metal : clean-up stuff, fix typos
This commit is contained in:
parent
b252acbcb6
commit
db3db9e774
3 changed files with 14 additions and 29 deletions
|
@ -1,4 +1,4 @@
|
|||
// Evaluate a statically export ggml computation graph with Metal
|
||||
// Evaluate a statically exported ggml computation graph with Metal
|
||||
//
|
||||
// - First, export a LLaMA graph:
|
||||
//
|
||||
|
|
4
ggml.c
4
ggml.c
|
@ -15049,7 +15049,7 @@ struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context **
|
|||
|
||||
// create the tensor
|
||||
// "view" operations are handled differently
|
||||
// TODO: handle inplac ops - currentl a copy is always made
|
||||
// TODO: handle inplace ops - currently a copy is always made
|
||||
|
||||
struct ggml_tensor * tensor = NULL;
|
||||
|
||||
|
@ -15084,10 +15084,8 @@ struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context **
|
|||
} break;
|
||||
}
|
||||
|
||||
|
||||
memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
|
||||
|
||||
// TODO: double-check this is needed
|
||||
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
||||
tensor->nb[j] = nb[j];
|
||||
}
|
||||
|
|
37
llama.cpp
37
llama.cpp
|
@ -1201,7 +1201,7 @@ static bool llama_model_load(
|
|||
// - tokens: new batch of tokens to process
|
||||
// - n_past: the context size so far
|
||||
// - n_threads: number of threads to use
|
||||
// - cgraph_fname: filename of the exported computation graph (TODO: TMP!!!)
|
||||
// - cgraph_fname: filename of the exported computation graph
|
||||
//
|
||||
static bool llama_eval_internal(
|
||||
llama_context & lctx,
|
||||
|
@ -1256,7 +1256,7 @@ static bool llama_eval_internal(
|
|||
memcpy(embd->data, tokens, N*ggml_element_size(embd));
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (lctx.ctx_metal) {
|
||||
if (lctx.ctx_metal && N == 1) {
|
||||
ggml_metal_set_tensor(lctx.ctx_metal, embd);
|
||||
}
|
||||
#endif
|
||||
|
@ -1279,18 +1279,10 @@ static bool llama_eval_internal(
|
|||
|
||||
// self-attention
|
||||
{
|
||||
//auto * x = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
//struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, x, n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
|
||||
struct ggml_tensor * Qpre = ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N);
|
||||
struct ggml_tensor * Kpre = ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N);
|
||||
ggml_set_name(Qpre, "Qpre");
|
||||
ggml_set_name(Kpre, "Kpre");
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, Qpre, n_past, n_rot, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, Kpre, n_past, n_rot, 0);
|
||||
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
||||
ggml_set_name(Qcur, "Qcur");
|
||||
ggml_set_name(Kcur, "Kcur");
|
||||
|
||||
|
@ -1305,9 +1297,6 @@ static bool llama_eval_internal(
|
|||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
|
||||
|
||||
ggml_set_name(k, "k");
|
||||
ggml_set_name(v, "v");
|
||||
|
||||
// important: storing RoPE-ed version of K in the KV cache!
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
||||
|
@ -2341,21 +2330,19 @@ struct llama_context * llama_init_from_file(
|
|||
#ifdef GGML_USE_METAL
|
||||
if (params.n_gpu_layers > 0) {
|
||||
// this allocates all Metal resources and memory buffers
|
||||
ctx->ctx_metal = ggml_metal_init();
|
||||
|
||||
if (params.use_mmap) {
|
||||
ctx->ctx_metal = ggml_metal_init();
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "data", ctx->model.mapping->addr, ctx->model.mapping->size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "data", ctx->model.mapping->addr, ctx->model.mapping->size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size);
|
||||
} else {
|
||||
ctx->ctx_metal = ggml_metal_init();
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "data", ggml_get_mem_buffer(ctx->model.ctx), ggml_get_mem_size(ctx->model.ctx));
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size);
|
||||
}
|
||||
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size);
|
||||
ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue