Fix formatting

This commit is contained in:
Kunnis 2024-05-14 17:15:47 -05:00
parent bd80601ea8
commit d9ba30a204

55
ggml.c
View file

@ -2435,7 +2435,6 @@ static void ggml_setup_op_has_task_pass(void) {
} }
} }
// //
// NUMA support // NUMA support
// //
@ -11773,16 +11772,16 @@ static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
#endif #endif
static void ggml_compute_forward_mul_mat_one_chunk( static void ggml_compute_forward_mul_mat_one_chunk(
const struct ggml_compute_params* params, const struct ggml_compute_params * params,
struct ggml_tensor* dst, struct ggml_tensor * dst,
const int64_t num_rows_per_vec_dot, const int64_t num_rows_per_vec_dot,
const int64_t ir0_start, const int64_t ir0_start,
const int64_t ir0_end, const int64_t ir0_end,
const int64_t ir1_start, const int64_t ir1_start,
const int64_t ir1_end) { const int64_t ir1_end) {
const struct ggml_tensor* src0 = dst->src[0]; const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor* src1 = dst->src[1]; const struct ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS GGML_TENSOR_BINARY_OP_LOCALS
@ -11804,7 +11803,7 @@ static void ggml_compute_forward_mul_mat_one_chunk(
return; return;
} }
const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10); const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(ne12 % ne02 == 0); assert(ne12 % ne02 == 0);
@ -12011,7 +12010,7 @@ UseGgmlGemm1:;
if (ith != 0) { if (ith != 0) {
return; return;
} }
//Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
atomic_store(&state->shared->current_chunk, nth); atomic_store(&state->shared->current_chunk, nth);
if (src1->type != vec_dot_type) { if (src1->type != vec_dot_type) {
char * wdata = params->wdata; char * wdata = params->wdata;
@ -12067,10 +12066,10 @@ UseGgmlGemm2:;
UNUSED(chunks_executed); UNUSED(chunks_executed);
#endif #endif
//This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers) // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
const int64_t nr0 = ne0; const int64_t nr0 = ne0;
//This is the size of the rest of the dimensions of the result // This is the size of the rest of the dimensions of the result
const int64_t nr1 = ne1 * ne2 * ne3; const int64_t nr1 = ne1 * ne2 * ne3;
// dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
@ -12081,24 +12080,24 @@ UseGgmlGemm2:;
num_rows_per_vec_dot = 1; num_rows_per_vec_dot = 1;
} }
//Now select a reasonable chunk size. // Now select a reasonable chunk size.
int chunk_size = 16; int chunk_size = 16;
//We need to step up the size if it's small // We need to step up the size if it's small
if (nr0 == 1 || nr1 == 1) if (nr0 == 1 || nr1 == 1) {
chunk_size = 64; chunk_size = 64;
}
// distribute the work across the inner or outer loop based on which one is larger // distribute the work across the inner or outer loop based on which one is larger
//The number of chunks in the 0/1 dim. // The number of chunks in the 0/1 dim.
//CEIL(nr0/chunk_size) // CEIL(nr0/chunk_size)
int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size; int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size; int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
//If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
// Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915 // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
// In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
{
// distribute the thread work across the inner or outer loop based on which one is larger // distribute the thread work across the inner or outer loop based on which one is larger
nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
@ -12114,8 +12113,7 @@ UseGgmlGemm2:;
//The first chunk comes from our thread_id, the rest will get auto-assigned. //The first chunk comes from our thread_id, the rest will get auto-assigned.
int current_chunk = ith; int current_chunk = ith;
while (current_chunk < nchunk0 * nchunk1) while (current_chunk < nchunk0 * nchunk1) {
{
const int64_t ith0 = current_chunk % nchunk0; const int64_t ith0 = current_chunk % nchunk0;
const int64_t ith1 = current_chunk / nchunk0; const int64_t ith1 = current_chunk / nchunk0;
@ -12131,8 +12129,9 @@ UseGgmlGemm2:;
chunks_executed++; chunks_executed++;
#endif #endif
if (nth >= nchunk0 * nchunk1) if (nth >= nchunk0 * nchunk1) {
break; break;
}
current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1); current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
} }
@ -19652,17 +19651,17 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
return n_tasks; return n_tasks;
} }
static void ggml_graph_compute_thread_sync_node(int* node_n, struct ggml_compute_state* state, const bool do_yield) { static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
// wait for other threads to finish // wait for other threads to finish
const int last_node_n = *node_n; const int last_node_n = * node_n;
while (true) { while (true) {
if (do_yield) { if (do_yield) {
sched_yield(); sched_yield();
} }
*node_n = atomic_load(&state->shared->node_n); * node_n = atomic_load(&state->shared->node_n);
if (*node_n != last_node_n) break; if (* node_n != last_node_n) break;
#if defined(__SSE3__) #if defined(__SSE3__)
//Tell the processor we're spinning. It's a processor hint for spinlocks. //Tell the processor we're spinning. It's a processor hint for spinlocks.
_mm_pause(); _mm_pause();
@ -19670,17 +19669,17 @@ static void ggml_graph_compute_thread_sync_node(int* node_n, struct ggml_compute
} }
} }
static void ggml_graph_compute_thread_sync_task(int* task_phase, struct ggml_compute_state* state, const bool do_yield) { static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
// wait for other threads to finish // wait for other threads to finish
const int last_task_phase = *task_phase; const int last_task_phase = * task_phase;
while (true) { while (true) {
if (do_yield) { if (do_yield) {
sched_yield(); sched_yield();
} }
*task_phase = atomic_load(&state->shared->node_task); * task_phase = atomic_load(&state->shared->node_task);
if (*task_phase != last_task_phase) break; if (* task_phase != last_task_phase) break;
#if defined(__SSE3__) #if defined(__SSE3__)
//Tell the processor we're spinning. It's a processor hint for spinlocks. //Tell the processor we're spinning. It's a processor hint for spinlocks.
_mm_pause(); _mm_pause();