Merge branch 'master' into compilade/imatrix-batched-chunks
This commit is contained in:
commit
db502ddd0e
762 changed files with 149462 additions and 91773 deletions
|
@ -64,20 +64,33 @@ class Keys:
|
|||
BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
|
||||
BASE_MODEL_VERSION = "general.base_model.{id}.version"
|
||||
BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
|
||||
BASE_MODEL_DESCRIPTION = "general.base_model.{id}.description"
|
||||
BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
|
||||
BASE_MODEL_DOI = "general.base_model.{id}.doi"
|
||||
BASE_MODEL_UUID = "general.base_model.{id}.uuid"
|
||||
BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
|
||||
|
||||
# Dataset Source
|
||||
DATASET_COUNT = "general.dataset.count"
|
||||
DATASET_NAME = "general.dataset.{id}.name"
|
||||
DATASET_AUTHOR = "general.dataset.{id}.author"
|
||||
DATASET_VERSION = "general.dataset.{id}.version"
|
||||
DATASET_ORGANIZATION = "general.dataset.{id}.organization"
|
||||
DATASET_DESCRIPTION = "general.dataset.{id}.description"
|
||||
DATASET_URL = "general.dataset.{id}.url" # Model Website/Paper
|
||||
DATASET_DOI = "general.dataset.{id}.doi"
|
||||
DATASET_UUID = "general.dataset.{id}.uuid"
|
||||
DATASET_REPO_URL = "general.dataset.{id}.repo_url" # Model Source Repository (git/svn/etc...)
|
||||
|
||||
# Array based KV stores
|
||||
TAGS = "general.tags"
|
||||
LANGUAGES = "general.languages"
|
||||
DATASETS = "general.datasets"
|
||||
|
||||
class LLM:
|
||||
VOCAB_SIZE = "{arch}.vocab_size"
|
||||
CONTEXT_LENGTH = "{arch}.context_length"
|
||||
EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||
FEATURES_LENGTH = "{arch}.features_length"
|
||||
BLOCK_COUNT = "{arch}.block_count"
|
||||
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
|
@ -89,14 +102,20 @@ class Keys:
|
|||
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
||||
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
|
||||
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
|
||||
EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm"
|
||||
EXPERT_GATING_FUNC = "{arch}.expert_gating_func"
|
||||
POOLING_TYPE = "{arch}.pooling_type"
|
||||
LOGIT_SCALE = "{arch}.logit_scale"
|
||||
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
|
||||
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
|
||||
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
|
||||
SWIN_NORM = "{arch}.swin_norm"
|
||||
RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
|
||||
TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
|
||||
TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
|
||||
RESIDUAL_SCALE = "{arch}.residual_scale"
|
||||
EMBEDDING_SCALE = "{arch}.embedding_scale"
|
||||
TOKEN_SHIFT_COUNT = "{arch}.token_shift_count"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
|
@ -107,14 +126,18 @@ class Keys:
|
|||
VALUE_LENGTH = "{arch}.attention.value_length"
|
||||
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
|
||||
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
|
||||
GROUPNORM_EPS = "{arch}.attention.group_norm_epsilon"
|
||||
GROUPNORM_GROUPS = "{arch}.attention.group_norm_groups"
|
||||
CAUSAL = "{arch}.attention.causal"
|
||||
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
|
||||
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
|
||||
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
|
||||
SLIDING_WINDOW = "{arch}.attention.sliding_window"
|
||||
SCALE = "{arch}.attention.scale"
|
||||
|
||||
class Rope:
|
||||
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
||||
DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
|
||||
FREQ_BASE = "{arch}.rope.freq_base"
|
||||
SCALING_TYPE = "{arch}.rope.scaling.type"
|
||||
SCALING_FACTOR = "{arch}.rope.scaling.factor"
|
||||
|
@ -138,6 +161,14 @@ class Keys:
|
|||
class WKV:
|
||||
HEAD_SIZE = "{arch}.wkv.head_size"
|
||||
|
||||
class PosNet:
|
||||
EMBEDDING_LENGTH = "{arch}.posnet.embedding_length"
|
||||
BLOCK_COUNT = "{arch}.posnet.block_count"
|
||||
|
||||
class ConvNext:
|
||||
EMBEDDING_LENGTH = "{arch}.convnext.embedding_length"
|
||||
BLOCK_COUNT = "{arch}.convnext.block_count"
|
||||
|
||||
class Tokenizer:
|
||||
MODEL = "tokenizer.ggml.model"
|
||||
PRE = "tokenizer.ggml.pre"
|
||||
|
@ -148,10 +179,11 @@ class Keys:
|
|||
MERGES = "tokenizer.ggml.merges"
|
||||
BOS_ID = "tokenizer.ggml.bos_token_id"
|
||||
EOS_ID = "tokenizer.ggml.eos_token_id"
|
||||
EOT_ID = "tokenizer.ggml.eot_token_id"
|
||||
EOM_ID = "tokenizer.ggml.eom_token_id"
|
||||
UNK_ID = "tokenizer.ggml.unknown_token_id"
|
||||
SEP_ID = "tokenizer.ggml.seperator_token_id"
|
||||
PAD_ID = "tokenizer.ggml.padding_token_id"
|
||||
CLS_ID = "tokenizer.ggml.cls_token_id"
|
||||
MASK_ID = "tokenizer.ggml.mask_token_id"
|
||||
ADD_BOS = "tokenizer.ggml.add_bos_token"
|
||||
ADD_EOS = "tokenizer.ggml.add_eos_token"
|
||||
|
@ -164,11 +196,16 @@ class Keys:
|
|||
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
|
||||
CHAT_TEMPLATES = "tokenizer.chat_templates"
|
||||
# FIM/Infill special tokens constants
|
||||
FIM_PRE_ID = "tokenizer.ggml.fim_pre_token_id"
|
||||
FIM_SUF_ID = "tokenizer.ggml.fim_suf_token_id"
|
||||
FIM_MID_ID = "tokenizer.ggml.fim_mid_token_id"
|
||||
FIM_PAD_ID = "tokenizer.ggml.fim_pad_token_id"
|
||||
FIM_REP_ID = "tokenizer.ggml.fim_rep_token_id"
|
||||
FIM_SEP_ID = "tokenizer.ggml.fim_sep_token_id"
|
||||
# deprecated:
|
||||
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
|
||||
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
|
||||
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
|
||||
EOT_ID = "tokenizer.ggml.eot_token_id"
|
||||
EOM_ID = "tokenizer.ggml.eom_token_id"
|
||||
|
||||
class Adapter:
|
||||
TYPE = "adapter.type"
|
||||
|
@ -192,50 +229,63 @@ class GGUFType:
|
|||
|
||||
|
||||
class MODEL_ARCH(IntEnum):
|
||||
LLAMA = auto()
|
||||
FALCON = auto()
|
||||
BAICHUAN = auto()
|
||||
GROK = auto()
|
||||
GPT2 = auto()
|
||||
GPTJ = auto()
|
||||
GPTNEOX = auto()
|
||||
MPT = auto()
|
||||
STARCODER = auto()
|
||||
REFACT = auto()
|
||||
BERT = auto()
|
||||
NOMIC_BERT = auto()
|
||||
JINA_BERT_V2 = auto()
|
||||
BLOOM = auto()
|
||||
STABLELM = auto()
|
||||
QWEN = auto()
|
||||
QWEN2 = auto()
|
||||
QWEN2MOE = auto()
|
||||
PHI2 = auto()
|
||||
PHI3 = auto()
|
||||
PLAMO = auto()
|
||||
CODESHELL = auto()
|
||||
ORION = auto()
|
||||
INTERNLM2 = auto()
|
||||
MINICPM = auto()
|
||||
GEMMA = auto()
|
||||
GEMMA2 = auto()
|
||||
STARCODER2 = auto()
|
||||
RWKV6 = auto()
|
||||
MAMBA = auto()
|
||||
XVERSE = auto()
|
||||
COMMAND_R = auto()
|
||||
DBRX = auto()
|
||||
OLMO = auto()
|
||||
OPENELM = auto()
|
||||
ARCTIC = auto()
|
||||
DEEPSEEK2 = auto()
|
||||
CHATGLM = auto()
|
||||
BITNET = auto()
|
||||
T5 = auto()
|
||||
T5ENCODER = auto()
|
||||
JAIS = auto()
|
||||
NEMOTRON = auto()
|
||||
EXAONE = auto()
|
||||
LLAMA = auto()
|
||||
DECI = auto()
|
||||
FALCON = auto()
|
||||
BAICHUAN = auto()
|
||||
GROK = auto()
|
||||
GPT2 = auto()
|
||||
GPTJ = auto()
|
||||
GPTNEOX = auto()
|
||||
MPT = auto()
|
||||
STARCODER = auto()
|
||||
REFACT = auto()
|
||||
BERT = auto()
|
||||
NOMIC_BERT = auto()
|
||||
JINA_BERT_V2 = auto()
|
||||
BLOOM = auto()
|
||||
STABLELM = auto()
|
||||
QWEN = auto()
|
||||
QWEN2 = auto()
|
||||
QWEN2MOE = auto()
|
||||
QWEN2VL = auto()
|
||||
PHI2 = auto()
|
||||
PHI3 = auto()
|
||||
PHIMOE = auto()
|
||||
PLAMO = auto()
|
||||
CODESHELL = auto()
|
||||
ORION = auto()
|
||||
INTERNLM2 = auto()
|
||||
MINICPM = auto()
|
||||
MINICPM3 = auto()
|
||||
GEMMA = auto()
|
||||
GEMMA2 = auto()
|
||||
STARCODER2 = auto()
|
||||
RWKV6 = auto()
|
||||
RWKV6QWEN2 = auto()
|
||||
MAMBA = auto()
|
||||
XVERSE = auto()
|
||||
COMMAND_R = auto()
|
||||
COHERE2 = auto()
|
||||
DBRX = auto()
|
||||
OLMO = auto()
|
||||
OLMO2 = auto()
|
||||
OLMOE = auto()
|
||||
OPENELM = auto()
|
||||
ARCTIC = auto()
|
||||
DEEPSEEK = auto()
|
||||
DEEPSEEK2 = auto()
|
||||
CHATGLM = auto()
|
||||
BITNET = auto()
|
||||
T5 = auto()
|
||||
T5ENCODER = auto()
|
||||
JAIS = auto()
|
||||
NEMOTRON = auto()
|
||||
EXAONE = auto()
|
||||
GRANITE = auto()
|
||||
GRANITE_MOE = auto()
|
||||
CHAMELEON = auto()
|
||||
WAVTOKENIZER_DEC = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
|
@ -274,6 +324,7 @@ class MODEL_TENSOR(IntEnum):
|
|||
FFN_GATE_SHEXP = auto()
|
||||
FFN_DOWN_SHEXP = auto()
|
||||
FFN_UP_SHEXP = auto()
|
||||
FFN_EXP_PROBS_B = auto()
|
||||
ATTN_Q_NORM = auto()
|
||||
ATTN_K_NORM = auto()
|
||||
LAYER_OUT_NORM = auto()
|
||||
|
@ -291,6 +342,7 @@ class MODEL_TENSOR(IntEnum):
|
|||
TIME_MIX_LERP_V = auto()
|
||||
TIME_MIX_LERP_R = auto()
|
||||
TIME_MIX_LERP_G = auto()
|
||||
TIME_MIX_LERP_FUSED = auto()
|
||||
TIME_MIX_LERP_W = auto()
|
||||
TIME_MIX_FIRST = auto()
|
||||
TIME_MIX_DECAY = auto()
|
||||
|
@ -343,53 +395,84 @@ class MODEL_TENSOR(IntEnum):
|
|||
ENC_FFN_DOWN = auto()
|
||||
ENC_FFN_UP = auto()
|
||||
ENC_OUTPUT_NORM = auto()
|
||||
CLS = auto() # classifier
|
||||
CLS_OUT = auto() # classifier output projection
|
||||
CONV1D = auto()
|
||||
CONVNEXT_DW = auto()
|
||||
CONVNEXT_NORM = auto()
|
||||
CONVNEXT_PW1 = auto()
|
||||
CONVNEXT_PW2 = auto()
|
||||
CONVNEXT_GAMMA = auto()
|
||||
POSNET_CONV1 = auto()
|
||||
POSNET_CONV2 = auto()
|
||||
POSNET_NORM = auto()
|
||||
POSNET_NORM1 = auto()
|
||||
POSNET_NORM2 = auto()
|
||||
POSNET_ATTN_NORM = auto()
|
||||
POSNET_ATTN_Q = auto()
|
||||
POSNET_ATTN_K = auto()
|
||||
POSNET_ATTN_V = auto()
|
||||
POSNET_ATTN_OUT = auto()
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.LLAMA: "llama",
|
||||
MODEL_ARCH.FALCON: "falcon",
|
||||
MODEL_ARCH.BAICHUAN: "baichuan",
|
||||
MODEL_ARCH.GROK: "grok",
|
||||
MODEL_ARCH.GPT2: "gpt2",
|
||||
MODEL_ARCH.GPTJ: "gptj",
|
||||
MODEL_ARCH.GPTNEOX: "gptneox",
|
||||
MODEL_ARCH.MPT: "mpt",
|
||||
MODEL_ARCH.STARCODER: "starcoder",
|
||||
MODEL_ARCH.REFACT: "refact",
|
||||
MODEL_ARCH.BERT: "bert",
|
||||
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
|
||||
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
|
||||
MODEL_ARCH.BLOOM: "bloom",
|
||||
MODEL_ARCH.STABLELM: "stablelm",
|
||||
MODEL_ARCH.QWEN: "qwen",
|
||||
MODEL_ARCH.QWEN2: "qwen2",
|
||||
MODEL_ARCH.QWEN2MOE: "qwen2moe",
|
||||
MODEL_ARCH.PHI2: "phi2",
|
||||
MODEL_ARCH.PHI3: "phi3",
|
||||
MODEL_ARCH.PLAMO: "plamo",
|
||||
MODEL_ARCH.CODESHELL: "codeshell",
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
MODEL_ARCH.MINICPM: "minicpm",
|
||||
MODEL_ARCH.GEMMA: "gemma",
|
||||
MODEL_ARCH.GEMMA2: "gemma2",
|
||||
MODEL_ARCH.STARCODER2: "starcoder2",
|
||||
MODEL_ARCH.RWKV6: "rwkv6",
|
||||
MODEL_ARCH.MAMBA: "mamba",
|
||||
MODEL_ARCH.XVERSE: "xverse",
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.DBRX: "dbrx",
|
||||
MODEL_ARCH.OLMO: "olmo",
|
||||
MODEL_ARCH.OPENELM: "openelm",
|
||||
MODEL_ARCH.ARCTIC: "arctic",
|
||||
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
||||
MODEL_ARCH.CHATGLM: "chatglm",
|
||||
MODEL_ARCH.BITNET: "bitnet",
|
||||
MODEL_ARCH.T5: "t5",
|
||||
MODEL_ARCH.T5ENCODER: "t5encoder",
|
||||
MODEL_ARCH.JAIS: "jais",
|
||||
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||
MODEL_ARCH.EXAONE: "exaone",
|
||||
MODEL_ARCH.LLAMA: "llama",
|
||||
MODEL_ARCH.DECI: "deci",
|
||||
MODEL_ARCH.FALCON: "falcon",
|
||||
MODEL_ARCH.BAICHUAN: "baichuan",
|
||||
MODEL_ARCH.GROK: "grok",
|
||||
MODEL_ARCH.GPT2: "gpt2",
|
||||
MODEL_ARCH.GPTJ: "gptj",
|
||||
MODEL_ARCH.GPTNEOX: "gptneox",
|
||||
MODEL_ARCH.MPT: "mpt",
|
||||
MODEL_ARCH.STARCODER: "starcoder",
|
||||
MODEL_ARCH.REFACT: "refact",
|
||||
MODEL_ARCH.BERT: "bert",
|
||||
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
|
||||
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
|
||||
MODEL_ARCH.BLOOM: "bloom",
|
||||
MODEL_ARCH.STABLELM: "stablelm",
|
||||
MODEL_ARCH.QWEN: "qwen",
|
||||
MODEL_ARCH.QWEN2: "qwen2",
|
||||
MODEL_ARCH.QWEN2MOE: "qwen2moe",
|
||||
MODEL_ARCH.QWEN2VL: "qwen2vl",
|
||||
MODEL_ARCH.PHI2: "phi2",
|
||||
MODEL_ARCH.PHI3: "phi3",
|
||||
MODEL_ARCH.PHIMOE: "phimoe",
|
||||
MODEL_ARCH.PLAMO: "plamo",
|
||||
MODEL_ARCH.CODESHELL: "codeshell",
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
MODEL_ARCH.MINICPM: "minicpm",
|
||||
MODEL_ARCH.MINICPM3: "minicpm3",
|
||||
MODEL_ARCH.GEMMA: "gemma",
|
||||
MODEL_ARCH.GEMMA2: "gemma2",
|
||||
MODEL_ARCH.STARCODER2: "starcoder2",
|
||||
MODEL_ARCH.RWKV6: "rwkv6",
|
||||
MODEL_ARCH.RWKV6QWEN2: "rwkv6qwen2",
|
||||
MODEL_ARCH.MAMBA: "mamba",
|
||||
MODEL_ARCH.XVERSE: "xverse",
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.COHERE2: "cohere2",
|
||||
MODEL_ARCH.DBRX: "dbrx",
|
||||
MODEL_ARCH.OLMO: "olmo",
|
||||
MODEL_ARCH.OLMO2: "olmo2",
|
||||
MODEL_ARCH.OLMOE: "olmoe",
|
||||
MODEL_ARCH.OPENELM: "openelm",
|
||||
MODEL_ARCH.ARCTIC: "arctic",
|
||||
MODEL_ARCH.DEEPSEEK: "deepseek",
|
||||
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
||||
MODEL_ARCH.CHATGLM: "chatglm",
|
||||
MODEL_ARCH.BITNET: "bitnet",
|
||||
MODEL_ARCH.T5: "t5",
|
||||
MODEL_ARCH.T5ENCODER: "t5encoder",
|
||||
MODEL_ARCH.JAIS: "jais",
|
||||
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||
MODEL_ARCH.EXAONE: "exaone",
|
||||
MODEL_ARCH.GRANITE: "granite",
|
||||
MODEL_ARCH.GRANITE_MOE: "granitemoe",
|
||||
MODEL_ARCH.CHAMELEON: "chameleon",
|
||||
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
|
@ -430,6 +513,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
|
||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
|
||||
MODEL_TENSOR.FFN_EXP_PROBS_B: "blk.{bid}.exp_probs_b",
|
||||
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
|
||||
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
|
||||
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
|
||||
|
@ -445,6 +529,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
|
||||
MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
|
||||
MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
|
||||
MODEL_TENSOR.TIME_MIX_LERP_FUSED: "blk.{bid}.time_mix_lerp_fused",
|
||||
MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
|
||||
MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
|
||||
MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
|
||||
|
@ -497,6 +582,24 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
|
||||
MODEL_TENSOR.CLS: "cls",
|
||||
MODEL_TENSOR.CLS_OUT: "cls.output",
|
||||
MODEL_TENSOR.CONV1D: "conv1d",
|
||||
MODEL_TENSOR.CONVNEXT_DW: "convnext.{bid}.dw",
|
||||
MODEL_TENSOR.CONVNEXT_NORM: "convnext.{bid}.norm",
|
||||
MODEL_TENSOR.CONVNEXT_PW1: "convnext.{bid}.pw1",
|
||||
MODEL_TENSOR.CONVNEXT_PW2: "convnext.{bid}.pw2",
|
||||
MODEL_TENSOR.CONVNEXT_GAMMA: "convnext.{bid}.gamma",
|
||||
MODEL_TENSOR.POSNET_CONV1: "posnet.{bid}.conv1",
|
||||
MODEL_TENSOR.POSNET_CONV2: "posnet.{bid}.conv2",
|
||||
MODEL_TENSOR.POSNET_NORM: "posnet.{bid}.norm",
|
||||
MODEL_TENSOR.POSNET_NORM1: "posnet.{bid}.norm1",
|
||||
MODEL_TENSOR.POSNET_NORM2: "posnet.{bid}.norm2",
|
||||
MODEL_TENSOR.POSNET_ATTN_NORM: "posnet.{bid}.attn_norm",
|
||||
MODEL_TENSOR.POSNET_ATTN_Q: "posnet.{bid}.attn_q",
|
||||
MODEL_TENSOR.POSNET_ATTN_K: "posnet.{bid}.attn_k",
|
||||
MODEL_TENSOR.POSNET_ATTN_V: "posnet.{bid}.attn_v",
|
||||
MODEL_TENSOR.POSNET_ATTN_OUT: "posnet.{bid}.attn_output",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
|
@ -520,6 +623,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.DECI: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.GROK: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
@ -606,6 +729,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
MODEL_TENSOR.CLS,
|
||||
MODEL_TENSOR.CLS_OUT,
|
||||
],
|
||||
MODEL_ARCH.NOMIC_BERT: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
@ -637,6 +762,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
MODEL_TENSOR.CLS,
|
||||
],
|
||||
MODEL_ARCH.MPT: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
@ -723,6 +849,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.QWEN2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.QWEN2VL: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
|
@ -800,6 +941,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FACTORS_LONG,
|
||||
MODEL_TENSOR.ROPE_FACTORS_SHORT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
|
@ -810,6 +953,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.PHIMOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FACTORS_LONG,
|
||||
MODEL_TENSOR.ROPE_FACTORS_SHORT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.CODESHELL: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.POS_EMBD,
|
||||
|
@ -859,6 +1020,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ROPE_FACTORS_LONG,
|
||||
MODEL_TENSOR.ROPE_FACTORS_SHORT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
|
@ -874,6 +1037,25 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.MINICPM3: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FACTORS_LONG,
|
||||
MODEL_TENSOR.ROPE_FACTORS_SHORT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_A,
|
||||
MODEL_TENSOR.ATTN_Q_B,
|
||||
MODEL_TENSOR.ATTN_KV_A_MQA,
|
||||
MODEL_TENSOR.ATTN_KV_B,
|
||||
MODEL_TENSOR.ATTN_Q_A_NORM,
|
||||
MODEL_TENSOR.ATTN_KV_A_NORM,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GEMMA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
@ -932,6 +1114,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.TIME_MIX_LERP_R,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_G,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_W,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
|
||||
MODEL_TENSOR.TIME_MIX_FIRST,
|
||||
MODEL_TENSOR.TIME_MIX_DECAY,
|
||||
MODEL_TENSOR.TIME_MIX_DECAY_W1,
|
||||
|
@ -948,6 +1131,35 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
|
||||
MODEL_TENSOR.CHANNEL_MIX_VALUE,
|
||||
],
|
||||
MODEL_ARCH.RWKV6QWEN2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.TIME_MIX_W1,
|
||||
MODEL_TENSOR.TIME_MIX_W2,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_X,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_K,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_V,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_R,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_G,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_W,
|
||||
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
|
||||
MODEL_TENSOR.TIME_MIX_FIRST,
|
||||
MODEL_TENSOR.TIME_MIX_DECAY,
|
||||
MODEL_TENSOR.TIME_MIX_DECAY_W1,
|
||||
MODEL_TENSOR.TIME_MIX_DECAY_W2,
|
||||
MODEL_TENSOR.TIME_MIX_KEY,
|
||||
MODEL_TENSOR.TIME_MIX_VALUE,
|
||||
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
|
||||
MODEL_TENSOR.TIME_MIX_GATE,
|
||||
MODEL_TENSOR.TIME_MIX_LN,
|
||||
MODEL_TENSOR.TIME_MIX_OUTPUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.MAMBA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
@ -991,6 +1203,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
],
|
||||
MODEL_ARCH.COHERE2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.DBRX: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
@ -1015,6 +1239,39 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.OLMO2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.FFN_POST_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.OLMOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
],
|
||||
MODEL_ARCH.OPENELM: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
@ -1049,6 +1306,29 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.DEEPSEEK: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
],
|
||||
MODEL_ARCH.DEEPSEEK2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
@ -1075,6 +1355,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
MODEL_TENSOR.FFN_EXP_PROBS_B,
|
||||
],
|
||||
MODEL_ARCH.CHATGLM : [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
@ -1193,6 +1474,73 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GRANITE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GRANITE_MOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.CHAMELEON: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.WAVTOKENIZER_DEC: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
||||
MODEL_TENSOR.CONV1D,
|
||||
MODEL_TENSOR.CONVNEXT_DW,
|
||||
MODEL_TENSOR.CONVNEXT_NORM,
|
||||
MODEL_TENSOR.CONVNEXT_PW1,
|
||||
MODEL_TENSOR.CONVNEXT_PW2,
|
||||
MODEL_TENSOR.CONVNEXT_GAMMA,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.POSNET_CONV1,
|
||||
MODEL_TENSOR.POSNET_CONV2,
|
||||
MODEL_TENSOR.POSNET_NORM,
|
||||
MODEL_TENSOR.POSNET_NORM1,
|
||||
MODEL_TENSOR.POSNET_NORM2,
|
||||
MODEL_TENSOR.POSNET_ATTN_NORM,
|
||||
MODEL_TENSOR.POSNET_ATTN_Q,
|
||||
MODEL_TENSOR.POSNET_ATTN_K,
|
||||
MODEL_TENSOR.POSNET_ATTN_V,
|
||||
MODEL_TENSOR.POSNET_ATTN_OUT,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
@ -1202,6 +1550,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
MODEL_ARCH.DECI: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
MODEL_ARCH.BAICHUAN: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
|
@ -1226,6 +1578,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
MODEL_ARCH.DEEPSEEK: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
MODEL_ARCH.DEEPSEEK2: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
|
@ -1254,9 +1610,10 @@ class TokenType(IntEnum):
|
|||
|
||||
|
||||
class RopeScalingType(Enum):
|
||||
NONE = 'none'
|
||||
LINEAR = 'linear'
|
||||
YARN = 'yarn'
|
||||
NONE = 'none'
|
||||
LINEAR = 'linear'
|
||||
YARN = 'yarn'
|
||||
LONGROPE = 'longrope'
|
||||
|
||||
|
||||
class PoolingType(IntEnum):
|
||||
|
@ -1295,13 +1652,15 @@ class GGMLQuantizationType(IntEnum):
|
|||
F64 = 28
|
||||
IQ1_M = 29
|
||||
BF16 = 30
|
||||
Q4_0_4_4 = 31
|
||||
Q4_0_4_8 = 32
|
||||
Q4_0_8_8 = 33
|
||||
TQ1_0 = 34
|
||||
TQ2_0 = 35
|
||||
|
||||
|
||||
class ExpertGatingFuncType(IntEnum):
|
||||
SOFTMAX = 1
|
||||
SIGMOID = 2
|
||||
|
||||
|
||||
# TODO: add GGMLFileType from ggml_ftype in ggml.h
|
||||
|
||||
|
||||
|
@ -1341,9 +1700,9 @@ class LlamaFileType(IntEnum):
|
|||
MOSTLY_IQ4_XS = 30 # except 1d tensors
|
||||
MOSTLY_IQ1_M = 31 # except 1d tensors
|
||||
MOSTLY_BF16 = 32 # except 1d tensors
|
||||
MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
|
||||
MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
|
||||
MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
|
||||
# MOSTLY_Q4_0_4_4 = 33 # removed from gguf files, use Q4_0 and runtime repack
|
||||
# MOSTLY_Q4_0_4_8 = 34 # removed from gguf files, use Q4_0 and runtime repack
|
||||
# MOSTLY_Q4_0_8_8 = 35 # removed from gguf files, use Q4_0 and runtime repack
|
||||
MOSTLY_TQ1_0 = 36 # except 1d tensors
|
||||
MOSTLY_TQ2_0 = 37 # except 1d tensors
|
||||
|
||||
|
@ -1419,9 +1778,6 @@ GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
|
|||
GGMLQuantizationType.F64: (1, 8),
|
||||
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
|
||||
GGMLQuantizationType.BF16: (1, 2),
|
||||
GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
|
||||
GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
|
||||
GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
|
||||
GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
|
||||
GGMLQuantizationType.TQ2_0: (256, 2 + 64),
|
||||
}
|
||||
|
@ -1482,15 +1838,23 @@ KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
|
|||
KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
|
||||
KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
|
||||
KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
|
||||
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
|
||||
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
|
||||
KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
|
||||
KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
|
||||
KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
|
||||
KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
|
||||
KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
|
||||
KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
|
||||
KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
|
||||
KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
|
||||
|
||||
KEY_TOKENIZER_FIM_PRE_ID = Keys.Tokenizer.FIM_PRE_ID
|
||||
KEY_TOKENIZER_FIM_SUF_ID = Keys.Tokenizer.FIM_SUF_ID
|
||||
KEY_TOKENIZER_FIM_MID_ID = Keys.Tokenizer.FIM_MID_ID
|
||||
KEY_TOKENIZER_FIM_PAD_ID = Keys.Tokenizer.FIM_PAD_ID
|
||||
KEY_TOKENIZER_FIM_REP_ID = Keys.Tokenizer.FIM_REP_ID
|
||||
KEY_TOKENIZER_FIM_SEP_ID = Keys.Tokenizer.FIM_SEP_ID
|
||||
|
||||
# deprecated
|
||||
KEY_TOKENIZER_PREFIX_ID = Keys.Tokenizer.PREFIX_ID
|
||||
KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
|
||||
KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
|
||||
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
|
||||
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue