New Feature:
1. Sum_Rows: fix cuda kernel overflow fix block shape error when nrows too big 2. Im2Col: Support Batch in cuda Support f32 to f32 both in cpu && cuda 3. DepthWiseConv: Support by Im2Col && MulMat 4. Pool_2d: Supoort avg pooling in cuda 5. HardSigmoid: Imp in cuda 6. HardSwish: Imp in cuda
This commit is contained in:
parent
26d607608d
commit
d89e0e09d7
5 changed files with 319 additions and 34 deletions
|
@ -111,17 +111,71 @@ llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 m
|
|||
llama_print_timings: total time = 34570.79 ms
|
||||
```
|
||||
|
||||
## Orin compile and run
|
||||
### compile
|
||||
```sh
|
||||
make LLAMA_CUBLAS=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
|
||||
```
|
||||
|
||||
### run on Orin
|
||||
### case 1
|
||||
**input**
|
||||
```sh
|
||||
./llava-cli \
|
||||
-m /data/local/tmp/ggml-model-q4_k.gguf \
|
||||
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
|
||||
--image /data/local/tmp/demo.jpeg \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:" \
|
||||
--n-gpu-layers 999
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
|
||||
encode_image_with_clip: image encoded in 296.62 ms by CLIP ( 2.06 ms per image patch)
|
||||
|
||||
Susan Wise Bauer
|
||||
|
||||
llama_print_timings: load time = 1067.64 ms
|
||||
llama_print_timings: sample time = 1.53 ms / 6 runs ( 0.25 ms per token, 3934.43 tokens per second)
|
||||
llama_print_timings: prompt eval time = 306.84 ms / 246 tokens ( 1.25 ms per token, 801.72 tokens per second)
|
||||
llama_print_timings: eval time = 91.50 ms / 6 runs ( 15.25 ms per token, 65.58 tokens per second)
|
||||
llama_print_timings: total time = 1352.63 ms / 252 tokens
|
||||
```
|
||||
|
||||
### case 2
|
||||
**input**
|
||||
```sh
|
||||
./llava-cli \
|
||||
-m /data/local/tmp/ggml-model-q4_k.gguf \
|
||||
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:" \
|
||||
--n-gpu-layers 999
|
||||
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image encoded in 302.15 ms by CLIP ( 2.10 ms per image patch)
|
||||
|
||||
The image features a cat lying in the grass.
|
||||
|
||||
llama_print_timings: load time = 1057.07 ms
|
||||
llama_print_timings: sample time = 3.27 ms / 11 runs ( 0.30 ms per token, 3360.83 tokens per second)
|
||||
llama_print_timings: prompt eval time = 213.60 ms / 232 tokens ( 0.92 ms per token, 1086.14 tokens per second)
|
||||
llama_print_timings: eval time = 166.65 ms / 11 runs ( 15.15 ms per token, 66.01 tokens per second)
|
||||
llama_print_timings: total time = 1365.47 ms / 243 tokens
|
||||
```
|
||||
|
||||
## Minor shortcomings
|
||||
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
|
||||
- [x] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
|
||||
- [ ] Optimize LDP projector performance
|
||||
|
||||
- Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`;
|
||||
- Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc.
|
||||
- [ ] run MobileVLM on `Jetson Orin`
|
||||
- [x] run MobileVLM on `Jetson Orin`
|
||||
- [ ] Support more model variants, such as `MobileVLM-3B`.
|
||||
|
||||
|
||||
|
|
160
ggml-cuda.cu
160
ggml-cuda.cu
|
@ -512,6 +512,8 @@ static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16
|
|||
#define CUDA_SILU_BLOCK_SIZE 256
|
||||
#define CUDA_TANH_BLOCK_SIZE 256
|
||||
#define CUDA_RELU_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||
#define CUDA_SQR_BLOCK_SIZE 256
|
||||
#define CUDA_CPY_BLOCK_SIZE 32
|
||||
#define CUDA_SCALE_BLOCK_SIZE 256
|
||||
|
@ -811,6 +813,24 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
|||
dst[i] = fmaxf(x[i], 0);
|
||||
}
|
||||
|
||||
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
||||
}
|
||||
|
||||
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
||||
}
|
||||
|
||||
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
if (i >= k) {
|
||||
|
@ -5656,12 +5676,14 @@ static __global__ void alibi_f32(const float * x, float * dst, const int ncols,
|
|||
}
|
||||
|
||||
static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
|
||||
const int row = blockIdx.y;
|
||||
const int row = blockIdx.x;
|
||||
const int col = threadIdx.x;
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int i = col; i < ncols; i += blockDim.x) {
|
||||
int i = col;
|
||||
while(i < ncols) {
|
||||
sum += x[row * ncols + i];
|
||||
i += blockDim.x;
|
||||
}
|
||||
|
||||
sum = warp_reduce_sum(sum);
|
||||
|
@ -5978,9 +6000,9 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
|
|||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||
}
|
||||
|
||||
static __global__ void im2col_f32_f16(
|
||||
const float * x, half * dst,
|
||||
int offset_delta, int IW, int IH, int OW, int KW, int KH, int pelements, int CHW,
|
||||
static __global__ void im2col_f32_f32(
|
||||
const float * x, float * dst, int batch_offset,
|
||||
int offset_delta, int IC, int IW, int IH, int OH, int OW, int KW, int KH, int pelements, int CHW,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||||
const int i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (i >= pelements) {
|
||||
|
@ -5993,17 +6015,55 @@ static __global__ void im2col_f32_f16(
|
|||
const int ky = (i - kd) / OW;
|
||||
const int ix = i % OW;
|
||||
|
||||
const int oh = blockIdx.y;
|
||||
const int batch = blockIdx.z / IC;
|
||||
const int ic = blockIdx.z % IC;
|
||||
|
||||
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
||||
const int64_t iih = blockIdx.y * s1 + ky * d1 - p1;
|
||||
const int64_t iih = oh * s1 + ky * d1 - p1;
|
||||
|
||||
const int64_t offset_dst =
|
||||
(blockIdx.y * OW + ix) * CHW +
|
||||
(blockIdx.z * (KW * KH) + ky * KW + kx);
|
||||
((batch * OH + oh) * OW + ix) * CHW +
|
||||
(ic * (KW * KH) + ky * KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = (0.0f);
|
||||
} else {
|
||||
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
|
||||
dst[offset_dst] = (x[offset_src + iih * IW + iiw]);
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void im2col_f32_f16(
|
||||
const float * x, half * dst, int batch_offset,
|
||||
int offset_delta, int IC, int IW, int IH, int OH, int OW, int KW, int KH, int pelements, int CHW,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||||
const int i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (i >= pelements) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int ksize = OW * (KH > 1 ? KW : 1);
|
||||
const int kx = i / ksize;
|
||||
const int kd = kx * ksize;
|
||||
const int ky = (i - kd) / OW;
|
||||
const int ix = i % OW;
|
||||
|
||||
const int oh = blockIdx.y;
|
||||
const int batch = blockIdx.z / IC;
|
||||
const int ic = blockIdx.z % IC;
|
||||
|
||||
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
||||
const int64_t iih = oh * s1 + ky * d1 - p1;
|
||||
|
||||
const int64_t offset_dst =
|
||||
((batch * OH + oh) * OW + ix) * CHW +
|
||||
(ic * (KW * KH) + ky * KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = __float2half(0.0f);
|
||||
} else {
|
||||
const int64_t offset_src = blockIdx.z * offset_delta;
|
||||
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
|
||||
dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
|
||||
}
|
||||
}
|
||||
|
@ -6221,6 +6281,16 @@ static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
|
|||
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
||||
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
|
||||
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
||||
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
|
||||
|
@ -7276,7 +7346,7 @@ static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const
|
|||
|
||||
static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
}
|
||||
|
||||
|
@ -7388,14 +7458,24 @@ static void soft_max_f32_cuda(const float * x, const float * y, float * dst, con
|
|||
}
|
||||
}
|
||||
|
||||
static void im2col_f32_f16_cuda(const float* x, half* dst,
|
||||
static void im2col_f32_f32_cuda(const float* x, float* dst,
|
||||
int IW, int IH, int OW, int OH, int KW, int KH, int IC,
|
||||
int offset_delta,
|
||||
int batch, int batch_offset, int offset_delta,
|
||||
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||
const int parallel_elements = OW * KW * KH;
|
||||
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
||||
dim3 block_nums(num_blocks, OH, IC);
|
||||
im2col_f32_f16<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, offset_delta, IW, IH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||
dim3 block_nums(num_blocks, OH, batch * IC);
|
||||
im2col_f32_f32<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||
}
|
||||
|
||||
static void im2col_f32_f16_cuda(const float* x, half* dst,
|
||||
int IW, int IH, int OW, int OH, int KW, int KH, int IC,
|
||||
int batch, int batch_offset, int offset_delta,
|
||||
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||
const int parallel_elements = OW * KW * KH;
|
||||
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
||||
dim3 block_nums(num_blocks, OH, batch * IC);
|
||||
im2col_f32_f16<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||
}
|
||||
|
||||
// buffer pool for cuda
|
||||
|
@ -7980,6 +8060,34 @@ static void ggml_cuda_op_relu(
|
|||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_hardsigmoid(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
hardsigmoid_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_hardswish(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
hardswish_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_leaky_relu(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
|
||||
|
@ -8612,7 +8720,7 @@ static void ggml_cuda_op_im2col(
|
|||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||||
|
@ -8634,8 +8742,13 @@ static void ggml_cuda_op_im2col(
|
|||
const int64_t OW = dst->ne[1];
|
||||
|
||||
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||||
const int64_t batch = src1->ne[3];
|
||||
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
|
||||
|
||||
im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
if(dst->type == GGML_TYPE_F16)
|
||||
im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
else
|
||||
im2col_f32_f32_cuda(src1_dd, (float*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
|
||||
(void) src0;
|
||||
(void) src0_dd;
|
||||
|
@ -9231,6 +9344,13 @@ static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, g
|
|||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
|
||||
}
|
||||
|
||||
static void ggml_cuda_hardsigmoid(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardsigmoid);
|
||||
}
|
||||
|
||||
static void ggml_cuda_hardswish(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardswish);
|
||||
}
|
||||
static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
|
||||
}
|
||||
|
@ -10109,6 +10229,12 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||
case GGML_UNARY_OP_RELU:
|
||||
func = ggml_cuda_relu;
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
func = ggml_cuda_hardsigmoid;
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
func = ggml_cuda_hardswish;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
@ -10917,6 +11043,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
return true;
|
||||
|
|
130
ggml.c
130
ggml.c
|
@ -5296,7 +5296,7 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
|
|||
int s0,
|
||||
int p0,
|
||||
int d0) {
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
|
||||
|
||||
struct ggml_tensor * result =
|
||||
ggml_mul_mat(ctx,
|
||||
|
@ -5374,16 +5374,15 @@ struct ggml_tensor * ggml_conv_depthwise_2d(
|
|||
int p1,
|
||||
int d0,
|
||||
int d1) {
|
||||
|
||||
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
|
||||
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
|
||||
s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW]
|
||||
|
||||
struct ggml_tensor * result =
|
||||
ggml_mul_mat(ctx,
|
||||
ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
|
||||
ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
|
||||
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
|
||||
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
|
||||
|
||||
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
|
||||
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
|
||||
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
|
||||
|
||||
return result;
|
||||
|
@ -5404,7 +5403,8 @@ struct ggml_tensor * ggml_im2col(
|
|||
int p1,
|
||||
int d0,
|
||||
int d1,
|
||||
bool is_2D) {
|
||||
bool is_2D,
|
||||
enum ggml_type dst_type) {
|
||||
|
||||
if(is_2D) {
|
||||
GGML_ASSERT(a->ne[2] == b->ne[2]);
|
||||
|
@ -5428,7 +5428,7 @@ struct ggml_tensor * ggml_im2col(
|
|||
is_2D ? b->ne[3] : 1,
|
||||
};
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
|
||||
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
||||
|
@ -5453,7 +5453,7 @@ struct ggml_tensor * ggml_conv_2d(
|
|||
int p1,
|
||||
int d0,
|
||||
int d1) {
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
|
||||
|
||||
struct ggml_tensor * result =
|
||||
ggml_mul_mat(ctx,
|
||||
|
@ -5579,12 +5579,28 @@ struct ggml_tensor * ggml_pool_2d(
|
|||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result;
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
if(!(op == GGML_OP_POOL_AVG)) {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
const int64_t ne[4] = {k0, k1, 1, a->ne[2]};
|
||||
struct ggml_tensor * b = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
|
||||
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, b, new_a,
|
||||
s0, s1, p0, p1, 1, 1, true, GGML_TYPE_F32); // [N * IC, OH, OW, KH * KW]
|
||||
|
||||
result = ggml_sum_rows(ctx, im2col);
|
||||
result = ggml_scale(ctx, result, 1. / (k0 * k1));
|
||||
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[2], a->ne[3]);
|
||||
#else
|
||||
const int64_t ne[3] = {
|
||||
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
|
||||
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
|
||||
a->ne[2],
|
||||
};
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||||
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||||
|
||||
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
@ -5592,7 +5608,7 @@ struct ggml_tensor * ggml_pool_2d(
|
|||
result->op = GGML_OP_POOL_2D;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -12416,6 +12432,92 @@ static void ggml_compute_forward_conv_transpose_1d(
|
|||
}
|
||||
}
|
||||
|
||||
// src0: kernel [OC, IC, KH, KW]
|
||||
// src1: image [N, IC, IH, IW]
|
||||
// dst: result [N, OH, OW, IC*KH*KW]
|
||||
static void ggml_compute_forward_im2col_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
int64_t t0 = ggml_perf_time_us();
|
||||
UNUSED(t0);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||||
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t N = is_2D ? ne13 : ne12;
|
||||
const int64_t IC = is_2D ? ne12 : ne11;
|
||||
const int64_t IH = is_2D ? ne11 : 1;
|
||||
const int64_t IW = ne10;
|
||||
|
||||
const int64_t KH = is_2D ? ne01 : 1;
|
||||
const int64_t KW = ne00;
|
||||
|
||||
const int64_t OH = is_2D ? ne2 : 1;
|
||||
const int64_t OW = ne1;
|
||||
|
||||
int ofs0 = is_2D ? nb13 : nb12;
|
||||
int ofs1 = is_2D ? nb12 : nb11;
|
||||
|
||||
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
||||
{
|
||||
float * const wdata = (float *) dst->data;
|
||||
|
||||
for (int64_t in = 0; in < N; in++) {
|
||||
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
|
||||
for (int64_t iow = 0; iow < OW; iow++) {
|
||||
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||||
|
||||
// micro kernel
|
||||
float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
||||
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
|
||||
|
||||
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
|
||||
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||||
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
||||
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
|
||||
} else {
|
||||
dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// src0: kernel [OC, IC, KH, KW]
|
||||
// src1: image [N, IC, IH, IW]
|
||||
// dst: result [N, OH, OW, IC*KH*KW]
|
||||
|
@ -12506,14 +12608,14 @@ static void ggml_compute_forward_im2col(
|
|||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
switch (src0->type) {
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_im2col_f16(params, src0, src1, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
ggml_compute_forward_im2col_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
|
|
3
ggml.h
3
ggml.h
|
@ -1493,7 +1493,8 @@ extern "C" {
|
|||
int p1,
|
||||
int d0,
|
||||
int d1,
|
||||
bool is_2D);
|
||||
bool is_2D,
|
||||
enum ggml_type dst_type);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
|
||||
struct ggml_context * ctx,
|
||||
|
|
|
@ -1174,7 +1174,7 @@ struct test_im2col : public test_case {
|
|||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
|
||||
ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
|
||||
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D);
|
||||
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, GGML_TYPE_F16);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue