values())
if max_vocab_index >= vocab_size:
raise ValueError("Vocabulary size exceeds expected maximum size.")
reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab() added_vocab = tokenizer.get_added_vocab()
@ -1400,6 +1404,48 @@ class LlamaModel(Model):
raise ValueError(f"Unprocessed experts: {experts}") raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("BitnetForCausalLM")
class BitnetModel(Model):
model_arch = gguf.MODEL_ARCH.BITNET
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(1.0)
def weight_quant(self, weight):
dtype = weight.dtype
weight = weight.float()
s = 1 / weight.abs().mean().clamp(min=1e-5)
weight = (weight * s).round().clamp(-1, 1) / s
scale = weight.abs().max().unsqueeze(0)
weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
weight = torch.sign(weight).type(dtype)
return weight.type(dtype), scale.type(torch.float32)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
new_name = self.map_tensor_name(name)
if any(self.match_model_tensor_name(new_name, key, bid) for key in [
gguf.MODEL_TENSOR.ATTN_Q,
gguf.MODEL_TENSOR.ATTN_K,
gguf.MODEL_TENSOR.ATTN_V,
gguf.MODEL_TENSOR.ATTN_OUT,
gguf.MODEL_TENSOR.FFN_UP,
gguf.MODEL_TENSOR.FFN_DOWN,
gguf.MODEL_TENSOR.FFN_GATE,
]):
# transform weight into 1/0/-1 (in fp32)
weight_torch, scale_torch = self.weight_quant(data_torch)
yield (new_name, weight_torch)
yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
else:
yield (new_name, data_torch)
@Model.register("GrokForCausalLM") @Model.register("GrokForCausalLM")
class GrokModel(Model): class GrokModel(Model):
model_arch = gguf.MODEL_ARCH.GROK model_arch = gguf.MODEL_ARCH.GROK

View file

@ -17,7 +17,7 @@ Related PRs:
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 ./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99
# With advanced options # With advanced options
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --batch-pca 100 ./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --pca-batch 100
# To see help message # To see help message
./cvector-generator -h ./cvector-generator -h

View file

@ -40,7 +40,7 @@ static void print_usage(int argc, char ** argv, const gpt_params & params) {
printf("\nexample usage:\n"); printf("\nexample usage:\n");
printf("\n CPU only: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf\n", argv[0]); printf("\n CPU only: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf\n", argv[0]);
printf("\n with GPU: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99\n", argv[0]); printf("\n with GPU: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99\n", argv[0]);
printf("\n advanced: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --batch-pca 100\n", argv[0]); printf("\n advanced: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --pca-batch 100\n", argv[0]);
printf("\n"); printf("\n");
} }
@ -377,8 +377,8 @@ static int prepare_entries(gpt_params & params, train_context & ctx_train) {
// create templated prompts // create templated prompts
std::vector<std::string> completions = ctrlvec_load_prompt_file(params.cvector_completions_file, false); std::vector<std::string> completions = ctrlvec_load_prompt_file(params.cvector_completions_file, false);
auto format_template = [](std::string persona, std::string suffix) { auto format_template = [](std::string persona, std::string suffix) {
// entry in positive/negative.txt must already be formatted i.e. "[INST] Act as if you're extremely happy. [/INST]" // entry in positive/negative.txt must already be formatted i.e. "[INST] Act as if you're extremely happy. [/INST] "
return persona + " " + suffix; return persona + suffix;
}; };
for (size_t i = 0; i < positive_prompts.size(); ++i) { for (size_t i = 0; i < positive_prompts.size(); ++i) {
for (int j = 0; j < std::min((int) completions.size(), params.n_completions); ++j) { for (int j = 0; j < std::min((int) completions.size(), params.n_completions); ++j) {

View file

@ -1 +1 @@
[INST] Act like a person who is extremely sad. [/INST] [INST] Act like a person who is extremely sad. [/INST]

View file

@ -1 +1 @@
[INST] Act like a person who is extremely happy. [/INST] [INST] Act like a person who is extremely happy. [/INST]

View file

@ -17,9 +17,10 @@ static std::vector<std::string> split_lines(const std::string & s) {
return lines; return lines;
} }
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) { static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
for (size_t i = 0; i < tokens.size(); i++) { size_t n_tokens = tokens.size();
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1); for (size_t i = 0; i < n_tokens; i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
} }
} }
@ -40,13 +41,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
// try to get sequence embeddings - supported only when pooling_type is not NONE // try to get sequence embeddings - supported only when pooling_type is not NONE
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) { GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
embd = llama_get_embeddings_ith(ctx, i);
if (embd == NULL) {
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
continue;
}
}
float * out = output + batch.seq_id[i][0] * n_embd; float * out = output + batch.seq_id[i][0] * n_embd;
//TODO: I would also add a parameter here to enable normalization or not. //TODO: I would also add a parameter here to enable normalization or not.
@ -97,6 +92,12 @@ int main(int argc, char ** argv) {
const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
return 1;
}
if (n_ctx > n_ctx_train) { if (n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, n_ctx); __func__, n_ctx_train, n_ctx);

View file

@ -44,6 +44,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
// clear previous kv_cache values (irrelevant for embeddings) // clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx); llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, true);
llama_set_causal_attn(ctx, false); llama_set_causal_attn(ctx, false);
// run model // run model
@ -98,7 +99,9 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
llama_token eos_token = llama_token_eos(mdl); llama_token eos_token = llama_token_eos(mdl);
llama_kv_cache_clear(ctx); llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true); llama_set_causal_attn(ctx, true);
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1); llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true); std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
@ -166,8 +169,7 @@ int main(int argc, char * argv[]) {
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams); llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
// create new context - set to embedding mode // create generation context
cparams.embeddings = true;
llama_context * ctx = llama_new_context_with_model(mdl, cparams); llama_context * ctx = llama_new_context_with_model(mdl, cparams);
// ### Embedding/Representation ### // ### Embedding/Representation ###

View file

@ -131,22 +131,29 @@ class LlamaState: ObservableObject {
messageLog += "\(text)" messageLog += "\(text)"
while await llamaContext.n_cur < llamaContext.n_len { Task.detached {
let result = await llamaContext.completion_loop() while await llamaContext.n_cur < llamaContext.n_len {
messageLog += "\(result)" let result = await llamaContext.completion_loop()
await MainActor.run {
self.messageLog += "\(result)"
}
}
let t_end = DispatchTime.now().uptimeNanoseconds
let t_generation = Double(t_end - t_heat_end) / self.NS_PER_S
let tokens_per_second = Double(await llamaContext.n_len) / t_generation
await llamaContext.clear()
await MainActor.run {
self.messageLog += """
\n
Done
Heat up took \(t_heat)s
Generated \(tokens_per_second) t/s\n
"""
}
} }
let t_end = DispatchTime.now().uptimeNanoseconds
let t_generation = Double(t_end - t_heat_end) / NS_PER_S
let tokens_per_second = Double(await llamaContext.n_len) / t_generation
await llamaContext.clear()
messageLog += """
\n
Done
Heat up took \(t_heat)s
Generated \(tokens_per_second) t/s\n
"""
} }
func bench() async { func bench() async {

View file

@ -16,41 +16,41 @@ struct quant_option {
}; };
static const std::vector<struct quant_option> QUANT_OPTIONS = { static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", }, { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", }, { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", }, { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", }, { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", }, { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", }, { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", }, { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", }, { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", }, { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", }, { "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", }, { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", }, { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", }, { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , }, { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", }, { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", }, { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", }, { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", }, { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", }, { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", }, { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", }, { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", }, { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", }, { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", }, { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", }, { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", }, { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", }, { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", }, { "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", }, { "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", }, { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching. // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", }, { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
}; };
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file"; static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";

View file

@ -73,9 +73,10 @@ static std::vector<chunk> chunk_file(const std::string & filename, int chunk_siz
return chunks; return chunks;
} }
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) { static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
for (size_t i = 0; i < tokens.size(); i++) { size_t n_tokens = tokens.size();
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1); for (size_t i = 0; i < n_tokens; i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
} }
} }
@ -160,6 +161,12 @@ int main(int argc, char ** argv) {
const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
return 1;
}
if (n_ctx > n_ctx_train) { if (n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, n_ctx); __func__, n_ctx_train, n_ctx);

View file

@ -634,12 +634,12 @@ return html`
<div> <div>
<div class="grammar"> <div class="grammar">
<label for="template"></label> <label for="template"></label>
<textarea id="grammar" name="grammar" placeholder="Use GBNF or JSON-Scheme + Converter" value="${params.value.grammar}" rows=4 oninput=${updateParams}/> <textarea id="grammar" name="grammar" placeholder="Use GBNF or JSON Schema + Converter" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
</div> </div>
<div class="grammar-columns"> <div class="grammar-columns">
<div class="json-schema-controls"> <div class="json-schema-controls">
<input type="text" name="prop-order" placeholder="Order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} /> <input type="text" name="prop-order" placeholder="Order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
<button type="button" class="button-grammar" onclick=${convertJSONSchemaGrammar}>Convert JSON-Scheme</button> <button type="button" class="button-grammar" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
</div> </div>
</div> </div>
</div> </div>

View file

@ -13,16 +13,16 @@ if %errorlevel% neq 0 goto ERROR
:: for FP16 :: for FP16
:: faster for long-prompt inference :: faster for long-prompt inference
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON :: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
:: for FP32 :: for FP32
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release cmake -G "Ninja" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
if %errorlevel% neq 0 goto ERROR if %errorlevel% neq 0 goto ERROR
:: build example/main only :: build example/main only
:: make main :: make main
:: build all binary :: build all binary
make -j cmake --build . -j
if %errorlevel% neq 0 goto ERROR if %errorlevel% neq 0 goto ERROR
cd .. cd ..

View file

@ -635,7 +635,7 @@ static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> &
} }
const int cc = ggml_cuda_info().devices[id].cc; const int cc = ggml_cuda_info().devices[id].cc;
row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc, get_mmq_x_max_host(cc))); row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc));
} }
return row_rounding; return row_rounding;
} }

View file

@ -652,8 +652,8 @@ static int get_mmq_x_max_host(const int cc) {
} }
// Round rows to this value for --split-mode row: // Round rows to this value for --split-mode row:
static int get_mmq_y_host(const int cc, const int mmq_x) { static int get_mmq_y_host(const int cc) {
return cc >= CC_VOLTA && mmq_x >= 32 ? 128 : 64; return cc >= CC_VOLTA ? 128 : 64;
} }
////////////////////// //////////////////////

View file

@ -30,34 +30,34 @@ void ggml_cuda_op_mul_mat_q(
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
mul_mat_q_case<GGML_TYPE_Q4_0>(args, stream); mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
break; break;
case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_1:
mul_mat_q_case<GGML_TYPE_Q4_1>(args, stream); mul_mat_q_case<GGML_TYPE_Q4_1>(ctx, args, stream);
break; break;
case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_0:
mul_mat_q_case<GGML_TYPE_Q5_0>(args, stream); mul_mat_q_case<GGML_TYPE_Q5_0>(ctx, args, stream);
break; break;
case GGML_TYPE_Q5_1: case GGML_TYPE_Q5_1:
mul_mat_q_case<GGML_TYPE_Q5_1>(args, stream); mul_mat_q_case<GGML_TYPE_Q5_1>(ctx, args, stream);
break; break;
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
mul_mat_q_case<GGML_TYPE_Q8_0>(args, stream); mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
break; break;
case GGML_TYPE_Q2_K: case GGML_TYPE_Q2_K:
mul_mat_q_case<GGML_TYPE_Q2_K>(args, stream); mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
break; break;
case GGML_TYPE_Q3_K: case GGML_TYPE_Q3_K:
mul_mat_q_case<GGML_TYPE_Q3_K>(args, stream); mul_mat_q_case<GGML_TYPE_Q3_K>(ctx, args, stream);
break; break;
case GGML_TYPE_Q4_K: case GGML_TYPE_Q4_K:
mul_mat_q_case<GGML_TYPE_Q4_K>(args, stream); mul_mat_q_case<GGML_TYPE_Q4_K>(ctx, args, stream);
break; break;
case GGML_TYPE_Q5_K: case GGML_TYPE_Q5_K:
mul_mat_q_case<GGML_TYPE_Q5_K>(args, stream); mul_mat_q_case<GGML_TYPE_Q5_K>(ctx, args, stream);
break; break;
case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K:
mul_mat_q_case<GGML_TYPE_Q6_K>(args, stream); mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
break; break;
default: default:
GGML_ASSERT(false); GGML_ASSERT(false);

View file

@ -8,6 +8,7 @@
#include <cstdint> #include <cstdint>
#define MMQ_TILE_Y_K (WARP_SIZE + WARP_SIZE/QI8_1) #define MMQ_TILE_Y_K (WARP_SIZE + WARP_SIZE/QI8_1)
#define MMQ_NWARPS 8
typedef void (*load_tiles_mmq_t)( typedef void (*load_tiles_mmq_t)(
const char * __restrict__ x, int * __restrict__ x_qs, half2 * __restrict__ x_dm, const char * __restrict__ x, int * __restrict__ x_qs, half2 * __restrict__ x_dm,
@ -15,7 +16,7 @@ typedef void (*load_tiles_mmq_t)(
typedef void (*vec_dot_mmq_t)( typedef void (*vec_dot_mmq_t)(
const int * __restrict__ x_qs, const half2 * __restrict__ x_dm, const int * __restrict__ x_sc, const int * __restrict__ x_qs, const half2 * __restrict__ x_dm, const int * __restrict__ x_sc,
const int * __restrict__ y, float * __restrict__ sum, const int & k0); const int * __restrict__ y, float * __restrict__ sum, const int & k0);
typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & ne0, const int & ne1); typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max);
struct block_q8_1_mmq { struct block_q8_1_mmq {
half2 ds[4]; half2 ds[4];
@ -50,21 +51,17 @@ static constexpr __device__ int get_mmq_x_max_device() {
// get_mmq_y_host is in common.cuh so that it can be used to determine the correct way to round for --split-mode row // get_mmq_y_host is in common.cuh so that it can be used to determine the correct way to round for --split-mode row
static constexpr __device__ int get_mmq_y_device() {
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
static constexpr __device__ int get_mmq_y_device(int mmq_x) { return 128;
return mmq_x >= 32 ? 128 : 64;
}
#else #else
#if __CUDA_ARCH__ >= CC_VOLTA #if __CUDA_ARCH__ >= CC_VOLTA
static constexpr __device__ int get_mmq_y_device(int mmq_x) { return 128;
return mmq_x >= 32 ? 128 : 64;
}
#else #else
static constexpr __device__ int get_mmq_y_device(int /*mmq_x*/) {
return 64; return 64;
}
#endif // __CUDA_ARCH__ >= CC_VOLTA #endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
}
#define TILE_X_SIZES_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0} #define TILE_X_SIZES_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0}
#define TILE_X_SIZES_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0} #define TILE_X_SIZES_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0}
@ -1734,30 +1731,34 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
} }
template<int mmq_x, int mmq_y, int nwarps, bool need_check> template<int mmq_x, int mmq_y, int nwarps, bool need_check>
static __device__ __forceinline__ void mmq_write_back_dp4a(const float * __restrict__ sum, float * __restrict__ dst, const int & ne0, const int & ne1) { static __device__ __forceinline__ void mmq_write_back_dp4a(
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
#pragma unroll #pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = blockIdx.y*mmq_x + j0 + threadIdx.y; const int j = j0 + threadIdx.y;
if (j >= ne1) { if (j > j_max) {
return; return;
} }
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = blockIdx.x*mmq_y + i0 + threadIdx.x; const int i = i0 + threadIdx.x;
if (need_check && i >= ne0) { if (need_check && i > i_max) {
continue; continue;
} }
dst[j*ne0 + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE]; dst[j*stride + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
} }
} }
} }
template<int mmq_x, int mmq_y, int nwarps, bool need_check> template<int mmq_x, int mmq_y, int nwarps, bool need_check>
static __device__ __forceinline__ void mmq_write_back_mma(const float * __restrict__ sum, float * __restrict__ dst, const int & ne0, const int & ne1) { static __device__ __forceinline__ void mmq_write_back_mma(
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
typedef mma_int_C_I16J8 mma_C; typedef mma_int_C_I16J8 mma_C;
const int i0 = threadIdx.y*mma_C::I; const int i0 = threadIdx.y*mma_C::I;
@ -1769,19 +1770,19 @@ static __device__ __forceinline__ void mmq_write_back_mma(const float * __restri
for (int j0 = 0; j0 < mmq_x; j0 += mma_C::J) { for (int j0 = 0; j0 < mmq_x; j0 += mma_C::J) {
#pragma unroll #pragma unroll
for (int l = 0; l < mma_C::ne; ++l) { for (int l = 0; l < mma_C::ne; ++l) {
const int j = blockIdx.y*mmq_x + j0 + mma_C::get_j(l); const int j = j0 + mma_C::get_j(l);
if (j >= ne1) { if (j > j_max) {
continue; continue;
} }
const int i = blockIdx.x*mmq_y + i0 + mma_C::get_i(l); const int i = i0 + mma_C::get_i(l);
if (need_check && i >= ne0) { if (need_check && i > i_max) {
continue; continue;
} }
dst[j*ne0 + i] = sum[(j0/mma_C::J)*mma_C::ne + l]; dst[j*stride + i] = sum[(j0/mma_C::J)*mma_C::ne + l];
} }
} }
} }
@ -1896,32 +1897,16 @@ static bool mmq_need_sum(const ggml_type type_x) {
return false; return false;
} }
template <ggml_type type, int mmq_x, int nwarps, bool need_check> template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) static __device__ void mul_mat_q_process_tile(
#if defined(RDNA3) || defined(RDNA2) const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
__launch_bounds__(WARP_SIZE*nwarps, 2) const int & ne00, const int & ne01, const int & stride01, const int & ne10, const int & ne11, const int & stride11, const int & ne0,
#endif // defined(RDNA3) || defined(RDNA2) const int & it, const int & jt, const int & kb0_start, const int & kb0_stop) {
#else
#if __CUDA_ARCH__ >= CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)
#else
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
static __global__ void mul_mat_q(
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst,
const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) {
// Skip unused template specializations for faster compilation:
if (mmq_x > get_mmq_x_max_device()) {
NO_DEVICE_CODE;
return;
}
constexpr int qk = ggml_cuda_type_traits<type>::qk; constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int qr = ggml_cuda_type_traits<type>::qr; constexpr int qr = ggml_cuda_type_traits<type>::qr;
constexpr int qi = ggml_cuda_type_traits<type>::qi; constexpr int qi = ggml_cuda_type_traits<type>::qi;
constexpr int mmq_y = get_mmq_y_device(mmq_x); constexpr int mmq_y = get_mmq_y_device();
constexpr int vdr = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vdr; constexpr int vdr = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vdr;
constexpr load_tiles_mmq_t load_tiles = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::load_tiles; constexpr load_tiles_mmq_t load_tiles = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::load_tiles;
@ -1941,20 +1926,18 @@ static __global__ void mul_mat_q(
int * tile_x_sc = (int *) (tile_x_dm + txs.dm); int * tile_x_sc = (int *) (tile_x_dm + txs.dm);
int * tile_y = (int *) (tile_x_sc + txs.sc); // [mmq_x * (WARP_SIZE + WARP_SIZE/QI8_1)] int * tile_y = (int *) (tile_x_sc + txs.sc); // [mmq_x * (WARP_SIZE + WARP_SIZE/QI8_1)]
const int blocks_per_row_x = ne00 / qk; constexpr int blocks_per_warp = WARP_SIZE / qi;
const int blocks_per_warp = WARP_SIZE / qi;
const int & ne1 = ne11;
const int tile_x_max_i = ne01 - blockIdx.x*mmq_y - 1;
const int * y = (const int *) yc + blockIdx.y*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int));
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f}; float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
for (int kb0 = 0; kb0 < blocks_per_row_x; kb0 += blocks_per_warp) { const int tile_x_max_i = ne01 - it*mmq_y - 1;
const int tile_y_max_j = ne11 - jt*mmq_x - 1;
load_tiles(x, tile_x_qs, tile_x_dm, tile_x_sc, stride01*blockIdx.x*mmq_y + kb0, tile_x_max_i, stride01); const int * y = (const int *) yc + jt*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int));
for (int kb0 = kb0_start; kb0 < kb0_stop; kb0 += blocks_per_warp) {
load_tiles(x, tile_x_qs, tile_x_dm, tile_x_sc, stride01*it*mmq_y + kb0, tile_x_max_i, stride01);
#pragma unroll #pragma unroll
for (int kr = 0; kr < qr; ++kr) { for (int kr = 0; kr < qr; ++kr) {
@ -1977,7 +1960,176 @@ static __global__ void mul_mat_q(
} }
} }
write_back(sum, dst, ne0, ne1); if (fixup) {
write_back(sum, tmp_fixup + blockIdx.x*(mmq_x*mmq_y), mmq_y, mmq_y, mmq_x);
} else {
write_back(sum, dst + jt*mmq_x*ne0 + it*mmq_y, ne0, tile_x_max_i, tile_y_max_j);
}
}
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#else
#if __CUDA_ARCH__ >= CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)
#else
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
static __global__ void mul_mat_q(
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) {
// Skip unused template specializations for faster compilation:
if (mmq_x > get_mmq_x_max_device()) {
NO_DEVICE_CODE;
return;
}
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int qi = ggml_cuda_type_traits<type>::qi;
constexpr int mmq_y = get_mmq_y_device();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
{
constexpr bool fixup = false;
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
blockIdx.x, blockIdx.y, 0, ne00/qk);
return;
}
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
const int64_t blocks_per_ne00 = ne00 / qk;
constexpr int blocks_per_warp = WARP_SIZE / qi;
const int ntx = (ne11 + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (ne01 + mmq_y - 1) / mmq_y; // Number of tiles y
// kbc == k block continuous, current index in continuous ijk space.
int64_t kbc = GGML_PAD((int64_t) blockIdx.x *blocks_per_ne00*ntx*nty / gridDim.x, blocks_per_warp);
const int64_t kbc_stop = GGML_PAD((int64_t)(blockIdx.x + 1)*blocks_per_ne00*ntx*nty / gridDim.x, blocks_per_warp);
// kb0 == k index when doing the matrix multiplication for an output tile.
int kb0_start = kbc % blocks_per_ne00;
int kb0_stop = min(blocks_per_ne00, kb0_start + kbc_stop - kbc);
while (kbc < kbc_stop && kb0_stop == blocks_per_ne00) {
const int jt = kbc / (blocks_per_ne00*nty); // j index of current tile.
const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // i index of current tile.
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
it, jt, kb0_start, kb0_stop);
kbc += blocks_per_ne00;
kbc -= kbc % blocks_per_ne00;
kb0_start = 0;
kb0_stop = min(blocks_per_ne00, kbc_stop - kbc);
}
if (kbc >= kbc_stop) {
return;
}
const int jt = kbc / (blocks_per_ne00*nty);
const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00;
constexpr bool fixup = true; // Last index writes it data to fixup buffer to avoid data races with other blocks.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
it, jt, kb0_start, kb0_stop);
}
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
static __global__ void mul_mat_q_stream_k_fixup(
float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ne00, const int ne01, const int ne11, const int ne0, const int block_num_mmq) {
constexpr int mmq_y = get_mmq_y_device();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int qi = ggml_cuda_type_traits<type>::qi;
constexpr int blocks_per_warp = WARP_SIZE / qi;
const int64_t blocks_per_ne00 = ne00 / qk;
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
const int ntx = (ne11 + mmq_x - 1) / mmq_x;
const int nty = (ne01 + mmq_y - 1) / mmq_y;
bool any_fixup = false;
const int bidx_start = (blockIdx.y*nty + blockIdx.x) * block_num_mmq / (gridDim.y*gridDim.x);
const int bidx_stop = (blockIdx.y*nty + blockIdx.x + 1) * block_num_mmq / (gridDim.y*gridDim.x) + 1;
for (int bidx = bidx_start; bidx < bidx_stop; ++bidx) {
const int64_t kbc = GGML_PAD((int64_t) bidx *blocks_per_ne00*ntx*nty / block_num_mmq, blocks_per_warp);
const int64_t kbc_stop = GGML_PAD((int64_t)(bidx + 1)*blocks_per_ne00*ntx*nty / block_num_mmq, blocks_per_warp);
// Skip fixup tile if the MMQ CUDA block never wrote anything to it:
if (kbc == kbc_stop || kbc_stop % blocks_per_ne00 == 0) {
continue;
}
const int jt = kbc_stop / (blocks_per_ne00*nty);
const int it = (kbc_stop - jt*(blocks_per_ne00*nty)) / blocks_per_ne00;
// Skip fixup tile if it's unrelated to the output tile assigned to this CUDA block:
if (it != blockIdx.x || jt != blockIdx.y) {
continue;
}
any_fixup = true;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE] += tmp_last_tile[bidx*(mmq_x*mmq_y) + j*mmq_y + i];
}
}
}
if (!any_fixup) {
return;
}
dst += blockIdx.y*mmq_x*ne0 + blockIdx.x*mmq_y;
const int i_max = ne01 - blockIdx.x*mmq_y - 1;
const int j_max = ne11 - blockIdx.y*mmq_x - 1;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j > j_max) {
return;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (need_check && i > i_max) {
continue;
}
dst[j*ne0 + i] += sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
}
}
} }
struct mmq_args { struct mmq_args {
@ -1987,124 +2139,151 @@ struct mmq_args {
int64_t ne0; int64_t ne0;
}; };
constexpr int mmq_get_nwarps(int mmq_x) {
return mmq_x >= 32 ? 8 : 4;
}
static int mmq_get_shmem(const ggml_type type, const int mmq_x, const int mmq_y) { static int mmq_get_shmem(const ggml_type type, const int mmq_x, const int mmq_y) {
const tile_x_sizes txs = get_tile_x_sizes_host(type, mmq_y); const tile_x_sizes txs = get_tile_x_sizes_host(type, mmq_y);
const int nwarps = mmq_get_nwarps(mmq_x);
const int shmem_x = txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int); const int shmem_x = txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int);
const int shmem_y = mmq_x*WARP_SIZE*sizeof(int) + mmq_x*(WARP_SIZE/QI8_1)*sizeof(half2); const int shmem_y = mmq_x*WARP_SIZE*sizeof(int) + mmq_x*(WARP_SIZE/QI8_1)*sizeof(half2);
return shmem_x + GGML_PAD(shmem_y, nwarps*WARP_SIZE*sizeof(int)); return shmem_x + GGML_PAD(shmem_y, MMQ_NWARPS*WARP_SIZE*sizeof(int));
} }
template <ggml_type type, int mmq_x, int nwarps> template <ggml_type type, int mmq_x>
static void launch_mul_mat_q(const mmq_args & args, cudaStream_t stream) { static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
const int id = ggml_cuda_get_device(); const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc; const int cc = ggml_cuda_info().devices[id].cc;
const int mmq_y = get_mmq_y_host(cc, mmq_x); const int nsm = ggml_cuda_info().devices[id].nsm;
const int mmq_y = get_mmq_y_host(cc);
const int block_num_x = (args.ne01 + mmq_y - 1) / mmq_y; const dim3 block_dims(WARP_SIZE, MMQ_NWARPS, 1);
const int block_num_y = (args.ne11 + mmq_x - 1) / mmq_x;
const dim3 block_nums(block_num_x, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, nwarps, 1);
const int shmem = mmq_get_shmem(type, mmq_x, mmq_y); const int shmem = mmq_get_shmem(type, mmq_x, mmq_y);
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shmem_limit_raised[id]) { if (!shmem_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, nwarps, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, nwarps, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
shmem_limit_raised[id] = true; shmem_limit_raised[id] = true;
} }
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
const int nty = (args.ne01 + mmq_y - 1) / mmq_y;
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
const dim3 block_nums_xy_tiling(nty, ntx, 1);
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
if (!use_stream_k) {
if (args.ne01 % mmq_y == 0) {
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
}
return;
}
const dim3 block_nums_mmq(nsm, 1, 1);
ggml_cuda_pool & pool = ctx.pool();
ggml_cuda_pool_alloc<float> tmp_fixup(pool, block_nums_mmq.x * mmq_x*mmq_y);
if (args.ne01 % mmq_y == 0) { if (args.ne01 % mmq_y == 0) {
const bool need_check = false; constexpr bool need_check = false;
mul_mat_q<type, mmq_x, nwarps, need_check><<<block_nums, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>>
(args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x);
} else { } else {
const bool need_check = true; constexpr bool need_check = true;
mul_mat_q<type, mmq_x, nwarps, need_check><<<block_nums, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>>
(args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>>
(args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x);
} }
} }
template <ggml_type type> template <ggml_type type>
void mul_mat_q_case(const mmq_args & args, cudaStream_t stream) { void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
const int id = ggml_cuda_get_device(); const int id = ggml_cuda_get_device();
const int nsm = ggml_cuda_info().devices[id].nsm; const int nsm = ggml_cuda_info().devices[id].nsm;
const int cc = ggml_cuda_info().devices[id].cc; const int cc = ggml_cuda_info().devices[id].cc;
const int smpbo = ggml_cuda_info().devices[id].smpbo; const int smpbo = ggml_cuda_info().devices[id].smpbo;
const int mmq_x_max = get_mmq_x_max_host(cc); const int mmq_x_max = get_mmq_x_max_host(cc);
const int mmq_y = get_mmq_y_host(cc, mmq_x_max); const int mmq_y = get_mmq_y_host(cc);
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y; const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
int mmq_x_best = 0; int mmq_x_best = 0;
int nwaves_best = INT_MAX; int nparts_best = INT_MAX;
for (int mmq_x = 8; mmq_x <= mmq_x_max && nwaves_best > 1; mmq_x += 8) { for (int mmq_x = 8; mmq_x <= mmq_x_max && nparts_best > 1; mmq_x += 8) {
const int block_num_x = (args.ne11 + mmq_x - 1) / mmq_x; const int ntiles_x = (args.ne11 + mmq_x - 1) / mmq_x;
const int nwaves = (block_num_x*block_num_y + nsm - 1) / nsm; const int nwaves_xy_tiling = ntiles_x*block_num_y;
if (nwaves < nwaves_best && mmq_get_shmem(type, mmq_x, mmq_y) <= smpbo) { const int nparts = use_stream_k ? ntiles_x : nwaves_xy_tiling;
if (nparts < nparts_best && mmq_get_shmem(type, mmq_x, mmq_y) <= smpbo) {
mmq_x_best = mmq_x; mmq_x_best = mmq_x;
nwaves_best = nwaves; nparts_best = nparts;
} }
} }
switch (mmq_x_best) { switch (mmq_x_best) {
case 8: case 8:
launch_mul_mat_q<type, 8, mmq_get_nwarps( 8)>(args, stream); launch_mul_mat_q<type, 8>(ctx, args, stream);
break; break;
case 16: case 16:
launch_mul_mat_q<type, 16, mmq_get_nwarps( 16)>(args, stream); launch_mul_mat_q<type, 16>(ctx, args, stream);
break; break;
case 24: case 24:
launch_mul_mat_q<type, 24, mmq_get_nwarps( 24)>(args, stream); launch_mul_mat_q<type, 24>(ctx, args, stream);
break; break;
case 32: case 32:
launch_mul_mat_q<type, 32, mmq_get_nwarps( 32)>(args, stream); launch_mul_mat_q<type, 32>(ctx, args, stream);
break; break;
case 40: case 40:
launch_mul_mat_q<type, 40, mmq_get_nwarps( 40)>(args, stream); launch_mul_mat_q<type, 40>(ctx, args, stream);
break; break;
case 48: case 48:
launch_mul_mat_q<type, 48, mmq_get_nwarps( 48)>(args, stream); launch_mul_mat_q<type, 48>(ctx, args, stream);
break; break;
case 56: case 56:
launch_mul_mat_q<type, 56, mmq_get_nwarps( 56)>(args, stream); launch_mul_mat_q<type, 56>(ctx, args, stream);
break; break;
case 64: case 64:
launch_mul_mat_q<type, 64, mmq_get_nwarps( 64)>(args, stream); launch_mul_mat_q<type, 64>(ctx, args, stream);
break; break;
case 72: case 72:
launch_mul_mat_q<type, 72, mmq_get_nwarps( 72)>(args, stream); launch_mul_mat_q<type, 72>(ctx, args, stream);
break; break;
case 80: case 80:
launch_mul_mat_q<type, 80, mmq_get_nwarps( 80)>(args, stream); launch_mul_mat_q<type, 80>(ctx, args, stream);
break; break;
case 88: case 88:
launch_mul_mat_q<type, 88, mmq_get_nwarps( 88)>(args, stream); launch_mul_mat_q<type, 88>(ctx, args, stream);
break; break;
case 96: case 96:
launch_mul_mat_q<type, 96, mmq_get_nwarps( 96)>(args, stream); launch_mul_mat_q<type, 96>(ctx, args, stream);
break; break;
case 104: case 104:
launch_mul_mat_q<type, 104, mmq_get_nwarps(104)>(args, stream); launch_mul_mat_q<type, 104>(ctx, args, stream);
break; break;
case 112: case 112:
launch_mul_mat_q<type, 112, mmq_get_nwarps(112)>(args, stream); launch_mul_mat_q<type, 112>(ctx, args, stream);
break; break;
case 120: case 120:
launch_mul_mat_q<type, 120, mmq_get_nwarps(120)>(args, stream); launch_mul_mat_q<type, 120>(ctx, args, stream);
break; break;
case 128: case 128:
launch_mul_mat_q<type, 128, mmq_get_nwarps(128)>(args, stream); launch_mul_mat_q<type, 128>(ctx, args, stream);
break; break;
default: default:
fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best); fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best);
@ -2114,7 +2293,7 @@ void mul_mat_q_case(const mmq_args & args, cudaStream_t stream) {
} }
#define DECL_MMQ_CASE(type) \ #define DECL_MMQ_CASE(type) \
template void mul_mat_q_case<type>(const mmq_args & args, cudaStream_t stream) \ template void mul_mat_q_case<type>(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) \
extern DECL_MMQ_CASE(GGML_TYPE_Q4_0); extern DECL_MMQ_CASE(GGML_TYPE_Q4_0);
extern DECL_MMQ_CASE(GGML_TYPE_Q4_1); extern DECL_MMQ_CASE(GGML_TYPE_Q4_1);

View file

@ -735,6 +735,12 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs
} }
static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) { static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) {
for (size_t i = 0, n = 3; i < n; ++i) {
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
return false;
}
}
switch (op->op) { switch (op->op) {
case GGML_OP_UNARY: case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) { switch (ggml_get_unary_op(op)) {

View file

@ -8814,7 +8814,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
#endif #endif
} }
#if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx) #if defined (__AVX__) || defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
static const int8_t keven_signs_q2xs[1024] = { static const int8_t keven_signs_q2xs[1024] = {
1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
@ -8947,6 +8947,61 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void
*s = 0.125f * hsum_float_8(accumf); *s = 0.125f * hsum_float_8(accumf);
#elif defined(__AVX__)
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
uint32_t aux32[4];
const uint8_t * aux8 = (const uint8_t *)aux32;
__m256 accumf = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * restrict q2 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
__m128i sumi1_0 = _mm_setzero_si128();
__m128i sumi1_1 = _mm_setzero_si128();
__m128i sumi2_0 = _mm_setzero_si128();
__m128i sumi2_1 = _mm_setzero_si128();
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]);
const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]);
const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]);
const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
const uint16_t ls1 = aux32[1] >> 28;
const uint16_t ls2 = aux32[3] >> 28;
const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
}
accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
}
*s = 0.125f * hsum_float_8(accumf);
#elif defined(__POWER9_VECTOR__) #elif defined(__POWER9_VECTOR__)
const vector int v0 = vec_splats((int32_t)0); const vector int v0 = vec_splats((int32_t)0);
vector float vsumf0 = vec_splats(0.0f); vector float vsumf0 = vec_splats(0.0f);
@ -9290,6 +9345,165 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void *
} }
*s = 0.125f * hsum_float_8(accumf); *s = 0.125f * hsum_float_8(accumf);
#elif defined(__AVX__)
const __m128i mone = _mm_set1_epi8(1);
static const char block_sign_shuffle_mask_1[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
};
static const char block_sign_shuffle_mask_2[32] = {
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
};
static const uint8_t bit_selector_mask_bytes[32] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
};
const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes);
const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1);
const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1);
const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1);
const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2);
const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1);
static const uint8_t k_bit_helper[32] = {
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
};
const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper);
const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1);
const __m128i m511 = _mm_set1_epi16(511);
const __m128i m4 = _mm_set1_epi8(0xf);
const __m128i m1 = _mm_set1_epi8(1);
uint64_t aux64;
// somewhat hacky, but gives a significant boost in performance
__m256i aux_gindex;
const uint16_t * gindex = (const uint16_t *)&aux_gindex;
__m256 accumf = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * restrict q2 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
memcpy(&aux64, x[i].scales, 8);
__m128i stmp = _mm_set1_epi64x(aux64);
stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
__m128i sumi1_0 = _mm_setzero_si128();
__m128i sumi1_1 = _mm_setzero_si128();
__m128i sumi2_0 = _mm_setzero_si128();
__m128i sumi2_1 = _mm_setzero_si128();
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2);
const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16;
aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511));
const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9);
const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9);
const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13);
const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13);
const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0);
const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1);
const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0);
const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1);
const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0);
const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1);
const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]);
const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]);
const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]);
const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]);
const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]);
// AVX2 full_signs_1 is full_sign_bits_0 here
// AVX2 full_signs_2 is full_sign_bits_1 here
__m128i signs_0, signs_1;
signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0);
signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1);
signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone));
const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone));
signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0);
signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1);
signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone));
const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone));
signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0);
signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1);
signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone));
const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone));
signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0);
signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1);
signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone));
const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone));
const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0);
const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1);
const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0);
const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1);
__m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0));
const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp);
const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1));
const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp);
const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2));
const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp);
const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3));
const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp);
const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0));
sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1));
sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0));
sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1));
sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0));
sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1));
sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0));
sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1));
}
accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
}
*s = 0.125f * hsum_float_8(accumf);
#elif defined(__loongarch_asx) #elif defined(__loongarch_asx)
const __m256i mone = __lasx_xvreplgr2vr_b(1); const __m256i mone = __lasx_xvreplgr2vr_b(1);
@ -9693,6 +9907,98 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void *
*s = 0.125f * hsum_float_8(accumf); *s = 0.125f * hsum_float_8(accumf);
#elif defined(__AVX__)
static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
};
static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
};
const __m128i m4 = _mm_set1_epi8(0xf);
const __m128i m1 = _mm_set1_epi8(1);
const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
uint64_t aux64;
__m256 accumf = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * restrict qs = x[i].qs;
const uint8_t * restrict qh = x[i].qh;
const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
const int8_t * restrict q8 = y[i].qs;
memcpy(&aux64, x[i].scales, 8);
const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8);
const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8));
__m128i sumi1_0 = _mm_setzero_si128();
__m128i sumi1_1 = _mm_setzero_si128();
__m128i sumi2_0 = _mm_setzero_si128();
__m128i sumi2_1 = _mm_setzero_si128();
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]);
const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]);
qs += 8;
__m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
__m128i aux128_1 = aux128_0;
aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
aux128_1 = aux128_0;
aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
signs += 4;
const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0)));
const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1)));
const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0)));
const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1)));
sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
}
accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
}
*s = 0.125f * hsum_float_8(accumf);
#elif defined(__POWER9_VECTOR__) #elif defined(__POWER9_VECTOR__)
static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
@ -10019,6 +10325,63 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void
*s = 0.25f * hsum_float_8(accumf); *s = 0.25f * hsum_float_8(accumf);
#elif defined(__AVX__)
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
uint32_t aux32[2];
__m256 accumf = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * restrict q3 = x[i].qs;
const uint8_t * restrict gas = x[i].qs + QK_K/4;
const int8_t * restrict q8 = y[i].qs;
__m128i sumi1_0 = _mm_setzero_si128();
__m128i sumi1_1 = _mm_setzero_si128();
__m128i sumi2_0 = _mm_setzero_si128();
__m128i sumi2_1 = _mm_setzero_si128();
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
q3 += 8;
const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
q3 += 8;
memcpy(aux32, gas, 8); gas += 8;
const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]);
const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
const uint16_t ls1 = aux32[0] >> 28;
const uint16_t ls2 = aux32[1] >> 28;
const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
}
accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
}
*s = 0.25f * hsum_float_8(accumf);
#elif defined(__POWER9_VECTOR__) #elif defined(__POWER9_VECTOR__)
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
@ -10370,6 +10733,112 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void *
*s = hsum_float_8(accumf); *s = hsum_float_8(accumf);
#elif defined(__AVX__)
static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
};
static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
};
const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256);
const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16);
const __m128i idx_mask = _mm_set1_epi32(256);
typedef union {
__m128i vec[4];
uint32_t index[16];
} index_t;
index_t idx;
__m256 accumf = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * restrict qs = x[i].qs;
const uint8_t * restrict qh = x[i].qh;
const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
const int8_t * restrict q8 = y[i].qs;
__m128i sumi1_0 = _mm_setzero_si128();
__m128i sumi1_1 = _mm_setzero_si128();
__m128i sumi2_0 = _mm_setzero_si128();
__m128i sumi2_1 = _mm_setzero_si128();
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs);
const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp);
const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16;
idx.vec[0] = _mm_set1_epi32(qh[ib32+0]);
idx.vec[1] = idx.vec[0];
idx.vec[2] = _mm_set1_epi32(qh[ib32+1]);
idx.vec[3] = idx.vec[2];
idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask);
idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask);
idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask);
idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask);
idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0));
idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8)));
idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1));
idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8)));
const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]);
const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]);
const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]);
const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]);
__m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16));
__m128i aux128_1 = aux128_0;
aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16));
aux128_1 = aux128_0;
aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
signs += 4;
const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
}
accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
}
*s = hsum_float_8(accumf);
#elif defined(__POWER9_VECTOR__) #elif defined(__POWER9_VECTOR__)
static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
@ -10607,6 +11076,14 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void *
} }
#if defined(__AVX__)
static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
const __m128i ax = _mm_sign_epi8(x, x);
const __m128i sy = _mm_sign_epi8(y, x);
return _mm_maddubs_epi16(ax, sy);
}
#endif
#if defined(__AVX2__) #if defined(__AVX2__)
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) { static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
const __m256i ax = _mm256_sign_epi8(x, x); const __m256i ax = _mm256_sign_epi8(x, x);
@ -10724,6 +11201,54 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void
*s = hsum_float_8(accum) + IQ1S_DELTA * accum1; *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
#elif defined __AVX__
__m256 accum = _mm256_setzero_ps();
float accum1 = 0;
for (int i = 0; i < nb; ++i) {
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint16_t * qh = x[i].qh;
__m128i sumi1_0 = _mm_setzero_si128();
__m128i sumi1_1 = _mm_setzero_si128();
int sumi1 = 0;
for (int ib = 0; ib < QK_K/32; ib += 2) {
const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]);
const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]);
qs += 8;
const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1));
const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1));
const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2));
const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2));
sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
+ (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
}
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum);
accum1 += d * sumi1;
}
*s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
#elif defined(__POWER9_VECTOR__) #elif defined(__POWER9_VECTOR__)
const vector unsigned char v0 = vec_splats((unsigned char)0x0); const vector unsigned char v0 = vec_splats((unsigned char)0x0);
const vector unsigned short vsign = vec_splats((unsigned short)0x8000); const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
@ -11062,6 +11587,92 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void
*s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2); *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
#elif defined __AVX__
const __m128i mask = _mm_set1_epi16(0x7);
const __m128i mone = _mm_set1_epi16(1);
__m256 accum1 = _mm256_setzero_ps();
__m256 accum2 = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint16_t * sc = (const uint16_t *)x[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
__m128i sumi1_0 = _mm_setzero_si128();
__m128i sumi1_1 = _mm_setzero_si128();
__m128i sumi2_0 = _mm_setzero_si128();
__m128i sumi2_1 = _mm_setzero_si128();
for (int ib = 0; ib < QK_K/32; ib += 2) {
const __m128i q1b_1_0 = _mm_set_epi64x(
iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]);
const __m128i q1b_1_1 = _mm_set_epi64x(
iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]);
const __m128i q1b_2_0 = _mm_set_epi64x(
iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]);
const __m128i q1b_2_1 = _mm_set_epi64x(
iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]);
const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0);
const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1);
const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0);
const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1);
__m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0);
__m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3);
__m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6);
__m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9);
scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone);
scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone);
scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone);
scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone);
const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0);
const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1);
const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0);
const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1);
const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0);
const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1);
const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0);
const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1);
sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0));
sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1));
qs += 8; qh += 4;
}
const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1);
accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2);
}
*s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
#else #else
int sum1[2], sum2[2], delta[4]; int sum1[2], sum2[2], delta[4];
@ -11192,6 +11803,44 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void *
*s = hsum_float_8(_mm256_add_ps(accum1, accum2)); *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
#elif defined __AVX__
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
const __m128i m4b = _mm_set1_epi8(0x0f);
const __m128i mone = _mm_set1_epi16(1);
__m256 accum1 = _mm256_setzero_ps();
__m256 accum2 = _mm256_setzero_ps();
for (int ib = 0; ib < nb; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[1].qs);
const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[0].qs + 1);
const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[1].qs);
const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[1].qs + 1);
const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
_mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
_mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
y += 2;
x += 2;
}
*s = hsum_float_8(_mm256_add_ps(accum1, accum2));
#elif defined(__POWER9_VECTOR__) #elif defined(__POWER9_VECTOR__)
const vector signed char lowMask = vec_splats((signed char)0xF); const vector signed char lowMask = vec_splats((signed char)0xF);
const vector signed int v0 = vec_splats((int32_t)0); const vector signed int v0 = vec_splats((int32_t)0);
@ -11382,6 +12031,54 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void *
*s = hsum_float_8(accum); *s = hsum_float_8(accum);
#elif defined __AVX__
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
const __m128i m4b = _mm_set1_epi8(0x0f);
__m256 accum = _mm256_setzero_ps();
for (int ibl = 0; ibl < nb; ++ibl) {
const uint8_t * qs = x[ibl].qs;
const int8_t * q8 = y[ibl].qs;
uint16_t sh = x[ibl].scales_h;
__m128i sumi1_0 = _mm_setzero_si128();
__m128i sumi1_1 = _mm_setzero_si128();
__m128i sumi2_0 = _mm_setzero_si128();
__m128i sumi2_1 = _mm_setzero_si128();
for (int ib = 0; ib < QK_K/32; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
sh >>= 4;
const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1));
const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1));
const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2));
const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2));
sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0);
sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1);
sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0);
sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1);
}
__m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0);
__m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1);
accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
_mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum);
}
*s = hsum_float_8(accum);
#elif defined(__POWER9_VECTOR__) #elif defined(__POWER9_VECTOR__)
const vector signed char lowMask = vec_splats((signed char)0xF); const vector signed char lowMask = vec_splats((signed char)0xF);
const vector int v0 = vec_splats((int32_t)0); const vector int v0 = vec_splats((int32_t)0);

View file

@ -4911,7 +4911,7 @@ static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX); GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX); GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
GGML_TENSOR_BINARY_OP_LOCALS; GGML_TENSOR_BINARY_OP_LOCALS01;
SYCL_CHECK(ggml_sycl_set_device(ctx.device)); SYCL_CHECK(ggml_sycl_set_device(ctx.device));
queue_ptr main_stream = ctx.stream(); queue_ptr main_stream = ctx.stream();

View file

@ -588,266 +588,222 @@ namespace dpct
out = prop; out = prop;
} }
/// dpct device extension /// dpct device extension
class device_ext : public sycl::device class device_ext : public sycl::device {
{ typedef std::mutex mutex_type;
typedef std::mutex mutex_type;
public: public:
device_ext() : sycl::device(), _ctx(*this) {} device_ext() : sycl::device() {}
~device_ext() ~device_ext() {
{ std::lock_guard<mutex_type> lock(m_mutex);
std::lock_guard<mutex_type> lock(m_mutex); clear_queues();
clear_queues(); }
} device_ext(const sycl::device &base) : sycl::device(base) {
device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this) std::lock_guard<mutex_type> lock(m_mutex);
{ init_queues();
std::lock_guard<mutex_type> lock(m_mutex); }
init_queues();
}
int is_native_atomic_supported() { return 0; } int is_native_atomic_supported() { return 0; }
int get_major_version() const int get_major_version() const { return dpct::get_major_version(*this); }
{
return dpct::get_major_version(*this);
}
int get_minor_version() const int get_minor_version() const { return dpct::get_minor_version(*this); }
{
return dpct::get_minor_version(*this);
}
int get_max_compute_units() const int get_max_compute_units() const {
{ return get_device_info().get_max_compute_units();
return get_device_info().get_max_compute_units(); }
}
/// Return the maximum clock frequency of this device in KHz. /// Return the maximum clock frequency of this device in KHz.
int get_max_clock_frequency() const int get_max_clock_frequency() const {
{ return get_device_info().get_max_clock_frequency();
return get_device_info().get_max_clock_frequency(); }
}
int get_integrated() const { return get_device_info().get_integrated(); } int get_integrated() const { return get_device_info().get_integrated(); }
int get_max_sub_group_size() const int get_max_sub_group_size() const {
{ return get_device_info().get_max_sub_group_size();
return get_device_info().get_max_sub_group_size(); }
}
int get_max_register_size_per_work_group() const int get_max_register_size_per_work_group() const {
{ return get_device_info().get_max_register_size_per_work_group();
return get_device_info().get_max_register_size_per_work_group(); }
}
int get_max_work_group_size() const int get_max_work_group_size() const {
{ return get_device_info().get_max_work_group_size();
return get_device_info().get_max_work_group_size(); }
}
int get_mem_base_addr_align() const int get_mem_base_addr_align() const {
{ return get_info<sycl::info::device::mem_base_addr_align>();
return get_info<sycl::info::device::mem_base_addr_align>(); }
}
size_t get_global_mem_size() const size_t get_global_mem_size() const {
{ return get_device_info().get_global_mem_size();
return get_device_info().get_global_mem_size(); }
}
size_t get_max_mem_alloc_size() const size_t get_max_mem_alloc_size() const {
{ return get_device_info().get_max_mem_alloc_size();
return get_device_info().get_max_mem_alloc_size(); }
}
/// Get the number of bytes of free and total memory on the SYCL device. /// Get the number of bytes of free and total memory on the SYCL device.
/// \param [out] free_memory The number of bytes of free memory on the SYCL device. /// \param [out] free_memory The number of bytes of free memory on the
/// \param [out] total_memory The number of bytes of total memory on the SYCL device. /// SYCL device. \param [out] total_memory The number of bytes of total
void get_memory_info(size_t &free_memory, size_t &total_memory) /// memory on the SYCL device.
{ void get_memory_info(size_t &free_memory, size_t &total_memory) {
total_memory = get_device_info().get_global_mem_size(); total_memory = get_device_info().get_global_mem_size();
const char *warning_info = "get_memory_info: [warning] ext_intel_free_memory is not " const char *warning_info =
"supported (export/set ZES_ENABLE_SYSMAN=1 to support), " "get_memory_info: [warning] ext_intel_free_memory is not "
"use total memory as free memory"; "supported (export/set ZES_ENABLE_SYSMAN=1 to support), "
"use total memory as free memory";
#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105) #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
if (!has(sycl::aspect::ext_intel_free_memory)) if (!has(sycl::aspect::ext_intel_free_memory)) {
{ std::cerr << warning_info << std::endl;
std::cerr << warning_info << std::endl; free_memory = total_memory;
free_memory = total_memory; } else {
} free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
else }
{
free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
}
#else #else
std::cerr << warning_info << std::endl; std::cerr << warning_info << std::endl;
free_memory = total_memory; free_memory = total_memory;
#if defined(_MSC_VER) && !defined(__clang__) #if defined(_MSC_VER) && !defined(__clang__)
#pragma message("Querying the number of bytes of free memory is not supported") #pragma message("Querying the number of bytes of free memory is not supported")
#else #else
#warning "Querying the number of bytes of free memory is not supported" #warning "Querying the number of bytes of free memory is not supported"
#endif #endif
#endif #endif
}
void get_device_info(device_info &out) const {
dpct::get_device_info(out, *this);
}
device_info get_device_info() const {
device_info prop;
dpct::get_device_info(prop, *this);
return prop;
}
void reset() {
std::lock_guard<mutex_type> lock(m_mutex);
clear_queues();
init_queues();
}
sycl::queue &in_order_queue() { return _q_in_order; }
sycl::queue &out_of_order_queue() { return _q_out_of_order; }
sycl::queue &default_queue() { return in_order_queue(); }
void queues_wait_and_throw() {
std::unique_lock<mutex_type> lock(m_mutex);
lock.unlock();
for (auto &q : _queues) {
q.wait_and_throw();
} }
// Guard the destruct of current_queues to make sure the ref count is
// safe.
lock.lock();
}
void get_device_info(device_info &out) const sycl::queue create_queue(bool enable_exception_handler = false) {
{ return create_in_order_queue(enable_exception_handler);
dpct::get_device_info(out, *this); }
}
device_info get_device_info() const sycl::queue create_queue(sycl::device device,
{ bool enable_exception_handler = false) {
device_info prop; return create_in_order_queue(device, enable_exception_handler);
dpct::get_device_info(prop, *this); }
return prop;
}
void reset() sycl::queue create_in_order_queue(bool enable_exception_handler = false) {
{ std::lock_guard<mutex_type> lock(m_mutex);
std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler,
clear_queues(); sycl::property::queue::in_order());
init_queues(); }
}
sycl::queue &in_order_queue() { return *_q_in_order; } sycl::queue create_in_order_queue(sycl::device device,
sycl::queue &out_of_order_queue() { return *_q_out_of_order; }
sycl::queue &default_queue()
{
return in_order_queue();
}
void queues_wait_and_throw()
{
std::unique_lock<mutex_type> lock(m_mutex);
std::vector<std::shared_ptr<sycl::queue>> current_queues(
_queues);
lock.unlock();
for (const auto &q : current_queues)
{
q->wait_and_throw();
}
// Guard the destruct of current_queues to make sure the ref count is safe.
lock.lock();
}
sycl::queue *create_queue(bool enable_exception_handler = false)
{
return create_in_order_queue(enable_exception_handler);
}
sycl::queue *create_queue(sycl::context context, sycl::device device,
bool enable_exception_handler = false) {
return create_in_order_queue(context, device, enable_exception_handler);
}
sycl::queue *create_in_order_queue(bool enable_exception_handler = false) {
std::lock_guard<mutex_type> lock(m_mutex);
return create_queue_impl(enable_exception_handler,
sycl::property::queue::in_order());
}
sycl::queue *create_in_order_queue(sycl::context context, sycl::device device,
bool enable_exception_handler = false) { bool enable_exception_handler = false) {
std::lock_guard<mutex_type> lock(m_mutex); std::lock_guard<mutex_type> lock(m_mutex);
return create_queue_impl(context, device, enable_exception_handler, return create_queue_impl(device, enable_exception_handler,
sycl::property::queue::in_order()); sycl::property::queue::in_order());
} }
sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) { sycl::queue create_out_of_order_queue(
std::lock_guard<mutex_type> lock(m_mutex); bool enable_exception_handler = false) {
return create_queue_impl(enable_exception_handler); std::lock_guard<mutex_type> lock(m_mutex);
} return create_queue_impl(enable_exception_handler);
}
void destroy_queue(sycl::queue *&queue) void destroy_queue(sycl::queue queue) {
{ std::lock_guard<mutex_type> lock(m_mutex);
std::lock_guard<mutex_type> lock(m_mutex); _queues.clear();
_queues.erase(std::remove_if(_queues.begin(), _queues.end(), }
[=](const std::shared_ptr<sycl::queue> &q) -> bool void set_saved_queue(sycl::queue q) {
{ std::lock_guard<mutex_type> lock(m_mutex);
return q.get() == queue; _saved_queue = q;
}), }
_queues.end()); sycl::queue get_saved_queue() const {
queue = nullptr; std::lock_guard<mutex_type> lock(m_mutex);
} return _saved_queue;
void set_saved_queue(sycl::queue *q) }
{
std::lock_guard<mutex_type> lock(m_mutex);
_saved_queue = q;
}
sycl::queue *get_saved_queue() const
{
std::lock_guard<mutex_type> lock(m_mutex);
return _saved_queue;
}
sycl::context get_context() const { return _ctx; }
private: private:
void clear_queues() void clear_queues() { _queues.clear(); }
{
_queues.clear();
_q_in_order = _q_out_of_order = _saved_queue = nullptr;
}
void init_queues() void init_queues() {
{ _q_in_order =
_q_in_order = create_queue_impl(true, sycl::property::queue::in_order()); create_queue_impl(true, sycl::property::queue::in_order());
_q_out_of_order = create_queue_impl(true); _q_out_of_order = create_queue_impl(true);
_saved_queue = &default_queue(); _saved_queue = default_queue();
} }
/// Caller should acquire resource \p m_mutex before calling this function. /// Caller should acquire resource \p m_mutex before calling this
template <class... Properties> /// function.
sycl::queue *create_queue_impl(bool enable_exception_handler, template <class... Properties>
Properties... properties) sycl::queue create_queue_impl(bool enable_exception_handler,
{ Properties... properties) {
sycl::async_handler eh = {}; sycl::async_handler eh = {};
if (enable_exception_handler) if (enable_exception_handler) {
{ eh = exception_handler;
eh = exception_handler; }
} auto q = sycl::queue(*this, eh,
_queues.push_back(std::make_shared<sycl::queue>( sycl::property_list(
_ctx, *this, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED #ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(), sycl::property::queue::enable_profiling(),
#endif #endif
properties...))); properties...));
_queues.push_back(q);
return _queues.back().get(); return _queues.back();
} }
template <class... Properties> template <class... Properties>
sycl::queue *create_queue_impl(sycl::context context, sycl::device device, sycl::queue create_queue_impl(sycl::device device,
bool enable_exception_handler, bool enable_exception_handler,
Properties... properties) { Properties... properties) {
sycl::async_handler eh = {}; sycl::async_handler eh = {};
if (enable_exception_handler) { if (enable_exception_handler) {
eh = exception_handler; eh = exception_handler;
}
_queues.push_back(std::make_shared<sycl::queue>(
context, device, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(),
#endif
properties...)));
return _queues.back().get();
} }
_queues.push_back(
sycl::queue(device, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(),
#endif
properties...)));
void get_version(int &major, int &minor) const return _queues.back();
{ }
detail::get_version(*this, major, minor);
} void get_version(int &major, int &minor) const {
sycl::queue *_q_in_order, *_q_out_of_order; detail::get_version(*this, major, minor);
sycl::queue *_saved_queue; }
sycl::context _ctx; sycl::queue _q_in_order, _q_out_of_order;
std::vector<std::shared_ptr<sycl::queue>> _queues; sycl::queue _saved_queue;
mutable mutex_type m_mutex; std::vector<sycl::queue> _queues;
mutable mutex_type m_mutex;
}; };
/// device manager /// device manager
class dev_mgr class dev_mgr
{ {

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

1352
ggml.c

File diff suppressed because it is too large Load diff

41
ggml.h
View file

@ -312,6 +312,12 @@
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb) GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
@ -585,11 +591,7 @@ extern "C" {
struct ggml_tensor * grad; struct ggml_tensor * grad;
struct ggml_tensor * src[GGML_MAX_SRC]; struct ggml_tensor * src[GGML_MAX_SRC];
// performance // source tensor and offset for views
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
struct ggml_tensor * view_src; struct ggml_tensor * view_src;
size_t view_offs; size_t view_offs;
@ -599,7 +601,7 @@ extern "C" {
void * extra; // extra things e.g. for ggml-cuda.cu void * extra; // extra things e.g. for ggml-cuda.cu
char padding[8]; // char padding[4];
}; };
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
@ -646,11 +648,6 @@ extern "C" {
struct ggml_hash_set visited_hash_table; struct ggml_hash_set visited_hash_table;
enum ggml_cgraph_eval_order order; enum ggml_cgraph_eval_order order;
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
}; };
// scratch buffer // scratch buffer
@ -667,28 +664,6 @@ extern "C" {
bool no_alloc; // don't allocate memory for the tensor data bool no_alloc; // don't allocate memory for the tensor data
}; };
// compute types
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
enum ggml_task_type {
GGML_TASK_TYPE_INIT = 0,
GGML_TASK_TYPE_COMPUTE,
GGML_TASK_TYPE_FINALIZE,
};
struct ggml_compute_params {
enum ggml_task_type type;
// ith = thread index, nth = number of threads
int ith, nth;
// work buffer for all threads
size_t wsize;
void * wdata;
};
// numa strategies // numa strategies
enum ggml_numa_strategy { enum ggml_numa_strategy {
GGML_NUMA_STRATEGY_DISABLED = 0, GGML_NUMA_STRATEGY_DISABLED = 0,

View file

@ -149,6 +149,7 @@ class MODEL_ARCH(IntEnum):
OLMO = auto() OLMO = auto()
ARCTIC = auto() ARCTIC = auto()
DEEPSEEK2 = auto() DEEPSEEK2 = auto()
BITNET = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
@ -200,6 +201,8 @@ class MODEL_TENSOR(IntEnum):
ATTN_KV_B = auto() ATTN_KV_B = auto()
ATTN_Q_A_NORM = auto() ATTN_Q_A_NORM = auto()
ATTN_KV_A_NORM = auto() ATTN_KV_A_NORM = auto()
FFN_SUB_NORM = auto()
ATTN_SUB_NORM = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -237,6 +240,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.OLMO: "olmo", MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.ARCTIC: "arctic", MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2", MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.BITNET: "bitnet",
} }
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -288,6 +292,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b", MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm", MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm", MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
} }
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -808,6 +814,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_SHEXP, MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP, MODEL_TENSOR.FFN_UP_SHEXP,
], ],
MODEL_ARCH.BITNET: [
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_SUB_NORM,
MODEL_TENSOR.FFN_SUB_NORM,
],
# TODO # TODO
} }

View file

@ -413,6 +413,14 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_KV_A_NORM: ( MODEL_TENSOR.ATTN_KV_A_NORM: (
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2 "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
), ),
MODEL_TENSOR.ATTN_SUB_NORM: (
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
),
MODEL_TENSOR.FFN_SUB_NORM: (
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet
),
} }
# architecture-specific block mappings # architecture-specific block mappings

412
llama.cpp
View file

@ -225,6 +225,7 @@ enum llm_arch {
LLM_ARCH_OLMO, LLM_ARCH_OLMO,
LLM_ARCH_ARCTIC, LLM_ARCH_ARCTIC,
LLM_ARCH_DEEPSEEK2, LLM_ARCH_DEEPSEEK2,
LLM_ARCH_BITNET,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
@ -263,6 +264,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_OLMO, "olmo" }, { LLM_ARCH_OLMO, "olmo" },
{ LLM_ARCH_ARCTIC, "arctic" }, { LLM_ARCH_ARCTIC, "arctic" },
{ LLM_ARCH_DEEPSEEK2, "deepseek2" }, { LLM_ARCH_DEEPSEEK2, "deepseek2" },
{ LLM_ARCH_BITNET, "bitnet" },
{ LLM_ARCH_UNKNOWN, "(unknown)" }, { LLM_ARCH_UNKNOWN, "(unknown)" },
}; };
@ -500,6 +502,8 @@ enum llm_tensor {
LLM_TENSOR_ATTN_KV_B, LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_Q_A_NORM, LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM, LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_SUB_NORM,
LLM_TENSOR_FFN_SUB_NORM,
}; };
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = { static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
@ -1113,6 +1117,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
}, },
}, },
{
LLM_ARCH_BITNET,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -2118,6 +2140,8 @@ struct llama_layer {
struct ggml_tensor * attn_out_norm_b; struct ggml_tensor * attn_out_norm_b;
struct ggml_tensor * attn_q_a_norm; struct ggml_tensor * attn_q_a_norm;
struct ggml_tensor * attn_kv_a_norm; struct ggml_tensor * attn_kv_a_norm;
struct ggml_tensor * attn_sub_norm;
struct ggml_tensor * ffn_sub_norm;
// attention // attention
struct ggml_tensor * wq; struct ggml_tensor * wq;
@ -2185,6 +2209,15 @@ struct llama_layer {
// long rope factors // long rope factors
struct ggml_tensor * rope_long = nullptr; struct ggml_tensor * rope_long = nullptr;
struct ggml_tensor * rope_short = nullptr; struct ggml_tensor * rope_short = nullptr;
// bitnet scale
struct ggml_tensor * wq_scale;
struct ggml_tensor * wk_scale;
struct ggml_tensor * wv_scale;
struct ggml_tensor * wo_scale;
struct ggml_tensor * ffn_gate_scale;
struct ggml_tensor * ffn_up_scale;
struct ggml_tensor * ffn_down_scale;
}; };
struct llama_kv_cell { struct llama_kv_cell {
@ -2293,6 +2326,8 @@ struct llama_vocab {
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
int max_token_len = 0; // used for optimizing longest token search
std::unordered_map<token, id> token_to_id; std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token; std::vector<token_data> id_to_token;
@ -4708,6 +4743,15 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_BITNET:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 26: model.type = e_model::MODEL_3B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0; default: (void)0;
} }
@ -4939,6 +4983,7 @@ static void llm_load_vocab(
GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
vocab.token_to_id[word] = i; vocab.token_to_id[word] = i;
vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
auto & token_data = vocab.id_to_token[i]; auto & token_data = vocab.id_to_token[i];
token_data.text = std::move(word); token_data.text = std::move(word);
@ -5249,6 +5294,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); } if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); } if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
if (model.arch == LLM_ARCH_DEEPSEEK2) { if (model.arch == LLM_ARCH_DEEPSEEK2) {
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q); LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
@ -6650,6 +6697,44 @@ static bool llm_load_tensors(
} }
} }
} break; } break;
case LLM_ARCH_BITNET:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
}
} break;
default: default:
throw std::runtime_error("unknown architecture"); throw std::runtime_error("unknown architecture");
} }
@ -7290,7 +7375,10 @@ static struct ggml_tensor * llm_build_kqv(
ggml_build_forward_expand(graph, cur); ggml_build_forward_expand(graph, cur);
cur = ggml_mul_mat(ctx, wo, cur); if (wo) {
cur = ggml_mul_mat(ctx, wo, cur);
}
if (wo_b) { if (wo_b) {
cb(cur, "kqv_wo", il); cb(cur, "kqv_wo", il);
} }
@ -7649,6 +7737,50 @@ struct llm_build_context {
return lctx.inp_s_seq; return lctx.inp_s_seq;
} }
struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
// find result_norm tensor for input
struct ggml_tensor * inp = nullptr;
for (int i = gf->n_nodes - 1; i >= 0; --i) {
inp = gf->nodes[i];
if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
break;
} else {
inp = nullptr;
}
}
GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
struct ggml_tensor * cur;
switch (pooling_type) {
case LLAMA_POOLING_TYPE_MEAN:
{
struct ggml_tensor * inp_mean = build_inp_mean();
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
} break;
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
{
struct ggml_tensor * inp_cls = build_inp_cls();
cur = ggml_get_rows(ctx0, inp, inp_cls);
} break;
case LLAMA_POOLING_TYPE_NONE:
{
cur = inp;
} break;
default:
{
GGML_ASSERT(false && "unknown pooling type");
} break;
}
cb(cur, "result_embd_pooled", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_llama() { struct ggml_cgraph * build_llama() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@ -8629,8 +8761,6 @@ struct llm_build_context {
if (model.arch != LLM_ARCH_JINA_BERT_V2) { if (model.arch != LLM_ARCH_JINA_BERT_V2) {
inp_pos = build_inp_pos(); inp_pos = build_inp_pos();
} }
struct ggml_tensor * inp_mean = build_inp_mean();
struct ggml_tensor * inp_cls = build_inp_cls();
// construct input embeddings (token, type, position) // construct input embeddings (token, type, position)
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
@ -8805,28 +8935,6 @@ struct llm_build_context {
cur = inpL; cur = inpL;
cb(cur, "result_embd", -1); cb(cur, "result_embd", -1);
// pooling layer
switch (pooling_type) {
case LLAMA_POOLING_TYPE_NONE:
{
// nop
} break;
case LLAMA_POOLING_TYPE_MEAN:
{
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
cb(cur, "result_embd_pooled", -1);
} break;
case LLAMA_POOLING_TYPE_CLS:
{
cur = ggml_get_rows(ctx0, cur, inp_cls);
cb(cur, "result_embd_pooled", -1);
} break;
case LLAMA_POOLING_TYPE_UNSPECIFIED:
{
GGML_ASSERT(false && "Invalid pooling type");
} break;
}
ggml_build_forward_expand(gf, cur); ggml_build_forward_expand(gf, cur);
return gf; return gf;
@ -11684,6 +11792,153 @@ struct llm_build_context {
return gf; return gf;
} }
struct ggml_cgraph * build_bitnet() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
// B1.K
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
// B1.V
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
nullptr, nullptr,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].attn_sub_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_sub_norm", il);
cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
if (model.layers[il].bo) {
cur = ggml_add(ctx0, cur, model.layers[il].bo);
}
cb(cur, "attn_o_out", il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward forward
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
tmp = ggml_mul(ctx0, tmp, model.layers[il].ffn_up_scale);
cb(tmp, "ffn_up", il);
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_gate, cur);
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_gate_scale);
cb(cur, "ffn_gate", il);
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_silu", il);
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].ffn_sub_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_sub_norm", il);
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
cb(cur, "ffn_down", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
}; };
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) { static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@ -11907,10 +12162,19 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm.build_deepseek2(); result = llm.build_deepseek2();
} break; } break;
case LLM_ARCH_BITNET:
{
result = llm.build_bitnet();
} break;
default: default:
GGML_ASSERT(false); GGML_ASSERT(false);
} }
// add on pooling layer
if (lctx.cparams.embeddings) {
result = llm.append_pooling(result);
}
llm.free(); llm.free();
return result; return result;
@ -12000,7 +12264,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
// (!a || b) is a logical implication (a -> b) // (!a || b) is a logical implication (a -> b)
// !hparams.causal_attn -> !cparams.causal_attn // !hparams.causal_attn -> !cparams.causal_attn
(hparams.causal_attn || !cparams.causal_attn) && (hparams.causal_attn || !cparams.causal_attn) &&
"causal attention with embedding models is not supported" "causal attention is not supported by this model"
); );
if (lctx.inp_KQ_mask) { if (lctx.inp_KQ_mask) {
@ -12132,6 +12396,37 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
} }
} }
if (cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
const int64_t n_tokens = batch.n_tokens;
GGML_ASSERT(lctx.inp_cls);
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
std::vector<int> last_pos(n_tokens, -1);
std::vector<int> last_row(n_tokens, -1);
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
const llama_pos pos = batch.pos[i];
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
if (pos >= last_pos[seq_id]) {
last_pos[seq_id] = pos;
last_row[seq_id] = i;
}
}
for (int i = 0; i < n_tokens; ++i) {
if (last_row[i] >= 0) {
data[i] = last_row[i];
}
}
}
if (kv_self.recurrent) { if (kv_self.recurrent) {
const int64_t n_kv = kv_self.n; const int64_t n_kv = kv_self.n;
@ -12193,8 +12488,8 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
const auto n_embd = hparams.n_embd; const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead // TODO: use a per-batch flag for logits presence instead
const bool has_logits = cparams.causal_attn; const bool has_logits = !cparams.embeddings;
const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0; const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
@ -12324,11 +12619,13 @@ static int llama_decode_internal(
std::vector<std::vector<llama_seq_id>> seq_id; std::vector<std::vector<llama_seq_id>> seq_id;
// count outputs // count outputs
if (batch_all.logits) { if (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE) {
n_outputs = n_tokens_all;
} else if (batch_all.logits) {
for (uint32_t i = 0; i < n_tokens_all; ++i) { for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs += batch_all.logits[i] != 0; n_outputs += batch_all.logits[i] != 0;
} }
} else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) { } else if (lctx.logits_all) {
n_outputs = n_tokens_all; n_outputs = n_tokens_all;
} else { } else {
// keep last output only // keep last output only
@ -12459,30 +12756,13 @@ static int llama_decode_internal(
// no output // no output
res = nullptr; res = nullptr;
embd = nullptr; embd = nullptr;
} else if (!hparams.causal_attn) {
res = nullptr; // do not extract logits for embedding models such as BERT
// token or sequence embeddings
embd = gf->nodes[gf->n_nodes - 1];
GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
} else if (cparams.embeddings) { } else if (cparams.embeddings) {
// the embeddings could be in the second to last tensor, or any of the previous tensors res = nullptr; // do not extract logits for embedding case
int i_embd = gf->n_nodes - 2; embd = gf->nodes[gf->n_nodes - 1];
for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) { if (strcmp(embd->name, "result_embd_pooled") != 0) {
i_embd = gf->n_nodes - i; embd = gf->nodes[gf->n_nodes - 2];
if (i_embd < 0) { break; }
embd = gf->nodes[i_embd];
}
GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
// TODO: use a per-batch flag to know when to skip logits while keeping embeddings
if (!cparams.causal_attn) {
res = nullptr; // do not extract logits when not needed
// skip computing logits
// TODO: is this safe?
gf->n_nodes = i_embd + 1;
} }
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
} else { } else {
embd = nullptr; // do not extract embeddings when not needed embd = nullptr; // do not extract embeddings when not needed
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
@ -12505,12 +12785,6 @@ static int llama_decode_internal(
} }
} }
#ifdef GGML_PERF
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
ggml_graph_print(gf);
#endif
// plot the computation graph in dot format (for debugging purposes) // plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) { //if (n_past%100 == 0) {
// ggml_graph_dump_dot(gf, NULL, "llama.dot"); // ggml_graph_dump_dot(gf, NULL, "llama.dot");
@ -12551,11 +12825,10 @@ static int llama_decode_internal(
ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float)); ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
} }
} break; } break;
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_MEAN: case LLAMA_POOLING_TYPE_MEAN:
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
{ {
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
// extract sequence embeddings // extract sequence embeddings
auto & embd_seq_out = lctx.embd_seq; auto & embd_seq_out = lctx.embd_seq;
embd_seq_out.clear(); embd_seq_out.clear();
@ -13448,7 +13721,7 @@ private:
struct llm_tokenizer_wpm { struct llm_tokenizer_wpm {
llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
const auto & token_map = vocab.token_to_id; const auto & token_map = vocab.token_to_id;
// normalize and split by whitespace // normalize and split by whitespace
@ -13457,7 +13730,7 @@ struct llm_tokenizer_wpm {
// bos token prepended already // bos token prepended already
// find the longest tokens that form the words // find the longest tokens that form the words
for (const std::string &word : words) { for (const std::string & word : words) {
// skip empty words // skip empty words
if (word.size() == 0) { if (word.size() == 0) {
continue; continue;
@ -13474,7 +13747,7 @@ struct llm_tokenizer_wpm {
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
// loop through possible match length // loop through possible match length
bool match = false; bool match = false;
for (int j = n; j > i; j--) { for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
auto it = token_map.find(word1.substr(i, j - i)); auto it = token_map.find(word1.substr(i, j - i));
if (it != token_map.end()) { if (it != token_map.end()) {
output.push_back(it->second); output.push_back(it->second);
@ -13497,7 +13770,8 @@ struct llm_tokenizer_wpm {
} }
} }
std::vector<std::string> preprocess(const std::string & text) { // TODO: reduce string copies by using cpts_offs array
std::vector<std::string> preprocess(const std::string & text) const {
const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
std::vector<std::string> words(1, ""); std::vector<std::string> words(1, "");
@ -13792,6 +14066,8 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
output.push_back(vocab.special_cls_id); output.push_back(vocab.special_cls_id);
} }
llm_tokenizer_wpm tokenizer(vocab);
for (const auto & fragment : fragment_buffer) { for (const auto & fragment : fragment_buffer) {
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
@ -13799,7 +14075,6 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
#ifdef PRETOKENIZERDEBUG #ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif #endif
llm_tokenizer_wpm tokenizer(vocab);
tokenizer.tokenize(raw_text, output); tokenizer.tokenize(raw_text, output);
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
output.push_back(fragment.token); output.push_back(fragment.token);
@ -16713,6 +16988,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_BERT: case LLM_ARCH_BERT:
case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_STABLELM: case LLM_ARCH_STABLELM:
case LLM_ARCH_BITNET:
case LLM_ARCH_QWEN: case LLM_ARCH_QWEN:
case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2:
case LLM_ARCH_QWEN2MOE: case LLM_ARCH_QWEN2MOE:
@ -18112,6 +18388,10 @@ void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)
ctx->abort_callback_data = abort_callback_data; ctx->abort_callback_data = abort_callback_data;
} }
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
ctx->cparams.embeddings = embeddings;
}
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) { void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn; ctx->cparams.causal_attn = causal_attn;
} }

View file

@ -174,6 +174,7 @@ extern "C" {
LLAMA_POOLING_TYPE_NONE = 0, LLAMA_POOLING_TYPE_NONE = 0,
LLAMA_POOLING_TYPE_MEAN = 1, LLAMA_POOLING_TYPE_MEAN = 1,
LLAMA_POOLING_TYPE_CLS = 2, LLAMA_POOLING_TYPE_CLS = 2,
LLAMA_POOLING_TYPE_LAST = 3,
}; };
enum llama_split_mode { enum llama_split_mode {
@ -293,7 +294,6 @@ extern "C" {
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
// (ignored if no pooling layer)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054 // ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model float rope_freq_base; // RoPE base frequency, 0 = from model
@ -786,6 +786,10 @@ extern "C" {
// Get the number of threads used for prompt and batch processing (multiple token). // Get the number of threads used for prompt and batch processing (multiple token).
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx); LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
// Set whether the model is in embeddings mode or not
// If true, embeddings will be returned but logits will not
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
// Set whether to use causal attention or not // Set whether to use causal attention or not
// If set to true, the model will only attend to the past tokens // If set to true, the model will only attend to the past tokens
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn); LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);

View file

@ -1,2 +1,2 @@
-r ./requirements-convert-legacy-llama.txt -r ./requirements-convert-legacy-llama.txt
torch~=2.1.1 torch~=2.2.1

View file

@ -1,2 +1,2 @@
-r ./requirements-convert-legacy-llama.txt -r ./requirements-convert-legacy-llama.txt
torch~=2.1.1 torch~=2.2.1

View file

@ -1,4 +1,4 @@
numpy~=1.24.4 numpy~=1.26.4
sentencepiece~=0.2.0 sentencepiece~=0.2.0
transformers>=4.40.1,<5.0.0 transformers>=4.40.1,<5.0.0
gguf>=0.1.0 gguf>=0.1.0

View file

@ -249,9 +249,8 @@ class tinyBLAS {
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
} }
void matmul(int64_t m, int64_t n, int task) { void matmul(int64_t m, int64_t n) {
if (task == GGML_TASK_TYPE_COMPUTE) mnpack(0, m, 0, n);
mnpack(0, m, 0, n);
} }
private: private:
@ -458,9 +457,8 @@ class tinyBLAS_Q0_ARM {
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
} }
void matmul(int64_t m, int64_t n, int task) { void matmul(int64_t m, int64_t n) {
if (task == GGML_TASK_TYPE_COMPUTE) mnpack(0, m, 0, n);
mnpack(0, m, 0, n);
} }
private: private:
@ -596,9 +594,8 @@ class tinyBLAS_Q0_AVX {
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
} }
void matmul(int64_t m, int64_t n, int task) { void matmul(int64_t m, int64_t n) {
if (task == GGML_TASK_TYPE_COMPUTE) mnpack(0, m, 0, n);
mnpack(0, m, 0, n);
} }
private: private:
@ -829,7 +826,7 @@ class tinyBLAS_Q0_AVX {
* For example, for single-threaded single-precision GEMM you can say * For example, for single-threaded single-precision GEMM you can say
* *
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc, * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
* 0, 1, GGML_TASK_TYPE_COMPUTE, * 0, 1,
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32); * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
* *
* @param m is rows in `A` and `C` * @param m is rows in `A` and `C`
@ -843,14 +840,13 @@ class tinyBLAS_Q0_AVX {
* @param ldc is row stride of `C` * @param ldc is row stride of `C`
* @param ith is thread id (must be less than `nth`) * @param ith is thread id (must be less than `nth`)
* @param nth is number of threads (must be greater than zero) * @param nth is number of threads (must be greater than zero)
* @param task is GGML task type
* @param Atype is GGML data type of `A` * @param Atype is GGML data type of `A`
* @param Btype is GGML data type of `B` * @param Btype is GGML data type of `B`
* @param Ctype is GGML data type of `C` * @param Ctype is GGML data type of `C`
* @return true if this function was able to service the matmul request * @return true if this function was able to service the matmul request
*/ */
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C, bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
int64_t ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) { int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
assert(m >= 0); assert(m >= 0);
assert(n >= 0); assert(n >= 0);
@ -877,7 +873,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#elif defined(__AVX__) || defined(__AVX2__) #elif defined(__AVX__) || defined(__AVX2__)
if (k % 8) if (k % 8)
@ -887,7 +883,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#elif defined(__ARM_NEON) #elif defined(__ARM_NEON)
if (n < 4) if (n < 4)
@ -899,7 +895,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#else #else
return false; return false;
@ -917,7 +913,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__) #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
if (k % 8) if (k % 8)
@ -929,7 +925,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if (n < 8) if (n < 8)
@ -943,7 +939,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const ggml_fp16_t *)B, ldb, (const ggml_fp16_t *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#elif defined(__ARM_NEON) && !defined(_MSC_VER) #elif defined(__ARM_NEON) && !defined(_MSC_VER)
if (k % 4) if (k % 4)
@ -955,7 +951,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#else #else
return false; return false;
@ -971,7 +967,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#elif defined(__ARM_FEATURE_DOTPROD) #elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<block_q8_0> tb{ tinyBLAS_Q0_ARM<block_q8_0> tb{
@ -979,7 +975,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#else #else
return false; return false;
@ -995,7 +991,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#elif defined(__ARM_FEATURE_DOTPROD) #elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<block_q4_0> tb{ tinyBLAS_Q0_ARM<block_q4_0> tb{
@ -1003,7 +999,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; ith, nth};
tb.matmul(m, n, task); tb.matmul(m, n);
return true; return true;
#else #else
return false; return false;
@ -1025,7 +1021,6 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(void)ldc; (void)ldc;
(void)ith; (void)ith;
(void)nth; (void)nth;
(void)task;
(void)Atype; (void)Atype;
(void)Btype; (void)Btype;
(void)Ctype; (void)Ctype;

View file

@ -7,7 +7,7 @@ extern "C" {
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t, bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
const void *, int64_t, void *, int64_t, int, int, const void *, int64_t, void *, int64_t, int, int,
int, int, int, int); int, int, int);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -785,6 +785,10 @@ struct test_cpy : public test_case {
return VARS_TO_STR3(type_src, type_dst, ne); return VARS_TO_STR3(type_src, type_dst, ne);
} }
double max_nmse_err() override {
return 1e-6;
}
size_t op_size(ggml_tensor * t) override { size_t op_size(ggml_tensor * t) override {
return ggml_nbytes(t) + ggml_nbytes(t->src[0]); return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
} }

View file

@ -7,11 +7,16 @@
#include "ggml.h" #include "ggml.h"
#include "llama.h" #include "llama.h"
#include "grammar-parser.h" #include "grammar-parser.h"
#include "json-schema-to-grammar.h"
#include "unicode.h" #include "unicode.h"
#include <cassert> #include <cassert>
#include <string> #include <string>
#include <vector> #include <vector>
using json = nlohmann::ordered_json;
//#define INCLUDE_FAILING_TESTS 1
static llama_grammar* build_grammar(const std::string & grammar_str) { static llama_grammar* build_grammar(const std::string & grammar_str) {
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str()); auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
@ -65,8 +70,8 @@ static bool match_string(const std::string & input, llama_grammar* grammar) {
return false; return false;
} }
static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) { static void test(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
fprintf(stderr, "⚫ Testing %s. Grammar: %s\n", test_desc.c_str(), grammar_str.c_str()); fprintf(stderr, "⚫ Testing %s\n%s\n", test_desc.c_str(), grammar_str.c_str());
fflush(stderr); fflush(stderr);
auto grammar = build_grammar(grammar_str); auto grammar = build_grammar(grammar_str);
@ -85,6 +90,23 @@ static void test_grammar(const std::string & test_desc, const std::string & gram
if (!matched) { if (!matched) {
fprintf(stderr, "❌ (failed to match)\n"); fprintf(stderr, "❌ (failed to match)\n");
// DEBUG: Write strings to files so that we can analyze more easily with gbnf-validator program to see exactly where things failed.
// DEBUG: Write the grammar_str to test-grammar-integration.grammar.gbnf
FILE* grammar_file = fopen("test-grammar-integration.grammar.gbnf", "w");
if (grammar_file) {
fprintf(grammar_file, "%s", grammar_str.c_str());
fclose(grammar_file);
}
// DEBUG: Write the test string to test-grammar-integration.string.txt
FILE* string_file = fopen("test-grammar-integration.string.txt", "w");
if (string_file) {
fprintf(string_file, "%s", test_string.c_str());
fclose(string_file);
}
fprintf(stderr, "\n NOTE: Debug grammar file generated. To analyze this failure in detail, run the following command: ./llama-gbnf-validator test-grammar-integration.grammar.gbnf test-grammar-integration.string.txt\n\n");
} else { } else {
fprintf(stdout, "✅︎\n"); fprintf(stdout, "✅︎\n");
} }
@ -118,6 +140,12 @@ static void test_grammar(const std::string & test_desc, const std::string & gram
// Clean up allocated memory // Clean up allocated memory
llama_grammar_free(grammar); llama_grammar_free(grammar);
} }
static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
test(test_desc + ". Grammar: " + grammar_str, grammar_str, passing_strings, failing_strings);
}
static void test_schema(const std::string & test_desc, const std::string & schema_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
test(test_desc + ". Schema: " + schema_str, json_schema_to_grammar(json::parse(schema_str)), passing_strings, failing_strings);
}
static void test_simple_grammar() { static void test_simple_grammar() {
// Test case for a simple grammar // Test case for a simple grammar
@ -400,10 +428,11 @@ static void test_quantifiers() {
static void test_failure_missing_root() { static void test_failure_missing_root() {
fprintf(stderr, "⚫ Testing missing root node:\n"); fprintf(stderr, "⚫ Testing missing root node:\n");
// Test case for a grammar that is missing a root rule // Test case for a grammar that is missing a root rule
const std::string grammar_str = R"""(rot ::= expr const std::string grammar_str = R"""(
expr ::= term ("+" term)* rot ::= expr
term ::= number expr ::= term ("+" term)*
number ::= [0-9]+)"""; term ::= number
number ::= [0-9]+)""";
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str()); grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str());
@ -420,10 +449,10 @@ static void test_failure_missing_reference() {
// Test case for a grammar that is missing a referenced rule // Test case for a grammar that is missing a referenced rule
const std::string grammar_str = const std::string grammar_str =
R"""(root ::= expr R"""(root ::= expr
expr ::= term ("+" term)* expr ::= term ("+" term)*
term ::= numero term ::= numero
number ::= [0-9]+)"""; number ::= [0-9]+)""";
fprintf(stderr, " Expected error: "); fprintf(stderr, " Expected error: ");
@ -445,29 +474,558 @@ static void test_failure_left_recursion() {
// Test more complicated left recursion detection // Test more complicated left recursion detection
const std::string medium_str = R"""( const std::string medium_str = R"""(
root ::= asdf root ::= asdf
asdf ::= "a" | asdf "a" asdf ::= "a" | asdf "a"
)"""; )""";
assert(test_build_grammar_fails(medium_str)); assert(test_build_grammar_fails(medium_str));
// Test even more complicated left recursion detection // Test even more complicated left recursion detection
const std::string hard_str = R"""( const std::string hard_str = R"""(
root ::= asdf root ::= asdf
asdf ::= "a" | foo "b" asdf ::= "a" | foo "b"
foo ::= "c" | asdf "d" | "e")"""; foo ::= "c" | asdf "d" | "e")""";
assert(test_build_grammar_fails(hard_str)); assert(test_build_grammar_fails(hard_str));
// Test yet even more complicated left recursion detection // Test yet even more complicated left recursion detection
const std::string hardest_str = R"""( const std::string hardest_str = R"""(
root ::= asdf root ::= asdf
asdf ::= "a" | foo "b" asdf ::= "a" | foo "b"
foo ::= "c" | empty asdf "d" | "e" foo ::= "c" | empty asdf "d" | "e"
empty ::= "blah" | )"""; empty ::= "blah" | )""";
assert(test_build_grammar_fails(hardest_str)); assert(test_build_grammar_fails(hardest_str));
fprintf(stderr, " ✅︎ Passed\n"); fprintf(stderr, " ✅︎ Passed\n");
} }
static void test_json_schema() {
// Note that this is similar to the regular grammar tests,
// but we convert each json schema to a grammar before parsing.
// Otherwise, this test structure is the same.
test_schema(
"empty schema (object)",
// Schema
R"""(
{}
)""",
// Passing strings
{
"{}",
R"""({"foo": "bar"})""",
},
// Failing strings
{
"",
"[]",
"null",
"\"\"",
"true",
}
);
test_schema(
"exotic formats (list)",
// Schema
R"""(
{
"items": [
{ "format": "date" },
{ "format": "uuid" },
{ "format": "time" },
{ "format": "date-time" }
]
}
)""",
// Passing strings
{
// "{}", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
// "[]", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
R"""(["2012-04-23", "12345678-1234-1234-1234-1234567890ab", "18:25:43.511Z", "2012-04-23T18:25:43.511Z"])""",
//R"""(["2012-04-23","12345678-1234-1234-1234-1234567890ab"])""", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
//R"""({"foo": "bar"})""", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
},
// Failing strings
{
R"""(["foo", "bar"])""",
R"""(["12345678-1234-1234-1234-1234567890ab"])""",
}
);
test_schema(
"string",
// Schema
R"""(
{
"type": "string"
}
)""",
// Passing strings
{
"\"foo\"",
"\"bar\"",
"\"\"",
},
// Failing strings
{
"{}",
"\"foo\": \"bar\"",
}
);
test_schema(
"string w/ min length 1",
// Schema
R"""(
{
"type": "string",
"minLength": 1
}
)""",
// Passing strings
{
"\"foo\"",
"\"bar\"",
},
// Failing strings
{
"\"\"",
"{}",
"\"foo\": \"bar\"",
}
);
test_schema(
"string w/ min length 3",
// Schema
R"""(
{
"type": "string",
"minLength": 3
}
)""",
// Passing strings
{
"\"foo\"",
"\"bar\"",
"\"foobar\"",
},
// Failing strings
{
"\"\"",
"\"f\"",
"\"fo\"",
}
);
test_schema(
"string w/ max length",
// Schema
R"""(
{
"type": "string",
"maxLength": 3
}
)""",
// Passing strings
{
"\"foo\"",
"\"bar\"",
"\"\"",
"\"f\"",
"\"fo\"",
},
// Failing strings
{
"\"foobar\"",
}
);
test_schema(
"string w/ min & max length",
// Schema
R"""(
{
"type": "string",
"minLength": 1,
"maxLength": 4
}
)""",
// Passing strings
{
"\"foo\"",
"\"bar\"",
"\"f\"",
"\"barf\"",
},
// Failing strings
{
"\"\"",
"\"barfo\"",
"\"foobar\"",
}
);
test_schema(
"boolean",
// Schema
R"""(
{
"type": "boolean"
}
)""",
// Passing strings
{
"true",
"false",
},
// Failing strings
{
"\"\"",
"\"true\"",
"True",
"FALSE",
}
);
test_schema(
"integer",
// Schema
R"""(
{
"type": "integer"
}
)""",
// Passing strings
{
"0",
"12345",
"1234567890123456"
},
// Failing strings
{
"",
"01",
"007",
"12345678901234567"
}
);
test_schema(
"string const",
// Schema
R"""(
{
"const": "foo"
}
)""",
// Passing strings
{
"\"foo\"",
},
// Failing strings
{
"foo",
"\"bar\"",
}
);
test_schema(
"non-string const",
// Schema
R"""(
{
"const": true
}
)""",
// Passing strings
{
"true",
},
// Failing strings
{
"",
"foo",
"\"true\"",
}
);
test_schema(
"non-string const",
// Schema
R"""(
{
"enum": ["red", "amber", "green", null, 42, ["foo"]]
}
)""",
// Passing strings
{
"\"red\"",
"null",
"42",
"[\"foo\"]",
},
// Failing strings
{
"",
"420",
"true",
"foo",
}
);
test_schema(
"min+max items",
// Schema
R"""(
{
"items": {
"type": ["number", "integer"]
},
"minItems": 3,
"maxItems": 5
}
)""",
// Passing strings
{
"[1, 2, 3]",
"[1, 2, 3, 4]",
"[1, 2, 3, 4, 5]",
},
// Failing strings
{
"[1, 2]",
"[1, 2, 3, 4, 5, 6]",
"1"
}
);
// Properties (from: https://json-schema.org/understanding-json-schema/reference/object#properties)
test_schema(
"object properties",
// Schema
R"""(
{
"type": "object",
"properties": {
"number": { "type": "number" },
"street_name": { "type": "string" },
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
}
}
)""",
// Passing strings
{
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue"})""",
// "By default, leaving out properties is valid"
R"""({ "street_name": "Pennsylvania" })""",
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
// "By extension, even an empty object is valid"
R"""({})""",
// "By default, providing additional properties is valid"
#ifdef INCLUDE_FAILING_TESTS
// TODO: The following should pass, but currently FAILS. Additional properties should be permitted by default.
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""",
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
#endif
},
// Failing strings
{
// Change datatype from number to string
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
// Reorder properties
R"""({ "street_name": "Pennsylvania", "number": 1600 })""",
// Reorder properties
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
}
);
// Properties (from: https://json-schema.org/understanding-json-schema/reference/object#properties)
test_schema(
"object properties, additionalProperties: true",
// Schema
R"""(
{
"type": "object",
"properties": {
"number": { "type": "number" },
"street_name": { "type": "string" },
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
},
"additionalProperties": true
}
)""",
// Passing strings
{
// "By extension, even an empty object is valid"
R"""({})""",
#ifdef INCLUDE_FAILING_TESTS
// TODO: Following line should pass and doesn't
R"""({"number":1600,"street_name":"Pennsylvania","street_type":"Avenue"})""",
// "By default, leaving out properties is valid"
// TODO: Following line should pass and doesn't
R"""({ "street_name": "Pennsylvania" })""",
// TODO: Following line should pass and doesn't
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
// "By default, providing additional properties is valid"
// TODO: The following should pass, but currently FAILS. Additional properties should be permitted by default.
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""",
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
#endif
},
// Failing strings
{
// Change datatype from number to string
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
// Reorder properties
R"""({ "street_name": "Pennsylvania", "number": 1600, "street_type":"Avenue"})""",
}
);
// Additional properties: false
test_schema(
"required + optional props each in original order",
// Schema
R"""(
{
"type": "object",
"properties": {
"number": { "type": "number" },
"street_name": { "type": "string" },
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
},
"additionalProperties": false
}
)""",
// Passing strings
{
R"""({ "street_name": "Pennsylvania" })""",
R"""({ "number": 1600, "street_type":"Avenue"})""",
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue"})""",
#ifdef INCLUDE_FAILING_TESTS
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
#endif
},
// Failing strings
{
// Reorder properties
R"""({ "street_type": "Avenue", "number": 1600 })""",
// Add "direction"
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue", "direction": "NW" })""",
}
);
test_schema(
"required + optional props each in original order",
// Schema
R"""(
{
"properties": {
"b": {"type": "string"},
"a": {"type": "string"},
"d": {"type": "string"},
"c": {"type": "string"}
},
"required": ["a", "b"],
"additionalProperties": false
}
)""",
// Passing strings
{
R"""({"b": "foo", "a": "bar"})""",
R"""({"b":"foo","a":"bar","d":"qux"})""",
R"""({"b":"foo", "a":"bar", "d":"qux", "c":"baz"})""",
},
// Failing strings
{
R"""({"a": "foo", "b": "bar"})""",
R"""({"b": "bar"})""",
R"""({"a": "foo", "c": "baz"})""",
R"""({"a":"foo", "b":"bar", "c":"baz", "d":"qux"})""",
}
);
// NOTE: Example from https://json-schema.org/learn/getting-started-step-by-step#define-required-properties
test_schema(
"required props",
// Schema
R"""(
{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://example.com/product.schema.json",
"title": "Product",
"description": "A product from Acme's catalog",
"type": "object",
"properties": {
"productId": {
"description": "The unique identifier for a product",
"type": "integer"
},
"productName": {
"description": "Name of the product",
"type": "string"
},
"price": {
"description": "The price of the product",
"type": "number",
"exclusiveMinimum": 0
},
"tags": {
"description": "Tags for the product",
"type": "array",
"items": {
"type": "string"
},
"minItems": 1,
"uniqueItems": true
},
"dimensions": {
"type": "object",
"properties": {
"length": {
"type": "number"
},
"width": {
"type": "number"
},
"height": {
"type": "number"
}
},
"required": [ "length", "width", "height" ]
}
},
"required": [ "productId", "productName", "price" ]
}
)""",
// Passing strings
{
R"""({"productId": 1, "productName": "A green door", "price": 12.50})""",
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green"]})""",
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green"], "dimensions": {"length": 785, "width": 250.5, "height": -0.359}})""",
},
// Failing strings
{
R"""({})""", // Missing all required properties
R"""({"productName": "A green door", "price": 12.50, "productId": 1})""", // Out of order properties
// TODO: The following line should fail, but currently it passes. `exclusiveMinimum` is not supported, as it would likely be too difficult to implement.
// Perhaps special checks for minimum and maximum values of 0 could be added (since that's relatively easy to do with grammars), but anything else would likely be too complex.
// R"""({"productId": 1, "productName": "A green door", "price": -12.50})""",
R"""({"productId": 1, "productName": "A green door"})""", // Missing required property (price)
R"""({"productName": "A green door", "price": 12.50})""", // Missing required property (productId)
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": []})""", // tags is empty, but minItems is 1
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "dimensions": {"length": 785, "width": 250.5, "height": -0.359}, "tags": ["home", "green"]})""", // Tags and dimensions are out of order
// TODO: The following line should fail, but currently it passes. `uniqueItems` is not supported, as it would likely be too difficult to implement.
// R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green", "home"]})""",
}
);
}
int main() { int main() {
fprintf(stdout, "Running grammar integration tests...\n"); fprintf(stdout, "Running grammar integration tests...\n");
test_simple_grammar(); test_simple_grammar();
@ -477,6 +1035,7 @@ int main() {
test_failure_missing_root(); test_failure_missing_root();
test_failure_missing_reference(); test_failure_missing_reference();
test_failure_left_recursion(); test_failure_left_recursion();
test_json_schema();
fprintf(stdout, "All tests passed.\n"); fprintf(stdout, "All tests passed.\n");
return 0; return 0;
} }

View file

@ -596,6 +596,7 @@ std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & c
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) { std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
std::vector<uint32_t> result; std::vector<uint32_t> result;
result.reserve(utf8.size());
size_t offset = 0; size_t offset = 0;
while (offset < utf8.size()) { while (offset < utf8.size()) {
result.push_back(unicode_cpt_from_utf8(utf8, offset)); result.push_back(unicode_cpt_from_utf8(utf8, offset));

View file

@ -13,7 +13,7 @@ layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE]; shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() { void main() {
const uint row = gl_WorkGroupID.x; const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
const uint tid = gl_LocalInvocationID.x; const uint tid = gl_LocalInvocationID.x;
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;

View file

@ -7,7 +7,7 @@ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32]; shared FLOAT_TYPE tmp[32];
void main() { void main() {
const uint row = gl_WorkGroupID.x; const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);

View file

@ -7,7 +7,7 @@ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32]; shared FLOAT_TYPE tmp[32];
void main() { void main() {
const uint row = gl_WorkGroupID.x; const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);

View file

@ -7,7 +7,7 @@ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32]; shared FLOAT_TYPE tmp[32];
void main() { void main() {
const uint row = gl_WorkGroupID.x; const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);

View file

@ -7,7 +7,7 @@ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32]; shared FLOAT_TYPE tmp[32];
void main() { void main() {
const uint row = gl_WorkGroupID.x; const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);

View file

@ -7,7 +7,7 @@ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32]; shared FLOAT_TYPE tmp[32];
void main() { void main() {
const uint row = gl_WorkGroupID.x; const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);