Merge branch 'master' into compilade/imatrix-batched-chunks

This commit is contained in:
Francis Couture-Harpin 2025-02-09 12:06:15 -05:00
commit db502ddd0e
762 changed files with 149462 additions and 91773 deletions

View file

@ -64,20 +64,33 @@ class Keys:
BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
BASE_MODEL_VERSION = "general.base_model.{id}.version"
BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
BASE_MODEL_DESCRIPTION = "general.base_model.{id}.description"
BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
BASE_MODEL_DOI = "general.base_model.{id}.doi"
BASE_MODEL_UUID = "general.base_model.{id}.uuid"
BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
# Dataset Source
DATASET_COUNT = "general.dataset.count"
DATASET_NAME = "general.dataset.{id}.name"
DATASET_AUTHOR = "general.dataset.{id}.author"
DATASET_VERSION = "general.dataset.{id}.version"
DATASET_ORGANIZATION = "general.dataset.{id}.organization"
DATASET_DESCRIPTION = "general.dataset.{id}.description"
DATASET_URL = "general.dataset.{id}.url" # Model Website/Paper
DATASET_DOI = "general.dataset.{id}.doi"
DATASET_UUID = "general.dataset.{id}.uuid"
DATASET_REPO_URL = "general.dataset.{id}.repo_url" # Model Source Repository (git/svn/etc...)
# Array based KV stores
TAGS = "general.tags"
LANGUAGES = "general.languages"
DATASETS = "general.datasets"
class LLM:
VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length"
FEATURES_LENGTH = "{arch}.features_length"
BLOCK_COUNT = "{arch}.block_count"
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
@ -89,14 +102,20 @@ class Keys:
EXPERT_USED_COUNT = "{arch}.expert_used_count"
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm"
EXPERT_GATING_FUNC = "{arch}.expert_gating_func"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
SWIN_NORM = "{arch}.swin_norm"
RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
RESIDUAL_SCALE = "{arch}.residual_scale"
EMBEDDING_SCALE = "{arch}.embedding_scale"
TOKEN_SHIFT_COUNT = "{arch}.token_shift_count"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@ -107,14 +126,18 @@ class Keys:
VALUE_LENGTH = "{arch}.attention.value_length"
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
GROUPNORM_EPS = "{arch}.attention.group_norm_epsilon"
GROUPNORM_GROUPS = "{arch}.attention.group_norm_groups"
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
SLIDING_WINDOW = "{arch}.attention.sliding_window"
SCALE = "{arch}.attention.scale"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
FREQ_BASE = "{arch}.rope.freq_base"
SCALING_TYPE = "{arch}.rope.scaling.type"
SCALING_FACTOR = "{arch}.rope.scaling.factor"
@ -138,6 +161,14 @@ class Keys:
class WKV:
HEAD_SIZE = "{arch}.wkv.head_size"
class PosNet:
EMBEDDING_LENGTH = "{arch}.posnet.embedding_length"
BLOCK_COUNT = "{arch}.posnet.block_count"
class ConvNext:
EMBEDDING_LENGTH = "{arch}.convnext.embedding_length"
BLOCK_COUNT = "{arch}.convnext.block_count"
class Tokenizer:
MODEL = "tokenizer.ggml.model"
PRE = "tokenizer.ggml.pre"
@ -148,10 +179,11 @@ class Keys:
MERGES = "tokenizer.ggml.merges"
BOS_ID = "tokenizer.ggml.bos_token_id"
EOS_ID = "tokenizer.ggml.eos_token_id"
EOT_ID = "tokenizer.ggml.eot_token_id"
EOM_ID = "tokenizer.ggml.eom_token_id"
UNK_ID = "tokenizer.ggml.unknown_token_id"
SEP_ID = "tokenizer.ggml.seperator_token_id"
PAD_ID = "tokenizer.ggml.padding_token_id"
CLS_ID = "tokenizer.ggml.cls_token_id"
MASK_ID = "tokenizer.ggml.mask_token_id"
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
@ -164,11 +196,16 @@ class Keys:
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
CHAT_TEMPLATES = "tokenizer.chat_templates"
# FIM/Infill special tokens constants
FIM_PRE_ID = "tokenizer.ggml.fim_pre_token_id"
FIM_SUF_ID = "tokenizer.ggml.fim_suf_token_id"
FIM_MID_ID = "tokenizer.ggml.fim_mid_token_id"
FIM_PAD_ID = "tokenizer.ggml.fim_pad_token_id"
FIM_REP_ID = "tokenizer.ggml.fim_rep_token_id"
FIM_SEP_ID = "tokenizer.ggml.fim_sep_token_id"
# deprecated:
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
EOT_ID = "tokenizer.ggml.eot_token_id"
EOM_ID = "tokenizer.ggml.eom_token_id"
class Adapter:
TYPE = "adapter.type"
@ -192,50 +229,63 @@ class GGUFType:
class MODEL_ARCH(IntEnum):
LLAMA = auto()
FALCON = auto()
BAICHUAN = auto()
GROK = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
STARCODER = auto()
REFACT = auto()
BERT = auto()
NOMIC_BERT = auto()
JINA_BERT_V2 = auto()
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
QWEN2 = auto()
QWEN2MOE = auto()
PHI2 = auto()
PHI3 = auto()
PLAMO = auto()
CODESHELL = auto()
ORION = auto()
INTERNLM2 = auto()
MINICPM = auto()
GEMMA = auto()
GEMMA2 = auto()
STARCODER2 = auto()
RWKV6 = auto()
MAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
DBRX = auto()
OLMO = auto()
OPENELM = auto()
ARCTIC = auto()
DEEPSEEK2 = auto()
CHATGLM = auto()
BITNET = auto()
T5 = auto()
T5ENCODER = auto()
JAIS = auto()
NEMOTRON = auto()
EXAONE = auto()
LLAMA = auto()
DECI = auto()
FALCON = auto()
BAICHUAN = auto()
GROK = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
STARCODER = auto()
REFACT = auto()
BERT = auto()
NOMIC_BERT = auto()
JINA_BERT_V2 = auto()
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
QWEN2 = auto()
QWEN2MOE = auto()
QWEN2VL = auto()
PHI2 = auto()
PHI3 = auto()
PHIMOE = auto()
PLAMO = auto()
CODESHELL = auto()
ORION = auto()
INTERNLM2 = auto()
MINICPM = auto()
MINICPM3 = auto()
GEMMA = auto()
GEMMA2 = auto()
STARCODER2 = auto()
RWKV6 = auto()
RWKV6QWEN2 = auto()
MAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
COHERE2 = auto()
DBRX = auto()
OLMO = auto()
OLMO2 = auto()
OLMOE = auto()
OPENELM = auto()
ARCTIC = auto()
DEEPSEEK = auto()
DEEPSEEK2 = auto()
CHATGLM = auto()
BITNET = auto()
T5 = auto()
T5ENCODER = auto()
JAIS = auto()
NEMOTRON = auto()
EXAONE = auto()
GRANITE = auto()
GRANITE_MOE = auto()
CHAMELEON = auto()
WAVTOKENIZER_DEC = auto()
class MODEL_TENSOR(IntEnum):
@ -274,6 +324,7 @@ class MODEL_TENSOR(IntEnum):
FFN_GATE_SHEXP = auto()
FFN_DOWN_SHEXP = auto()
FFN_UP_SHEXP = auto()
FFN_EXP_PROBS_B = auto()
ATTN_Q_NORM = auto()
ATTN_K_NORM = auto()
LAYER_OUT_NORM = auto()
@ -291,6 +342,7 @@ class MODEL_TENSOR(IntEnum):
TIME_MIX_LERP_V = auto()
TIME_MIX_LERP_R = auto()
TIME_MIX_LERP_G = auto()
TIME_MIX_LERP_FUSED = auto()
TIME_MIX_LERP_W = auto()
TIME_MIX_FIRST = auto()
TIME_MIX_DECAY = auto()
@ -343,53 +395,84 @@ class MODEL_TENSOR(IntEnum):
ENC_FFN_DOWN = auto()
ENC_FFN_UP = auto()
ENC_OUTPUT_NORM = auto()
CLS = auto() # classifier
CLS_OUT = auto() # classifier output projection
CONV1D = auto()
CONVNEXT_DW = auto()
CONVNEXT_NORM = auto()
CONVNEXT_PW1 = auto()
CONVNEXT_PW2 = auto()
CONVNEXT_GAMMA = auto()
POSNET_CONV1 = auto()
POSNET_CONV2 = auto()
POSNET_NORM = auto()
POSNET_NORM1 = auto()
POSNET_NORM2 = auto()
POSNET_ATTN_NORM = auto()
POSNET_ATTN_Q = auto()
POSNET_ATTN_K = auto()
POSNET_ATTN_V = auto()
POSNET_ATTN_OUT = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.BAICHUAN: "baichuan",
MODEL_ARCH.GROK: "grok",
MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.GPTJ: "gptj",
MODEL_ARCH.GPTNEOX: "gptneox",
MODEL_ARCH.MPT: "mpt",
MODEL_ARCH.STARCODER: "starcoder",
MODEL_ARCH.REFACT: "refact",
MODEL_ARCH.BERT: "bert",
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
MODEL_ARCH.QWEN2: "qwen2",
MODEL_ARCH.QWEN2MOE: "qwen2moe",
MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PHI3: "phi3",
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.CODESHELL: "codeshell",
MODEL_ARCH.ORION: "orion",
MODEL_ARCH.INTERNLM2: "internlm2",
MODEL_ARCH.MINICPM: "minicpm",
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.GEMMA2: "gemma2",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.RWKV6: "rwkv6",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.OPENELM: "openelm",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
MODEL_ARCH.JAIS: "jais",
MODEL_ARCH.NEMOTRON: "nemotron",
MODEL_ARCH.EXAONE: "exaone",
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.DECI: "deci",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.BAICHUAN: "baichuan",
MODEL_ARCH.GROK: "grok",
MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.GPTJ: "gptj",
MODEL_ARCH.GPTNEOX: "gptneox",
MODEL_ARCH.MPT: "mpt",
MODEL_ARCH.STARCODER: "starcoder",
MODEL_ARCH.REFACT: "refact",
MODEL_ARCH.BERT: "bert",
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
MODEL_ARCH.QWEN2: "qwen2",
MODEL_ARCH.QWEN2MOE: "qwen2moe",
MODEL_ARCH.QWEN2VL: "qwen2vl",
MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PHI3: "phi3",
MODEL_ARCH.PHIMOE: "phimoe",
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.CODESHELL: "codeshell",
MODEL_ARCH.ORION: "orion",
MODEL_ARCH.INTERNLM2: "internlm2",
MODEL_ARCH.MINICPM: "minicpm",
MODEL_ARCH.MINICPM3: "minicpm3",
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.GEMMA2: "gemma2",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.RWKV6: "rwkv6",
MODEL_ARCH.RWKV6QWEN2: "rwkv6qwen2",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.COHERE2: "cohere2",
MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.OLMO2: "olmo2",
MODEL_ARCH.OLMOE: "olmoe",
MODEL_ARCH.OPENELM: "openelm",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK: "deepseek",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
MODEL_ARCH.JAIS: "jais",
MODEL_ARCH.NEMOTRON: "nemotron",
MODEL_ARCH.EXAONE: "exaone",
MODEL_ARCH.GRANITE: "granite",
MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.CHAMELEON: "chameleon",
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -430,6 +513,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
MODEL_TENSOR.FFN_EXP_PROBS_B: "blk.{bid}.exp_probs_b",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
@ -445,6 +529,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
MODEL_TENSOR.TIME_MIX_LERP_FUSED: "blk.{bid}.time_mix_lerp_fused",
MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
@ -497,6 +582,24 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
MODEL_TENSOR.CLS: "cls",
MODEL_TENSOR.CLS_OUT: "cls.output",
MODEL_TENSOR.CONV1D: "conv1d",
MODEL_TENSOR.CONVNEXT_DW: "convnext.{bid}.dw",
MODEL_TENSOR.CONVNEXT_NORM: "convnext.{bid}.norm",
MODEL_TENSOR.CONVNEXT_PW1: "convnext.{bid}.pw1",
MODEL_TENSOR.CONVNEXT_PW2: "convnext.{bid}.pw2",
MODEL_TENSOR.CONVNEXT_GAMMA: "convnext.{bid}.gamma",
MODEL_TENSOR.POSNET_CONV1: "posnet.{bid}.conv1",
MODEL_TENSOR.POSNET_CONV2: "posnet.{bid}.conv2",
MODEL_TENSOR.POSNET_NORM: "posnet.{bid}.norm",
MODEL_TENSOR.POSNET_NORM1: "posnet.{bid}.norm1",
MODEL_TENSOR.POSNET_NORM2: "posnet.{bid}.norm2",
MODEL_TENSOR.POSNET_ATTN_NORM: "posnet.{bid}.attn_norm",
MODEL_TENSOR.POSNET_ATTN_Q: "posnet.{bid}.attn_q",
MODEL_TENSOR.POSNET_ATTN_K: "posnet.{bid}.attn_k",
MODEL_TENSOR.POSNET_ATTN_V: "posnet.{bid}.attn_v",
MODEL_TENSOR.POSNET_ATTN_OUT: "posnet.{bid}.attn_output",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -520,6 +623,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.DECI: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.GROK: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -606,6 +729,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.LAYER_OUT_NORM,
MODEL_TENSOR.CLS,
MODEL_TENSOR.CLS_OUT,
],
MODEL_ARCH.NOMIC_BERT: [
MODEL_TENSOR.TOKEN_EMBD,
@ -637,6 +762,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.LAYER_OUT_NORM,
MODEL_TENSOR.CLS,
],
MODEL_ARCH.MPT: [
MODEL_TENSOR.TOKEN_EMBD,
@ -723,6 +849,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN2VL: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
@ -800,6 +941,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FACTORS_LONG,
MODEL_TENSOR.ROPE_FACTORS_SHORT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
@ -810,6 +953,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.PHIMOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FACTORS_LONG,
MODEL_TENSOR.ROPE_FACTORS_SHORT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.CODESHELL: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
@ -859,6 +1020,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ROPE_FACTORS_LONG,
MODEL_TENSOR.ROPE_FACTORS_SHORT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
@ -874,6 +1037,25 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.MINICPM3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FACTORS_LONG,
MODEL_TENSOR.ROPE_FACTORS_SHORT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GEMMA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -932,6 +1114,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.TIME_MIX_LERP_R,
MODEL_TENSOR.TIME_MIX_LERP_G,
MODEL_TENSOR.TIME_MIX_LERP_W,
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
MODEL_TENSOR.TIME_MIX_FIRST,
MODEL_TENSOR.TIME_MIX_DECAY,
MODEL_TENSOR.TIME_MIX_DECAY_W1,
@ -948,6 +1131,35 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
MODEL_TENSOR.CHANNEL_MIX_VALUE,
],
MODEL_ARCH.RWKV6QWEN2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.TIME_MIX_W1,
MODEL_TENSOR.TIME_MIX_W2,
MODEL_TENSOR.TIME_MIX_LERP_X,
MODEL_TENSOR.TIME_MIX_LERP_K,
MODEL_TENSOR.TIME_MIX_LERP_V,
MODEL_TENSOR.TIME_MIX_LERP_R,
MODEL_TENSOR.TIME_MIX_LERP_G,
MODEL_TENSOR.TIME_MIX_LERP_W,
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
MODEL_TENSOR.TIME_MIX_FIRST,
MODEL_TENSOR.TIME_MIX_DECAY,
MODEL_TENSOR.TIME_MIX_DECAY_W1,
MODEL_TENSOR.TIME_MIX_DECAY_W2,
MODEL_TENSOR.TIME_MIX_KEY,
MODEL_TENSOR.TIME_MIX_VALUE,
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
MODEL_TENSOR.TIME_MIX_GATE,
MODEL_TENSOR.TIME_MIX_LN,
MODEL_TENSOR.TIME_MIX_OUTPUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.MAMBA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -991,6 +1203,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_Q_NORM,
],
MODEL_ARCH.COHERE2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.DBRX: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -1015,6 +1239,39 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.OLMO2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.FFN_POST_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.OLMOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
],
MODEL_ARCH.OPENELM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -1049,6 +1306,29 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.DEEPSEEK: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -1075,6 +1355,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.CHATGLM : [
MODEL_TENSOR.TOKEN_EMBD,
@ -1193,6 +1474,73 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GRANITE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GRANITE_MOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.CHAMELEON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.WAVTOKENIZER_DEC: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.CONV1D,
MODEL_TENSOR.CONVNEXT_DW,
MODEL_TENSOR.CONVNEXT_NORM,
MODEL_TENSOR.CONVNEXT_PW1,
MODEL_TENSOR.CONVNEXT_PW2,
MODEL_TENSOR.CONVNEXT_GAMMA,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.POSNET_CONV1,
MODEL_TENSOR.POSNET_CONV2,
MODEL_TENSOR.POSNET_NORM,
MODEL_TENSOR.POSNET_NORM1,
MODEL_TENSOR.POSNET_NORM2,
MODEL_TENSOR.POSNET_ATTN_NORM,
MODEL_TENSOR.POSNET_ATTN_Q,
MODEL_TENSOR.POSNET_ATTN_K,
MODEL_TENSOR.POSNET_ATTN_V,
MODEL_TENSOR.POSNET_ATTN_OUT,
],
# TODO
}
@ -1202,6 +1550,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.DECI: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.BAICHUAN: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
@ -1226,6 +1578,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.DEEPSEEK: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
@ -1254,9 +1610,10 @@ class TokenType(IntEnum):
class RopeScalingType(Enum):
NONE = 'none'
LINEAR = 'linear'
YARN = 'yarn'
NONE = 'none'
LINEAR = 'linear'
YARN = 'yarn'
LONGROPE = 'longrope'
class PoolingType(IntEnum):
@ -1295,13 +1652,15 @@ class GGMLQuantizationType(IntEnum):
F64 = 28
IQ1_M = 29
BF16 = 30
Q4_0_4_4 = 31
Q4_0_4_8 = 32
Q4_0_8_8 = 33
TQ1_0 = 34
TQ2_0 = 35
class ExpertGatingFuncType(IntEnum):
SOFTMAX = 1
SIGMOID = 2
# TODO: add GGMLFileType from ggml_ftype in ggml.h
@ -1341,9 +1700,9 @@ class LlamaFileType(IntEnum):
MOSTLY_IQ4_XS = 30 # except 1d tensors
MOSTLY_IQ1_M = 31 # except 1d tensors
MOSTLY_BF16 = 32 # except 1d tensors
MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
# MOSTLY_Q4_0_4_4 = 33 # removed from gguf files, use Q4_0 and runtime repack
# MOSTLY_Q4_0_4_8 = 34 # removed from gguf files, use Q4_0 and runtime repack
# MOSTLY_Q4_0_8_8 = 35 # removed from gguf files, use Q4_0 and runtime repack
MOSTLY_TQ1_0 = 36 # except 1d tensors
MOSTLY_TQ2_0 = 37 # except 1d tensors
@ -1419,9 +1778,6 @@ GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
GGMLQuantizationType.F64: (1, 8),
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
GGMLQuantizationType.BF16: (1, 2),
GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
GGMLQuantizationType.TQ2_0: (256, 2 + 64),
}
@ -1482,15 +1838,23 @@ KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
KEY_TOKENIZER_FIM_PRE_ID = Keys.Tokenizer.FIM_PRE_ID
KEY_TOKENIZER_FIM_SUF_ID = Keys.Tokenizer.FIM_SUF_ID
KEY_TOKENIZER_FIM_MID_ID = Keys.Tokenizer.FIM_MID_ID
KEY_TOKENIZER_FIM_PAD_ID = Keys.Tokenizer.FIM_PAD_ID
KEY_TOKENIZER_FIM_REP_ID = Keys.Tokenizer.FIM_REP_ID
KEY_TOKENIZER_FIM_SEP_ID = Keys.Tokenizer.FIM_SEP_ID
# deprecated
KEY_TOKENIZER_PREFIX_ID = Keys.Tokenizer.PREFIX_ID
KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID

View file

@ -145,11 +145,10 @@ class GGUFReader:
count = int(count)
itemsize = int(np.empty([], dtype = dtype).itemsize)
end_offs = offset + itemsize * count
return (
self.data[offset:end_offs]
.view(dtype = dtype)[:count]
.newbyteorder(override_order or self.byte_order)
)
arr = self.data[offset:end_offs].view(dtype=dtype)[:count]
if override_order is None:
return arr
return arr.view(arr.dtype.newbyteorder(override_order))
def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
if field.name in self.fields:

View file

@ -26,6 +26,7 @@ from .constants import (
RopeScalingType,
PoolingType,
TokenType,
ExpertGatingFuncType,
)
from .quants import quant_shape_from_byte_shape
@ -568,6 +569,9 @@ class GGUFWriter:
def add_base_model_organization(self, source_id: int, organization: str) -> None:
self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization)
def add_base_model_description(self, source_id: int, description: str) -> None:
self.add_string(Keys.General.BASE_MODEL_DESCRIPTION.format(id=source_id), description)
def add_base_model_url(self, source_id: int, url: str) -> None:
self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url)
@ -580,15 +584,42 @@ class GGUFWriter:
def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None:
self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url)
def add_dataset_count(self, source_count: int) -> None:
self.add_uint32(Keys.General.DATASET_COUNT, source_count)
def add_dataset_name(self, source_id: int, name: str) -> None:
self.add_string(Keys.General.DATASET_NAME.format(id=source_id), name)
def add_dataset_author(self, source_id: int, author: str) -> None:
self.add_string(Keys.General.DATASET_AUTHOR.format(id=source_id), author)
def add_dataset_version(self, source_id: int, version: str) -> None:
self.add_string(Keys.General.DATASET_VERSION.format(id=source_id), version)
def add_dataset_organization(self, source_id: int, organization: str) -> None:
self.add_string(Keys.General.DATASET_ORGANIZATION.format(id=source_id), organization)
def add_dataset_description(self, source_id: int, description: str) -> None:
self.add_string(Keys.General.DATASET_DESCRIPTION.format(id=source_id), description)
def add_dataset_url(self, source_id: int, url: str) -> None:
self.add_string(Keys.General.DATASET_URL.format(id=source_id), url)
def add_dataset_doi(self, source_id: int, doi: str) -> None:
self.add_string(Keys.General.DATASET_DOI.format(id=source_id), doi)
def add_dataset_uuid(self, source_id: int, uuid: str) -> None:
self.add_string(Keys.General.DATASET_UUID.format(id=source_id), uuid)
def add_dataset_repo_url(self, source_id: int, repo_url: str) -> None:
self.add_string(Keys.General.DATASET_REPO_URL.format(id=source_id), repo_url)
def add_tags(self, tags: Sequence[str]) -> None:
self.add_array(Keys.General.TAGS, tags)
def add_languages(self, languages: Sequence[str]) -> None:
self.add_array(Keys.General.LANGUAGES, languages)
def add_datasets(self, datasets: Sequence[str]) -> None:
self.add_array(Keys.General.DATASETS, datasets)
def add_tensor_data_layout(self, layout: str) -> None:
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
@ -601,6 +632,21 @@ class GGUFWriter:
def add_embedding_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_features_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.FEATURES_LENGTH.format(arch=self.arch), length)
def add_posnet_embedding_length(self, length: int) -> None:
self.add_uint32(Keys.PosNet.EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_posnet_block_count(self, length: int) -> None:
self.add_uint32(Keys.PosNet.BLOCK_COUNT.format(arch=self.arch), length)
def add_convnext_embedding_length(self, length: int) -> None:
self.add_uint32(Keys.ConvNext.EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_convnext_block_count(self, length: int) -> None:
self.add_uint32(Keys.ConvNext.BLOCK_COUNT.format(arch=self.arch), length)
def add_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
@ -670,6 +716,15 @@ class GGUFWriter:
def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
def add_expert_weights_norm(self, value: bool) -> None:
self.add_bool(Keys.LLM.EXPERT_WEIGHTS_NORM.format(arch=self.arch), value)
def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None:
self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value)
def add_swin_norm(self, value: bool) -> None:
self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value)
def add_rescale_every_n_layers(self, count: int) -> None:
self.add_uint32(Keys.LLM.RESCALE_EVERY_N_LAYERS.format(arch=self.arch), count)
@ -679,15 +734,30 @@ class GGUFWriter:
def add_time_decay_extra_dim(self, dim: int) -> None:
self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim)
def add_residual_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.RESIDUAL_SCALE.format(arch=self.arch), value)
def add_embedding_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EMBEDDING_SCALE.format(arch=self.arch), value)
def add_wkv_head_size(self, size: int) -> None:
self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size)
def add_token_shift_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.TOKEN_SHIFT_COUNT.format(arch=self.arch), count)
def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
def add_layer_norm_rms_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
def add_group_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.GROUPNORM_EPS.format(arch=self.arch), value)
def add_group_norm_groups(self, value: int) -> None:
self.add_uint32(Keys.Attention.GROUPNORM_GROUPS.format(arch=self.arch), value)
def add_causal_attention(self, value: bool) -> None:
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
@ -703,12 +773,18 @@ class GGUFWriter:
def add_sliding_window(self, value: int) -> None:
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
def add_attention_scale(self, value: float) -> None:
self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value)
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
def add_rope_dimension_count(self, count: int) -> None:
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
def add_rope_dimension_sections(self, dims: Sequence[int]) -> None:
self.add_array(Keys.Rope.DIMENSION_SECTIONS.format(arch=self.arch), dims)
def add_rope_freq_base(self, value: float) -> None:
self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)
@ -781,9 +857,6 @@ class GGUFWriter:
def add_pad_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.PAD_ID, id)
def add_cls_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.CLS_ID, id)
def add_mask_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.MASK_ID, id)
@ -831,15 +904,6 @@ class GGUFWriter:
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
def add_prefix_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.PREFIX_ID, id)
def add_suffix_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.SUFFIX_ID, id)
def add_middle_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.MIDDLE_ID, id)
def add_eot_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.EOT_ID, id)

View file

@ -41,7 +41,7 @@ class Metadata:
base_models: Optional[list[dict]] = None
tags: Optional[list[str]] = None
languages: Optional[list[str]] = None
datasets: Optional[list[str]] = None
datasets: Optional[list[dict]] = None
@staticmethod
def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata:
@ -91,9 +91,11 @@ class Metadata:
# Base Models is received here as an array of models
metadata.base_models = metadata_override.get("general.base_models", metadata.base_models)
# Datasets is received here as an array of datasets
metadata.datasets = metadata_override.get("general.datasets", metadata.datasets)
metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags)
metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages)
metadata.datasets = metadata_override.get(Keys.General.DATASETS, metadata.datasets)
# Direct Metadata Override (via direct cli argument)
if model_name is not None:
@ -346,12 +348,12 @@ class Metadata:
use_model_card_metadata("author", "model_creator")
use_model_card_metadata("basename", "model_type")
if "base_model" in model_card:
if "base_model" in model_card or "base_models" in model_card or "base_model_sources" in model_card:
# This represents the parent models that this is based on
# Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges)
# Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md
metadata_base_models = []
base_model_value = model_card.get("base_model", None)
base_model_value = model_card.get("base_model", model_card.get("base_models", model_card.get("base_model_sources", None)))
if base_model_value is not None:
if isinstance(base_model_value, str):
@ -364,18 +366,106 @@ class Metadata:
for model_id in metadata_base_models:
# NOTE: model size of base model is assumed to be similar to the size of the current model
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
base_model = {}
if model_full_name_component is not None:
base_model["name"] = Metadata.id_to_title(model_full_name_component)
if org_component is not None:
base_model["organization"] = Metadata.id_to_title(org_component)
if version is not None:
base_model["version"] = version
if org_component is not None and model_full_name_component is not None:
base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}"
if isinstance(model_id, str):
if model_id.startswith("http://") or model_id.startswith("https://") or model_id.startswith("ssh://"):
base_model["repo_url"] = model_id
# Check if Hugging Face ID is present in URL
if "huggingface.co" in model_id:
match = re.match(r"https?://huggingface.co/([^/]+/[^/]+)$", model_id)
if match:
model_id_component = match.group(1)
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id_component, total_params)
# Populate model dictionary with extracted components
if model_full_name_component is not None:
base_model["name"] = Metadata.id_to_title(model_full_name_component)
if org_component is not None:
base_model["organization"] = Metadata.id_to_title(org_component)
if version is not None:
base_model["version"] = version
else:
# Likely a Hugging Face ID
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
# Populate model dictionary with extracted components
if model_full_name_component is not None:
base_model["name"] = Metadata.id_to_title(model_full_name_component)
if org_component is not None:
base_model["organization"] = Metadata.id_to_title(org_component)
if version is not None:
base_model["version"] = version
if org_component is not None and model_full_name_component is not None:
base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}"
elif isinstance(model_id, dict):
base_model = model_id
else:
logger.error(f"base model entry '{str(model_id)}' not in a known format")
metadata.base_models.append(base_model)
if "datasets" in model_card or "dataset" in model_card or "dataset_sources" in model_card:
# This represents the datasets that this was trained from
metadata_datasets = []
dataset_value = model_card.get("datasets", model_card.get("dataset", model_card.get("dataset_sources", None)))
if dataset_value is not None:
if isinstance(dataset_value, str):
metadata_datasets.append(dataset_value)
elif isinstance(dataset_value, list):
metadata_datasets.extend(dataset_value)
if metadata.datasets is None:
metadata.datasets = []
for dataset_id in metadata_datasets:
# NOTE: model size of base model is assumed to be similar to the size of the current model
dataset = {}
if isinstance(dataset_id, str):
if dataset_id.startswith(("http://", "https://", "ssh://")):
dataset["repo_url"] = dataset_id
# Check if Hugging Face ID is present in URL
if "huggingface.co" in dataset_id:
match = re.match(r"https?://huggingface.co/([^/]+/[^/]+)$", dataset_id)
if match:
dataset_id_component = match.group(1)
dataset_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(dataset_id_component, total_params)
# Populate dataset dictionary with extracted components
if dataset_name_component is not None:
dataset["name"] = Metadata.id_to_title(dataset_name_component)
if org_component is not None:
dataset["organization"] = Metadata.id_to_title(org_component)
if version is not None:
dataset["version"] = version
else:
# Likely a Hugging Face ID
dataset_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(dataset_id, total_params)
# Populate dataset dictionary with extracted components
if dataset_name_component is not None:
dataset["name"] = Metadata.id_to_title(dataset_name_component)
if org_component is not None:
dataset["organization"] = Metadata.id_to_title(org_component)
if version is not None:
dataset["version"] = version
if org_component is not None and dataset_name_component is not None:
dataset["repo_url"] = f"https://huggingface.co/{org_component}/{dataset_name_component}"
elif isinstance(dataset_id, dict):
dataset = dataset_id
else:
logger.error(f"dataset entry '{str(dataset_id)}' not in a known format")
metadata.datasets.append(dataset)
use_model_card_metadata("license", "license")
use_model_card_metadata("license_name", "license_name")
use_model_card_metadata("license_link", "license_link")
@ -386,9 +476,6 @@ class Metadata:
use_array_model_card_metadata("languages", "languages")
use_array_model_card_metadata("languages", "language")
use_array_model_card_metadata("datasets", "datasets")
use_array_model_card_metadata("datasets", "dataset")
# Hugging Face Parameter Heuristics
####################################
@ -458,7 +545,10 @@ class Metadata:
gguf_writer.add_size_label(self.size_label)
if self.license is not None:
gguf_writer.add_license(self.license)
if isinstance(self.license, list):
gguf_writer.add_license(",".join(self.license))
else:
gguf_writer.add_license(self.license)
if self.license_name is not None:
gguf_writer.add_license_name(self.license_name)
if self.license_link is not None:
@ -493,6 +583,8 @@ class Metadata:
gguf_writer.add_base_model_version(key, base_model_entry["version"])
if "organization" in base_model_entry:
gguf_writer.add_base_model_organization(key, base_model_entry["organization"])
if "description" in base_model_entry:
gguf_writer.add_base_model_description(key, base_model_entry["description"])
if "url" in base_model_entry:
gguf_writer.add_base_model_url(key, base_model_entry["url"])
if "doi" in base_model_entry:
@ -502,9 +594,29 @@ class Metadata:
if "repo_url" in base_model_entry:
gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"])
if self.datasets is not None:
gguf_writer.add_dataset_count(len(self.datasets))
for key, dataset_entry in enumerate(self.datasets):
if "name" in dataset_entry:
gguf_writer.add_dataset_name(key, dataset_entry["name"])
if "author" in dataset_entry:
gguf_writer.add_dataset_author(key, dataset_entry["author"])
if "version" in dataset_entry:
gguf_writer.add_dataset_version(key, dataset_entry["version"])
if "organization" in dataset_entry:
gguf_writer.add_dataset_organization(key, dataset_entry["organization"])
if "description" in dataset_entry:
gguf_writer.add_dataset_description(key, dataset_entry["description"])
if "url" in dataset_entry:
gguf_writer.add_dataset_url(key, dataset_entry["url"])
if "doi" in dataset_entry:
gguf_writer.add_dataset_doi(key, dataset_entry["doi"])
if "uuid" in dataset_entry:
gguf_writer.add_dataset_uuid(key, dataset_entry["uuid"])
if "repo_url" in dataset_entry:
gguf_writer.add_dataset_repo_url(key, dataset_entry["repo_url"])
if self.tags is not None:
gguf_writer.add_tags(self.tags)
if self.languages is not None:
gguf_writer.add_languages(self.languages)
if self.datasets is not None:
gguf_writer.add_datasets(self.datasets)

View file

@ -0,0 +1,6 @@
# pyright: reportUnusedImport=false
from .gguf_convert_endian import main as gguf_convert_endian_entrypoint
from .gguf_dump import main as gguf_dump_entrypoint
from .gguf_set_metadata import main as gguf_set_metadata_entrypoint
from .gguf_new_metadata import main as gguf_new_metadata_entrypoint

View file

@ -0,0 +1,134 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import sys
from tqdm import tqdm
from pathlib import Path
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
import gguf
logger = logging.getLogger("gguf-convert-endian")
def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None:
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# Host is little endian
host_endian = "little"
swapped_endian = "big"
else:
# Sorry PDP or other weird systems that don't use BE or LE.
host_endian = "big"
swapped_endian = "little"
if reader.byte_order == "S":
file_endian = swapped_endian
else:
file_endian = host_endian
order = host_endian if args.order == "native" else args.order
logger.info(f"* Host is {host_endian.upper()} endian, GGUF file seems to be {file_endian.upper()} endian")
if file_endian == order:
logger.info(f"* File is already {order.upper()} endian. Nothing to do.")
sys.exit(0)
logger.info("* Checking tensors for conversion compatibility")
for tensor in reader.tensors:
if tensor.tensor_type not in (
gguf.GGMLQuantizationType.F32,
gguf.GGMLQuantizationType.F16,
gguf.GGMLQuantizationType.Q8_0,
):
raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
logger.info(f"* Preparing to convert from {file_endian.upper()} to {order.upper()}")
if args.dry_run:
return
logger.warning("*** Warning *** Warning *** Warning **")
logger.warning("* This conversion process may damage the file. Ensure you have a backup.")
if order != host_endian:
logger.warning("* Requested endian differs from host, you will not be able to load the model on this machine.")
logger.warning("* The file will be modified immediately, so if conversion fails or is interrupted")
logger.warning("* the file will be corrupted. Enter exactly YES if you are positive you want to proceed:")
response = input("YES, I am sure> ")
if response != "YES":
logger.warning("You didn't enter YES. Okay then, see ya!")
sys.exit(0)
logger.info(f"* Converting fields ({len(reader.fields)})")
for idx, field in enumerate(reader.fields.values()):
logger.info(f"- {idx:4}: Converting field {repr(field.name)}, part count: {len(field.parts)}")
for part in field.parts:
part.byteswap(inplace=True)
logger.info(f"* Converting tensors ({len(reader.tensors)})")
for idx, tensor in enumerate(pbar := tqdm(reader.tensors, desc="Converting tensor")):
log_message = (
f"Converting tensor {repr(tensor.name)}, "
f"type={tensor.tensor_type.name}, "
f"elements={tensor.n_elements} "
)
# Byte-swap each part of the tensor's field
for part in tensor.field.parts:
part.byteswap(inplace=True)
# Byte-swap tensor data if necessary
if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0:
# Handle Q8_0 tensor blocks (block_q8_0)
# Specific handling of block_q8_0 is required.
# Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
block_size = 34 # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
n_blocks = len(tensor.data) // block_size
for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
block_offs = block_num * block_size
# Byte-Swap f16 sized delta field
delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
delta.byteswap(inplace=True)
# Byte-Swap Q8 weights
if block_num % 100000 == 0:
inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
else:
# Handle other tensor types
tensor.data.byteswap(inplace=True)
pbar.set_description(log_message)
logger.info("* Completion")
def main() -> None:
parser = argparse.ArgumentParser(description="Convert GGUF file byte order")
parser.add_argument(
"model", type=str,
help="GGUF format model filename",
)
parser.add_argument(
"order", type=str, choices=['big', 'little', 'native'],
help="Requested byte order",
)
parser.add_argument(
"--dry-run", action="store_true",
help="Don't actually change anything",
)
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
logger.info(f'* Loading: {args.model}')
reader = gguf.GGUFReader(args.model, 'r' if args.dry_run else 'r+')
convert_byteorder(reader, args)
if __name__ == "__main__":
main()

454
gguf-py/gguf/scripts/gguf_dump.py Executable file
View file

@ -0,0 +1,454 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import re
import sys
from pathlib import Path
from typing import Any
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
logger = logging.getLogger("gguf-dump")
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
if reader.byte_order == 'S':
file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
else:
file_endian = host_endian
return (host_endian, file_endian)
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
elif field.types[0] in reader.gguf_scalar_to_np:
log_message += ' = {0}'.format(field.parts[-1][0])
print(log_message) # noqa: NP100
if args.no_tensors:
return
print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
for n, tensor in enumerate(reader.tensors, 1):
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
import json
host_endian, file_endian = get_file_host_endian(reader)
metadata: dict[str, Any] = {}
tensors: dict[str, Any] = {}
result = {
"filename": args.model,
"endian": file_endian,
"metadata": metadata,
"tensors": tensors,
}
for idx, field in enumerate(reader.fields.values()):
curr: dict[str, Any] = {
"index": idx,
"type": field.types[0].name if field.types else 'UNKNOWN',
"offset": field.offset,
}
metadata[field.name] = curr
if field.types[:1] == [GGUFValueType.ARRAY]:
curr["array_types"] = [t.name for t in field.types][1:]
if not args.json_array:
continue
itype = field.types[-1]
if itype == GGUFValueType.STRING:
curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
else:
curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
elif field.types[0] == GGUFValueType.STRING:
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
else:
curr["value"] = field.parts[-1].tolist()[0]
if not args.no_tensors:
for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = {
"index": idx,
"shape": tensor.shape.tolist(),
"type": tensor.tensor_type.name,
"offset": tensor.field.offset,
}
json.dump(result, sys.stdout)
def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
# JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
# Alignment Utility Function
def strAlign(padding: int, alignMode: str | None, strVal: str):
if alignMode == 'center':
return strVal.center(padding)
elif alignMode == 'right':
return strVal.rjust(padding - 1) + ' '
elif alignMode == 'left':
return ' ' + strVal.ljust(padding - 1)
else: # default left
return ' ' + strVal.ljust(padding - 1)
def dashAlign(padding: int, alignMode: str | None):
if alignMode == 'center':
return ':' + '-' * (padding - 2) + ':'
elif alignMode == 'right':
return '-' * (padding - 1) + ':'
elif alignMode == 'left':
return ':' + '-' * (padding - 1)
else: # default left
return '-' * (padding)
# Calculate Padding For Each Column Based On Header and Data Length
rowsPadding = {}
for index, columnEntry in enumerate(header_map):
padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
headerPadCount = len(columnEntry['header_name']) + 2
rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
# Render Markdown Header
rows = []
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
# Render Tabular Data
for item in data:
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
# Convert Tabular String Rows Into String
tableString = ""
for row in rows:
tableString += f'|{row}|\n'
return tableString
def element_count_rounded_notation(count: int) -> str:
if count > 1e15 :
# Quadrillion
scaled_amount = count * 1e-15
scale_suffix = "Q"
elif count > 1e12 :
# Trillions
scaled_amount = count * 1e-12
scale_suffix = "T"
elif count > 1e9 :
# Billions
scaled_amount = count * 1e-9
scale_suffix = "B"
elif count > 1e6 :
# Millions
scaled_amount = count * 1e-6
scale_suffix = "M"
elif count > 1e3 :
# Thousands
scaled_amount = count * 1e-3
scale_suffix = "K"
else:
# Under Thousands
scaled_amount = count
scale_suffix = ""
return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
def translate_tensor_name(name):
words = name.split(".")
# Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
abbreviation_dictionary = {
'token_embd': 'Token embedding',
'pos_embd': 'Position embedding',
'output_norm': 'Output normalization',
'output': 'Output',
'attn_norm': 'Attention normalization',
'attn_norm_2': 'Attention normalization',
'attn_qkv': 'Attention query-key-value',
'attn_q': 'Attention query',
'attn_k': 'Attention key',
'attn_v': 'Attention value',
'attn_output': 'Attention output',
'ffn_norm': 'Feed-forward network normalization',
'ffn_up': 'Feed-forward network "up"',
'ffn_gate': 'Feed-forward network "gate"',
'ffn_down': 'Feed-forward network "down"',
'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
'ssm_in': 'State space model input projections',
'ssm_conv1d': 'State space model rolling/shift',
'ssm_x': 'State space model selective parametrization',
'ssm_a': 'State space model state compression',
'ssm_d': 'State space model skip connection',
'ssm_dt': 'State space model time step',
'ssm_out': 'State space model output projection',
'blk': 'Block',
'enc': 'Encoder',
'dec': 'Decoder',
}
expanded_words = []
for word in words:
word_norm = word.strip().lower()
if word_norm in abbreviation_dictionary:
expanded_words.append(abbreviation_dictionary[word_norm].title())
else:
expanded_words.append(word.title())
return ' '.join(expanded_words)
def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
markdown_content = ""
markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
markdown_content += f'- Endian: {file_endian} endian\n'
markdown_content += '\n'
markdown_content += '## Key Value Metadata Store\n\n'
markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
markdown_content += '\n'
kv_dump_table: list[dict[str, str | int]] = []
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
def escape_markdown_inline_code(value_string):
# Find the longest contiguous sequence of backticks in the string then
# wrap string with appropriate number of backticks required to escape it
max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0)
inline_code_marker = '`' * (max_backticks + 1)
# If the string starts or ends with a backtick, add a space at the beginning and end
if value_string.startswith('`') or value_string.endswith('`'):
value_string = f" {value_string} "
return f"{inline_code_marker}{value_string}{inline_code_marker}"
total_elements = len(field.data)
value = ""
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
truncate_length = 60
value_string = str(bytes(field.parts[-1]), encoding='utf-8')
if len(value_string) > truncate_length:
head = escape_markdown_inline_code(value_string[:truncate_length // 2])
tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
value = "{head}...{tail}".format(head=head, tail=tail)
else:
value = escape_markdown_inline_code(value_string)
elif curr_type in reader.gguf_scalar_to_np:
value = str(field.parts[-1][0])
else:
if field.types[0] == GGUFValueType.ARRAY:
curr_type = field.types[1]
array_elements = []
if curr_type == GGUFValueType.STRING:
render_element = min(5, total_elements)
for element_pos in range(render_element):
truncate_length = 30
value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8')
if len(value_string) > truncate_length:
head = escape_markdown_inline_code(value_string[:truncate_length // 2])
tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
value = "{head}...{tail}".format(head=head, tail=tail)
else:
value = escape_markdown_inline_code(value_string)
array_elements.append(value)
elif curr_type in reader.gguf_scalar_to_np:
render_element = min(7, total_elements)
for element_pos in range(render_element):
array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0]))
value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]'
kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
kv_dump_table_header_map = [
{'key_name':'n', 'header_name':'POS', 'align':'right'},
{'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
{'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
{'key_name':'field_name', 'header_name':'Key', 'align':'left'},
{'key_name':'value', 'header_name':'Value', 'align':'left'},
]
markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
markdown_content += "\n"
if not args.no_tensors:
# Group tensors by their prefix and maintain order
tensor_prefix_order: list[str] = []
tensor_name_to_key: dict[str, int] = {}
tensor_groups: dict[str, list[ReaderTensor]] = {}
total_elements = sum(tensor.n_elements for tensor in reader.tensors)
# Parsing Tensors Record
for key, tensor in enumerate(reader.tensors):
tensor_components = tensor.name.split('.')
# Classify Tensor Group
tensor_group_name = "base"
if tensor_components[0] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
elif tensor_components[0] in ['enc', 'dec']:
tensor_group_name = f"{tensor_components[0]}"
# Check if new Tensor Group
if tensor_group_name not in tensor_groups:
tensor_groups[tensor_group_name] = []
tensor_prefix_order.append(tensor_group_name)
# Record Tensor and Tensor Position
tensor_groups[tensor_group_name].append(tensor)
tensor_name_to_key[tensor.name] = key
# Tensors Mapping Dump
markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
markdown_content += '\n'
for group in tensor_prefix_order:
tensors = tensor_groups[group]
group_elements = sum(tensor.n_elements for tensor in tensors)
markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
markdown_content += "\n"
markdown_content += "### Tensor Data Offset\n"
markdown_content += '\n'
markdown_content += 'This table contains the offset and data segment relative to start of file\n'
markdown_content += '\n'
tensor_mapping_table: list[dict[str, str | int]] = []
for key, tensor in enumerate(reader.tensors):
data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})
tensors_mapping_table_header_map = [
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
{'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'},
{'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'},
]
markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
markdown_content += "\n"
for group in tensor_prefix_order:
tensors = tensor_groups[group]
group_elements = sum(tensor.n_elements for tensor in tensors)
group_percentage = group_elements / total_elements * 100
markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
# Precalculate column sizing for visual consistency
prettify_element_est_count_size: int = 1
prettify_element_count_size: int = 1
prettify_dimension_max_widths: dict[int, int] = {}
for tensor in tensors:
prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
# Generate Tensor Layer Table Content
tensor_dump_table: list[dict[str, str | int]] = []
for tensor in tensors:
human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
type_name_string = f"{tensor.tensor_type.name}"
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
tensor_dump_table_header_map = [
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
{'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
{'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
]
markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
markdown_content += "\n"
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
markdown_content += "\n\n"
print(markdown_content) # noqa: NP100
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
parser.add_argument("--json", action="store_true", help="Produce JSON output")
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
parser.add_argument("--data-offset", action="store_true", help="Start of data offset")
parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
logger.info(f'* Loading: {args.model}')
reader = GGUFReader(args.model, 'r')
if args.json:
dump_metadata_json(reader, args)
elif args.markdown:
dump_markdown_metadata(reader, args)
elif args.data_offset:
print(reader.data_offset) # noqa: NP100
elif args.data_alignment:
print(reader.alignment) # noqa: NP100
else:
dump_metadata(reader, args)
if __name__ == '__main__':
main()

102
gguf-py/gguf/scripts/gguf_hash.py Executable file
View file

@ -0,0 +1,102 @@
#!/usr/bin/env python3
from __future__ import annotations
import uuid
import hashlib
import logging
import argparse
import os
import sys
from pathlib import Path
from tqdm import tqdm
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
from gguf import GGUFReader # noqa: E402
logger = logging.getLogger("gguf-hash")
# UUID_NAMESPACE_LLAMA_CPP = uuid.uuid5(uuid.NAMESPACE_URL, 'en.wikipedia.org/wiki/Llama.cpp')
UUID_NAMESPACE_LLAMA_CPP = uuid.UUID('ef001206-dadc-5f6d-a15f-3359e577d4e5')
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def gguf_hash(reader: GGUFReader, filename: str, disable_progress_bar: bool, no_layer: bool) -> None:
sha1 = hashlib.sha1()
sha256 = hashlib.sha256()
uuidv5_sha1 = hashlib.sha1()
uuidv5_sha1.update(UUID_NAMESPACE_LLAMA_CPP.bytes)
# Total Weight Calculation For Progress Bar
total_weights = 0
for n, tensor in enumerate(reader.tensors, 1):
# We don't need these
if tensor.name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
# Calculate Tensor Volume
sum_weights_in_tensor = 1
for dim in tensor.shape:
sum_weights_in_tensor *= dim
total_weights += sum_weights_in_tensor
# Hash Progress Bar
bar = tqdm(desc="Hashing", total=total_weights, unit="weights", unit_scale=True, disable=disable_progress_bar)
# Hashing Process
for tensor in reader.tensors:
# We don't need these
if tensor.name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
# Progressbar
sum_weights_in_tensor = 1
for dim in tensor.shape:
sum_weights_in_tensor *= dim
bar.update(sum_weights_in_tensor)
if not no_layer:
sha1_layer = hashlib.sha1()
sha1_layer.update(tensor.data.data)
print("sha1 {0} {1}:{2}".format(sha1_layer.hexdigest(), filename, tensor.name)) # noqa: NP100
sha256_layer = hashlib.sha256()
sha256_layer.update(tensor.data.data)
print("sha256 {0} {1}:{2}".format(sha256_layer.hexdigest(), filename, tensor.name)) # noqa: NP100
sha1.update(tensor.data.data)
sha256.update(tensor.data.data)
uuidv5_sha1.update(tensor.data.data)
# Flush Hash Progress Bar
bar.close()
# Display Hash Output
print("sha1 {0} {1}".format(sha1.hexdigest(), filename)) # noqa: NP100
print("sha256 {0} {1}".format(sha256.hexdigest(), filename)) # noqa: NP100
print("uuid {0} {1}".format(uuid.UUID(bytes=uuidv5_sha1.digest()[:16], version=5), filename)) # noqa: NP100
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--no-layer", action="store_true", help="exclude per layer hash")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
parser.add_argument("--progressbar", action="store_true", help="enable progressbar")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
reader = GGUFReader(args.model, 'r')
gguf_hash(reader, args.model, not args.progressbar, args.no_layer)
if __name__ == '__main__':
main()

View file

@ -0,0 +1,244 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import sys
import json
from pathlib import Path
import numpy as np
from tqdm import tqdm
from typing import Any, Sequence, NamedTuple
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
import gguf
logger = logging.getLogger("gguf-new-metadata")
class MetadataDetails(NamedTuple):
type: gguf.GGUFValueType
value: Any
description: str = ''
def get_byteorder(reader: gguf.GGUFReader) -> gguf.GGUFEndian:
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# Host is little endian
host_endian = gguf.GGUFEndian.LITTLE
swapped_endian = gguf.GGUFEndian.BIG
else:
# Sorry PDP or other weird systems that don't use BE or LE.
host_endian = gguf.GGUFEndian.BIG
swapped_endian = gguf.GGUFEndian.LITTLE
if reader.byte_order == "S":
return swapped_endian
else:
return host_endian
def decode_field(field: gguf.ReaderField | None) -> Any:
if field and field.types:
main_type = field.types[0]
if main_type == gguf.GGUFValueType.ARRAY:
sub_type = field.types[-1]
if sub_type == gguf.GGUFValueType.STRING:
return [str(bytes(field.parts[idx]), encoding='utf-8') for idx in field.data]
else:
return [pv for idx in field.data for pv in field.parts[idx].tolist()]
if main_type == gguf.GGUFValueType.STRING:
return str(bytes(field.parts[-1]), encoding='utf-8')
else:
return field.parts[-1][0]
return None
def get_field_data(reader: gguf.GGUFReader, key: str) -> Any:
field = reader.get_field(key)
return decode_field(field)
def find_token(token_list: Sequence[int], token: str) -> Sequence[int]:
token_ids = [index for index, value in enumerate(token_list) if value == token]
if len(token_ids) == 0:
raise LookupError(f'Unable to find "{token}" in token list!')
return token_ids
def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new_metadata: dict[str, MetadataDetails], remove_metadata: Sequence[str]) -> None:
for field in reader.fields.values():
# Suppress virtual fields and fields written by GGUFWriter
if field.name == gguf.Keys.General.ARCHITECTURE or field.name.startswith('GGUF.'):
logger.debug(f'Suppressing {field.name}')
continue
# Skip old chat templates if we have new ones
if field.name.startswith(gguf.Keys.Tokenizer.CHAT_TEMPLATE) and gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata:
logger.debug(f'Skipping {field.name}')
continue
if field.name in remove_metadata:
logger.debug(f'Removing {field.name}')
continue
old_val = MetadataDetails(field.types[0], decode_field(field))
val = new_metadata.get(field.name, old_val)
if field.name in new_metadata:
logger.debug(f'Modifying {field.name}: "{old_val.value}" -> "{val.value}" {val.description}')
del new_metadata[field.name]
elif val.value is not None:
logger.debug(f'Copying {field.name}')
if val.value is not None:
writer.add_key_value(field.name, val.value, val.type)
if gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata:
logger.debug('Adding chat template(s)')
writer.add_chat_template(new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE].value)
del new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE]
for key, val in new_metadata.items():
logger.debug(f'Adding {key}: "{val.value}" {val.description}')
writer.add_key_value(key, val.value, val.type)
total_bytes = 0
for tensor in reader.tensors:
total_bytes += tensor.n_bytes
writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
writer.write_header_to_file()
writer.write_kv_data_to_file()
writer.write_ti_data_to_file()
for tensor in reader.tensors:
writer.write_tensor_data(tensor.data)
bar.update(tensor.n_bytes)
writer.close()
def main() -> None:
tokenizer_metadata = (getattr(gguf.Keys.Tokenizer, n) for n in gguf.Keys.Tokenizer.__dict__.keys() if not n.startswith('_'))
token_names = dict((n.split('.')[-1][:-len('_token_id')], n) for n in tokenizer_metadata if n.endswith('_token_id'))
parser = argparse.ArgumentParser(description="Make a copy of a GGUF file with new metadata")
parser.add_argument("input", type=Path, help="GGUF format model input filename")
parser.add_argument("output", type=Path, help="GGUF format model output filename")
parser.add_argument("--general-name", type=str, help="The models general.name", metavar='"name"')
parser.add_argument("--general-description", type=str, help="The models general.description", metavar='"Description ..."')
parser.add_argument("--chat-template", type=str, help="Chat template string (or JSON string containing templates)", metavar='"{% ... %} ..."')
parser.add_argument("--chat-template-config", type=Path, help="Config file containing chat template(s)", metavar='tokenizer_config.json')
parser.add_argument("--pre-tokenizer", type=str, help="The models tokenizer.ggml.pre", metavar='"pre tokenizer"')
parser.add_argument("--remove-metadata", action="append", type=str, help="Remove metadata (by key name) from output model", metavar='general.url')
parser.add_argument("--special-token", action="append", type=str, help="Special token by value", nargs=2, metavar=(' | '.join(token_names.keys()), '"<token>"'))
parser.add_argument("--special-token-by-id", action="append", type=str, help="Special token by id", nargs=2, metavar=(' | '.join(token_names.keys()), '0'))
parser.add_argument("--force", action="store_true", help="Bypass warnings without confirmation")
parser.add_argument("--verbose", action="store_true", help="Increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 2 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
new_metadata = {}
remove_metadata = args.remove_metadata or []
if args.general_name:
new_metadata[gguf.Keys.General.NAME] = MetadataDetails(gguf.GGUFValueType.STRING, args.general_name)
if args.general_description:
new_metadata[gguf.Keys.General.DESCRIPTION] = MetadataDetails(gguf.GGUFValueType.STRING, args.general_description)
if args.chat_template:
new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = MetadataDetails(gguf.GGUFValueType.STRING, json.loads(args.chat_template) if args.chat_template.startswith('[') else args.chat_template)
if args.chat_template_config:
with open(args.chat_template_config, 'r') as fp:
config = json.load(fp)
template = config.get('chat_template')
if template:
new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = MetadataDetails(gguf.GGUFValueType.STRING, template)
if args.pre_tokenizer:
new_metadata[gguf.Keys.Tokenizer.PRE] = MetadataDetails(gguf.GGUFValueType.STRING, args.pre_tokenizer)
if remove_metadata:
logger.warning('*** Warning *** Warning *** Warning **')
logger.warning('* Most metadata is required for a fully functional GGUF file,')
logger.warning('* removing crucial metadata may result in a corrupt output file!')
if not args.force:
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
response = input('YES, I am sure> ')
if response != 'YES':
logger.info("You didn't enter YES. Okay then, see ya!")
sys.exit(0)
logger.info(f'* Loading: {args.input}')
reader = gguf.GGUFReader(args.input, 'r')
arch = get_field_data(reader, gguf.Keys.General.ARCHITECTURE)
endianess = get_byteorder(reader)
token_list = get_field_data(reader, gguf.Keys.Tokenizer.LIST) or []
for name, token in args.special_token or []:
if name not in token_names:
logger.warning(f'Unknown special token "{name}", ignoring...')
else:
ids = find_token(token_list, token)
new_metadata[token_names[name]] = MetadataDetails(gguf.GGUFValueType.UINT32, ids[0], f'= {token}')
if len(ids) > 1:
logger.warning(f'Multiple "{token}" tokens found, choosing ID {ids[0]}, use --special-token-by-id if you want another:')
logger.warning(', '.join(str(i) for i in ids))
for name, id_string in args.special_token_by_id or []:
if name not in token_names:
logger.warning(f'Unknown special token "{name}", ignoring...')
elif not id_string.isdecimal():
raise LookupError(f'Token ID "{id_string}" is not a valid ID!')
else:
id_int = int(id_string)
if id_int >= 0 and id_int < len(token_list):
new_metadata[token_names[name]] = MetadataDetails(gguf.GGUFValueType.UINT32, id_int, f'= {token_list[id_int]}')
else:
raise LookupError(f'Token ID {id_int} is not within token list!')
if os.path.isfile(args.output) and not args.force:
logger.warning('*** Warning *** Warning *** Warning **')
logger.warning(f'* The "{args.output}" GGUF file already exists, it will be overwritten!')
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
response = input('YES, I am sure> ')
if response != 'YES':
logger.info("You didn't enter YES. Okay then, see ya!")
sys.exit(0)
logger.info(f'* Writing: {args.output}')
writer = gguf.GGUFWriter(args.output, arch=arch, endianess=endianess)
alignment = get_field_data(reader, gguf.Keys.General.ALIGNMENT)
if alignment is not None:
logger.debug(f'Setting custom alignment: {alignment}')
writer.data_alignment = alignment
copy_with_new_metadata(reader, writer, new_metadata, remove_metadata)
if __name__ == '__main__':
main()

View file

@ -0,0 +1,95 @@
#!/usr/bin/env python3
import logging
import argparse
import os
import sys
from pathlib import Path
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
from gguf import GGUFReader # noqa: E402
logger = logging.getLogger("gguf-set-metadata")
def minimal_example(filename: str) -> None:
reader = GGUFReader(filename, 'r+')
field = reader.fields['tokenizer.ggml.bos_token_id']
if field is None:
return
part_index = field.data[0]
field.parts[part_index][0] = 2 # Set tokenizer.ggml.bos_token_id to 2
#
# So what's this field.data thing? It's helpful because field.parts contains
# _every_ part of the GGUF field. For example, tokenizer.ggml.bos_token_id consists
# of:
#
# Part index 0: Key length (27)
# Part index 1: Key data ("tokenizer.ggml.bos_token_id")
# Part index 2: Field type (4, the id for GGUFValueType.UINT32)
# Part index 3: Field value
#
# Note also that each part is an NDArray slice, so even a part that
# is only a single value like the key length will be a NDArray of
# the key length type (numpy.uint32).
#
# The .data attribute in the Field is a list of relevant part indexes
# and doesn't contain internal GGUF details like the key length part.
# In this case, .data will be [3] - just the part index of the
# field value itself.
def set_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
field = reader.get_field(args.key)
if field is None:
logger.error(f'! Field {repr(args.key)} not found')
sys.exit(1)
# Note that field.types is a list of types. This is because the GGUF
# format supports arrays. For example, an array of UINT32 would
# look like [GGUFValueType.ARRAY, GGUFValueType.UINT32]
handler = reader.gguf_scalar_to_np.get(field.types[0]) if field.types else None
if handler is None:
logger.error(f'! This tool only supports changing simple values, {repr(args.key)} has unsupported type {field.types}')
sys.exit(1)
current_value = field.parts[field.data[0]][0]
new_value = handler(args.value)
logger.info(f'* Preparing to change field {repr(args.key)} from {current_value} to {new_value}')
if current_value == new_value:
logger.info(f'- Key {repr(args.key)} already set to requested value {current_value}')
sys.exit(0)
if args.dry_run:
sys.exit(0)
if not args.force:
logger.warning('*** Warning *** Warning *** Warning **')
logger.warning('* Changing fields in a GGUF file can make it unusable. Proceed at your own risk.')
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
response = input('YES, I am sure> ')
if response != 'YES':
logger.info("You didn't enter YES. Okay then, see ya!")
sys.exit(0)
field.parts[field.data[0]][0] = new_value
logger.info('* Field changed. Successful completion.')
def main() -> None:
parser = argparse.ArgumentParser(description="Set a simple value in GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("key", type=str, help="Metadata key to set")
parser.add_argument("value", type=str, help="Metadata value to set")
parser.add_argument("--dry-run", action="store_true", help="Don't actually change anything")
parser.add_argument("--force", action="store_true", help="Change the field without confirmation")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
logger.info(f'* Loading: {args.model}')
reader = GGUFReader(args.model, 'r' if args.dry_run else 'r+')
set_metadata(reader, args)
if __name__ == '__main__':
main()

View file

@ -13,7 +13,7 @@ class TensorNameMap:
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf nemotron
"model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2
"tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert nomic-bert
"language_model.embedding.word_embeddings", # persimmon
@ -42,6 +42,7 @@ class TensorNameMap:
"emb_ln", # nomic-bert
"transformer.norm", # openelm
"rwkv.blocks.0.pre_ln", # rwkv
"backbone.norm", # wavtokenizer
),
# Position embeddings
@ -54,19 +55,20 @@ class TensorNameMap:
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
"output_layer", # chatglm
"head", # rwkv
"head.out", # wavtokenizer
),
# Output norm
MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
"model.norm", # llama-hf baichuan internlm2
"model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
"norm", # llama-pth
"transformer.norm_f", # mpt dbrx
"ln_f", # refact bloom qwen gpt2
@ -80,6 +82,7 @@ class TensorNameMap:
"transformer.norm", # openelm
"model.norm", # nemotron
"rwkv.ln_out", # rwkv
"backbone.final_layer_norm", # wavtokenizer
),
# Rope frequencies
@ -87,6 +90,13 @@ class TensorNameMap:
"rope.freqs", # llama-pth
"rotary_pos_emb.inv_freq", # chatglm
),
MODEL_TENSOR.ROPE_FACTORS_LONG: (),
MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
MODEL_TENSOR.CONV1D: (
"backbone.embed", # roberta
),
}
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
@ -98,7 +108,7 @@ class TensorNameMap:
"transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom
"transformer.h.{bid}.ln_mlp", # falcon40b
"model.layers.{bid}.input_layernorm", # llama-hf nemotron
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
"layers.{bid}.attention_norm", # llama-pth
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
@ -142,7 +152,8 @@ class TensorNameMap:
# Attention query
MODEL_TENSOR.ATTN_Q: (
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
"layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j
@ -154,7 +165,8 @@ class TensorNameMap:
# Attention key
MODEL_TENSOR.ATTN_K: (
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
"layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j
@ -167,7 +179,7 @@ class TensorNameMap:
# Attention value
MODEL_TENSOR.ATTN_V: (
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
"layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j
@ -185,7 +197,8 @@ class TensorNameMap:
"transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.linear_attn", # deci
"layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert
"transformer.h.{bid}.attn.out_proj", # gpt-j
@ -212,7 +225,7 @@ class TensorNameMap:
),
MODEL_TENSOR.ATTN_POST_NORM: (
"model.layers.{bid}.post_attention_layernorm", # gemma2
"model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
),
# Rotary embeddings
@ -229,7 +242,7 @@ class TensorNameMap:
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
"h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
"layers.{bid}.ffn_norm", # llama-pth
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
"model.layers.{bid}.ln2", # yi
@ -247,21 +260,26 @@ class TensorNameMap:
# Post feed-forward norm
MODEL_TENSOR.FFN_POST_NORM: (
"model.layers.{bid}.post_feedforward_layernorm", # gemma2
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
),
MODEL_TENSOR.FFN_GATE_INP: (
"layers.{bid}.feed_forward.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
"model.layers.{bid}.mlp.gate", # qwen2moe
"transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
"layers.{bid}.feed_forward.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
"model.layers.{bid}.mlp.gate", # qwen2moe olmoe
"transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
"model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
),
MODEL_TENSOR.FFN_EXP_PROBS_B: (
"model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3
),
# Feed-forward up
MODEL_TENSOR.FFN_UP: (
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
@ -269,7 +287,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.up_proj", # mpt
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
"h.{bid}.mlp.dense_h_to_4h", # bloom
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
"layers.{bid}.feed_forward.w3", # llama-pth
"encoder.layer.{bid}.intermediate.dense", # bert
"transformer.h.{bid}.mlp.fc_in", # gpt-j
@ -292,15 +310,16 @@ class TensorNameMap:
),
MODEL_TENSOR.FFN_UP_EXP: (
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
),
MODEL_TENSOR.FFN_UP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
),
# AWQ-activation gate
@ -310,7 +329,7 @@ class TensorNameMap:
# Feed-forward gate
MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
"layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen
"transformer.h.{bid}.mlp.c_fc2", # jais
@ -324,15 +343,16 @@ class TensorNameMap:
),
MODEL_TENSOR.FFN_GATE_EXP: (
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
),
MODEL_TENSOR.FFN_GATE_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
),
# Feed-forward down
@ -342,7 +362,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
"layers.{bid}.feed_forward.w2", # llama-pth
"encoder.layer.{bid}.output.dense", # bert
"transformer.h.{bid}.mlp.fc_out", # gpt-j
@ -364,21 +384,23 @@ class TensorNameMap:
),
MODEL_TENSOR.FFN_DOWN_EXP: (
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
),
MODEL_TENSOR.FFN_DOWN_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
),
MODEL_TENSOR.ATTN_Q_NORM: (
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
"model.layers.{bid}.self_attn.q_norm", # cohere
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
"transformer.layers.{bid}.attn.q_norm", # openelm
@ -387,7 +409,7 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_K_NORM: (
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
"model.layers.{bid}.self_attn.k_norm", # cohere
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
"transformer.layers.{bid}.attn.k_norm", # openelm
@ -442,34 +464,42 @@ class TensorNameMap:
MODEL_TENSOR.TIME_MIX_W1: (
"rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
"model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_W2: (
"rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
"model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_X: (
"rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
"model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_K: (
"rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
"model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_V: (
"rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
"model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_R: (
"rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
"model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_G: (
"rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
"model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LERP_W: (
"rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
"model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_FIRST: (
@ -478,30 +508,37 @@ class TensorNameMap:
MODEL_TENSOR.TIME_MIX_DECAY: (
"rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
"model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_DECAY_W1: (
"rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
"model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_DECAY_W2: (
"rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
"model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_KEY: (
"rwkv.blocks.{bid}.attention.key", # rwkv
"rwkv.blocks.{bid}.attention.key", # rwkv
"model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_VALUE: (
"rwkv.blocks.{bid}.attention.value", # rwkv
"rwkv.blocks.{bid}.attention.value", # rwkv
"model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
"rwkv.blocks.{bid}.attention.receptance", # rwkv
"model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_GATE: (
"rwkv.blocks.{bid}.attention.gate", # rwkv
"rwkv.blocks.{bid}.attention.gate", # rwkv
"model.layers.{bid}.self_attn.gate", # rwkv6qwen2
),
MODEL_TENSOR.TIME_MIX_LN: (
@ -509,7 +546,8 @@ class TensorNameMap:
),
MODEL_TENSOR.TIME_MIX_OUTPUT: (
"rwkv.blocks.{bid}.attention.output", # rwkv
"rwkv.blocks.{bid}.attention.output", # rwkv
"model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
),
MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
@ -674,9 +712,81 @@ class TensorNameMap:
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
),
############################################################################
# TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
MODEL_TENSOR.ENC_OUTPUT_NORM: (
"encoder.final_layer_norm", # t5
),
MODEL_TENSOR.CLS: (
"classifier", # jina
"classifier.dense", # roberta
),
MODEL_TENSOR.CLS_OUT: (
"classifier.out_proj", # roberta
),
#############################################################################
MODEL_TENSOR.CONVNEXT_DW: (
"backbone.convnext.{bid}.dwconv", # wavtokenizer
),
MODEL_TENSOR.CONVNEXT_NORM: (
"backbone.convnext.{bid}.norm", # wavtokenizer
),
MODEL_TENSOR.CONVNEXT_PW1: (
"backbone.convnext.{bid}.pwconv1", # wavtokenizer
),
MODEL_TENSOR.CONVNEXT_PW2: (
"backbone.convnext.{bid}.pwconv2", # wavtokenizer
),
MODEL_TENSOR.CONVNEXT_GAMMA: (
"backbone.convnext.{bid}.gamma", # wavtokenizer
),
MODEL_TENSOR.POSNET_CONV1: (
"backbone.posnet.{bid}.conv1", # wavtokenizer
),
MODEL_TENSOR.POSNET_CONV2: (
"backbone.posnet.{bid}.conv2", # wavtokenizer
),
MODEL_TENSOR.POSNET_NORM: (
"backbone.posnet.{bid}.norm", # wavtokenizer
),
MODEL_TENSOR.POSNET_NORM1: (
"backbone.posnet.{bid}.norm1", # wavtokenizer
),
MODEL_TENSOR.POSNET_NORM2: (
"backbone.posnet.{bid}.norm2", # wavtokenizer
),
MODEL_TENSOR.POSNET_ATTN_NORM: (
"backbone.posnet.{bid}.norm", # wavtokenizer
),
MODEL_TENSOR.POSNET_ATTN_Q: (
"backbone.posnet.{bid}.q", # wavtokenizer
),
MODEL_TENSOR.POSNET_ATTN_K: (
"backbone.posnet.{bid}.k", # wavtokenizer
),
MODEL_TENSOR.POSNET_ATTN_V: (
"backbone.posnet.{bid}.v", # wavtokenizer
),
MODEL_TENSOR.POSNET_ATTN_OUT: (
"backbone.posnet.{bid}.proj_out", # wavtokenizer
),
}
# architecture-specific block mappings

View file

@ -122,8 +122,30 @@ class SpecialVocab:
tokenizer = json.load(f)
if self.load_merges:
merges = tokenizer.get('model', {}).get('merges')
if isinstance(merges, list) and merges and isinstance(merges[0], str):
self.merges = merges
if isinstance(merges, list) and merges:
if isinstance(merges[0], str):
self.merges = merges
elif isinstance(merges[0], list) and len(merges[0]) == 2 and isinstance(merges[0][0], str):
# New format since transformers 4.45 to support spaces in merges
# ref: https://github.com/ggerganov/llama.cpp/issues/9692
# TODO: internally store as the new format instead of converting to old
if any(' ' in s for pair in merges for s in pair):
logger.warning(f'Spaces in merges detected, encoding as {chr(ord(" ") + 256)!r}')
self.merges = [
' '.join(
[
# ensure the spaces are properly encoded
''.join(
chr(ord(c) + 256) if c == ' ' else c
for c in part
)
for part in pair
]
)
for pair in merges
]
else:
raise ValueError("Unknown tokenizer merges format")
added_tokens = tokenizer.get('added_tokens', {})
else:
added_tokens = {}