Fic more conflicts in quantize.cpp

This commit is contained in:
Srihari-mcw 2024-07-30 09:46:22 -07:00
parent 5a6a235ac7
commit db6657eeaf
6 changed files with 166 additions and 11 deletions

View file

@ -392,6 +392,8 @@ extern "C" {
GGML_TYPE_Q4_0_4_4 = 31, GGML_TYPE_Q4_0_4_4 = 31,
GGML_TYPE_Q4_0_4_8 = 32, GGML_TYPE_Q4_0_4_8 = 32,
GGML_TYPE_Q4_0_8_8 = 33, GGML_TYPE_Q4_0_8_8 = 33,
GGML_TYPE_Q4_0_B16 = 34,
GGML_TYPE_Q8_0_B16 = 35,
GGML_TYPE_COUNT, GGML_TYPE_COUNT,
}; };
@ -433,14 +435,11 @@ extern "C" {
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
<<<<<<< HEAD
GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
======= GGML_FTYPE_MOSTLY_Q4_0_B16 = 28, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_B16 = 25, // except 1d tensors GGML_FTYPE_MOSTLY_Q8_0_B16 = 29, // except 1d tensors
GGML_FTYPE_MOSTLY_Q8_0_B16 = 26, // except 1d tensors
>>>>>>> ed837022 (Introduce Q4_0 and Q8_0 quantizations with BF16 delta values)
}; };
// available tensor operations: // available tensor operations:

View file

@ -700,7 +700,7 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
} }
// reference implementation for deterministic creation of model files // reference implementation for deterministic creation of model files
void quantize_row_q4_0_b16_reference(const float * restrict x, block_q4_0 * restrict y, int64_t k) { void quantize_row_q4_0_b16_ref(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
static const int qk = QK4_0; static const int qk = QK4_0;
assert(k % qk == 0); assert(k % qk == 0);
@ -738,7 +738,7 @@ void quantize_row_q4_0_b16_reference(const float * restrict x, block_q4_0 * rest
} }
void quantize_row_q4_0_b16(const float * restrict x, void * restrict y, int64_t k) { void quantize_row_q4_0_b16(const float * restrict x, void * restrict y, int64_t k) {
quantize_row_q4_0_b16_reference(x, y, k); quantize_row_q4_0_b16_ref(x, y, k);
} }
@ -1190,6 +1190,132 @@ void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k)
#endif #endif
} }
void quantize_row_q8_0_b16_ref(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = x[i*QK8_0 + j];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = (GGML_FP32_TO_BF16(d)).bits;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = x[i*QK8_0 + j]*id;
y[i].qs[j] = roundf(x0);
}
}
}
void quantize_row_q8_0_b16(const float * restrict x, void * restrict vy, int64_t k) {
assert(QK8_0 == 32);
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
block_q8_0 * restrict y = vy;
#if defined(__AVX2__) || defined(__AVX__)
for (int i = 0; i < nb; i++) {
// Load elements into 4 AVX vectors
__m256 v0 = _mm256_loadu_ps( x );
__m256 v1 = _mm256_loadu_ps( x + 8 );
__m256 v2 = _mm256_loadu_ps( x + 16 );
__m256 v3 = _mm256_loadu_ps( x + 24 );
x += 32;
// Compute max(abs(e)) for the block
const __m256 signBit = _mm256_set1_ps( -0.0f );
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
const float maxScalar = _mm_cvtss_f32( max4 );
// Quantize these floats
const float d = maxScalar / 127.f;
y[i].d = (GGML_FP32_TO_BF16(d)).bits;
const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
const __m256 mul = _mm256_set1_ps( id );
// Apply the multiplier
v0 = _mm256_mul_ps( v0, mul );
v1 = _mm256_mul_ps( v1, mul );
v2 = _mm256_mul_ps( v2, mul );
v3 = _mm256_mul_ps( v3, mul );
// Round to nearest integer
v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
// Convert floats to integers
__m256i i0 = _mm256_cvtps_epi32( v0 );
__m256i i1 = _mm256_cvtps_epi32( v1 );
__m256i i2 = _mm256_cvtps_epi32( v2 );
__m256i i3 = _mm256_cvtps_epi32( v3 );
#if defined(__AVX2__)
// Convert int32 to int16
i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
// Convert int16 to int8
i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
// We got our precious signed bytes, but the order is now wrong
// These AVX2 pack instructions process 16-byte pieces independently
// The following instruction is fixing the order
const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
i0 = _mm256_permutevar8x32_epi32( i0, perm );
_mm256_storeu_si256((__m256i *)y[i].qs, i0);
#else
// Since we don't have in AVX some necessary functions,
// we split the registers in half and call AVX2 analogs from SSE
__m128i ni0 = _mm256_castsi256_si128( i0 );
__m128i ni1 = _mm256_extractf128_si256( i0, 1);
__m128i ni2 = _mm256_castsi256_si128( i1 );
__m128i ni3 = _mm256_extractf128_si256( i1, 1);
__m128i ni4 = _mm256_castsi256_si128( i2 );
__m128i ni5 = _mm256_extractf128_si256( i2, 1);
__m128i ni6 = _mm256_castsi256_si128( i3 );
__m128i ni7 = _mm256_extractf128_si256( i3, 1);
// Convert int32 to int16
ni0 = _mm_packs_epi32( ni0, ni1 );
ni2 = _mm_packs_epi32( ni2, ni3 );
ni4 = _mm_packs_epi32( ni4, ni5 );
ni6 = _mm_packs_epi32( ni6, ni7 );
// Convert int16 to int8
ni0 = _mm_packs_epi16( ni0, ni2 );
ni4 = _mm_packs_epi16( ni4, ni6 );
_mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
}
#else
GGML_UNUSED(nb);
// scalar
quantize_row_q8_0_b16_ref(x, y, k);
#endif
}
// reference implementation for deterministic creation of model files // reference implementation for deterministic creation of model files
void quantize_row_q8_1_ref(const float * restrict x, block_q8_1 * restrict y, int64_t k) { void quantize_row_q8_1_ref(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
assert(QK8_1 == 32); assert(QK8_1 == 32);
@ -3217,7 +3343,7 @@ static void quantize_row_q4_0_b16_impl(const float * restrict x, block_q4_0 * re
static_assert(QK4_0 == 32, "QK4_0 must be 32"); static_assert(QK4_0 == 32, "QK4_0 must be 32");
if (!quant_weights) { if (!quant_weights) {
quantize_row_q4_0_b16_reference(x, y, n_per_row); quantize_row_q4_0_b16_ref(x, y, n_per_row);
return; return;
} }
@ -3258,7 +3384,7 @@ size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nr
size_t quantize_q4_0_b16(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { size_t quantize_q4_0_b16(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) { if (!quant_weights) {
quantize_row_q4_0_b16_reference(src, dst, (int64_t)nrow*n_per_row); quantize_row_q4_0_b16_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * ggml_row_size(GGML_TYPE_Q4_0_B16, n_per_row); return nrow * ggml_row_size(GGML_TYPE_Q4_0_B16, n_per_row);
} }
size_t row_size = ggml_row_size(GGML_TYPE_Q4_0_B16, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q4_0_B16, n_per_row);
@ -3433,7 +3559,7 @@ size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nr
size_t quantize_q8_0_b16(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { size_t quantize_q8_0_b16(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
(void)quant_weights; // not used (void)quant_weights; // not used
const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0_B16, n_per_row); const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0_B16, n_per_row);
quantize_row_q8_0_b16_reference(src, dst, (int64_t)nrow*n_per_row); quantize_row_q8_0_b16_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * row_size; return nrow * row_size;
} }

View file

@ -13,10 +13,12 @@ extern "C" {
// Quantization // Quantization
void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k); void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_0_b16_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_1_ref(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k); void quantize_row_q4_1_ref(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_0_ref(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k); void quantize_row_q5_0_ref(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k); void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k); void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_0_b16_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k); void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k); void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);

View file

@ -1033,7 +1033,31 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.ncols = 8, .ncols = 8,
.gemv = ggml_gemv_q4_0_8x8_q8_0, .gemv = ggml_gemv_q4_0_8x8_q8_0,
.gemm = ggml_gemm_q4_0_8x8_q8_0, .gemm = ggml_gemm_q4_0_8x8_q8_0,
} },
[GGML_TYPE_Q4_0_B16] = {
.type_name = "q4_0_b16",
.blck_size = QK4_0,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_0_b16,
.from_float = quantize_row_q4_0_b16,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_0_b16_ref,
.vec_dot = ggml_vec_dot_q4_0_b16_q8_0_b16,
.vec_dot_type = GGML_TYPE_Q8_0_B16,
.nrows = 1,
},
[GGML_TYPE_Q8_0_B16] = {
.type_name = "q8_0_b16",
.blck_size = QK8_0,
.type_size = sizeof(block_q8_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q8_0_b16,
.from_float = quantize_row_q8_0_b16,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_0_b16_ref,
.vec_dot = ggml_vec_dot_q8_0_b16_q8_0_b16,
.vec_dot_type = GGML_TYPE_Q8_0_B16,
.nrows = 1,
},
}; };
// For internal test use // For internal test use

View file

@ -166,6 +166,8 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0_B16 = 36, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q8_0_B16 = 37, // except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
}; };

View file

@ -3791,6 +3791,8 @@ struct llama_model_loader {
case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break; case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break; case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break; case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break;
case GGML_TYPE_Q4_0_B16: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_B16; break;
case GGML_TYPE_Q8_0_B16: ftype = LLAMA_FTYPE_MOSTLY_Q8_0_B16; break;
default: default:
{ {
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));