llama_model_loader: support multiple split/shard GGUFs (#6187)
* split: support in llama_model_loader * avoid copying the entire vector Co-authored-by: slaren <slarengh@gmail.com> * split: move llama_tensor_offset to llama_model_loader * llama_model_loader: PR feedbacks: - use only one gguf_context for metadata only - store all ggml_context in a vector as the files and mappings - store all weights in a vector along with the source tensor - rename ctx_gguf to meta - rename ctx_meta to contexts * avoid copying the entire vector * Simplify this by making these optional, switch some layer creation tensor optional Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Handle optional tensors Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama_model_loader: fail if backend cannot allocate buffer * fix mmap buffer management * llama_model_loader: map file to backend buffer if the allocation succeeds only * llama_model_loader: only map tensors included in the context * llama_model_loader: minor, use same variable name for consistency, fix spacing in types cast * llama_model_loader: fail if any of backend buffer cannot be allocated * spacing Co-authored-by: slaren <slarengh@gmail.com> * fix loop over pointer Co-authored-by: slaren <slarengh@gmail.com> * llama_model_loader: if n_tensors declared not equals to loaded tensors in split, throw an exception instead of asserting * llama_model_loader: ensure mappings vector has the expected size * llama_model_loader: use at instead of operator[] if this should never add to the map. * llama_model_loader: immediately add the backend buffer to the model buffers in order to free them if an error occurs in the next allocation. Reserve the expected size. * llama_model_loader: be sure the model mappings has enough capacity before allocating backend buffer * llama_model_loader: fix map -> unordered map * llama_split_prefix: use a clearer version, not pass split path len but dest max len. Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * llama : minor ggml-ci * llama : introduce some typedef helpers * docs: add model shard in hot topic * llama_model_loader: put mapping in a unique_ptr from the moment it is allocated Co-authored-by: slaren <slarengh@gmail.com> * fix llama_split_prefix --------- Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
This commit is contained in:
parent
ee804f6223
commit
dba1af6129
4 changed files with 412 additions and 224 deletions
474
llama.cpp
474
llama.cpp
|
@ -52,6 +52,9 @@
|
|||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#ifndef PATH_MAX
|
||||
#define PATH_MAX MAX_PATH
|
||||
#endif
|
||||
#include <io.h>
|
||||
#endif
|
||||
|
||||
|
@ -290,6 +293,10 @@ enum llm_kv {
|
|||
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
|
||||
LLM_KV_ROPE_SCALING_FINETUNED,
|
||||
|
||||
LLM_KV_SPLIT_NO,
|
||||
LLM_KV_SPLIT_COUNT,
|
||||
LLM_KV_SPLIT_TENSORS_COUNT,
|
||||
|
||||
LLM_KV_SSM_INNER_SIZE,
|
||||
LLM_KV_SSM_CONV_KERNEL,
|
||||
LLM_KV_SSM_STATE_SIZE,
|
||||
|
@ -355,6 +362,10 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|||
{ LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
|
||||
{ LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
|
||||
|
||||
{ LLM_KV_SPLIT_NO, "split.no" },
|
||||
{ LLM_KV_SPLIT_COUNT, "split.count" },
|
||||
{ LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
|
||||
|
||||
{ LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
|
||||
{ LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
|
||||
{ LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
|
||||
|
@ -1099,6 +1110,7 @@ struct llama_file {
|
|||
}
|
||||
}
|
||||
};
|
||||
using llama_files = std::vector<std::unique_ptr<llama_file>>;
|
||||
|
||||
struct llama_mmap {
|
||||
void * addr;
|
||||
|
@ -1299,6 +1311,7 @@ struct llama_mmap {
|
|||
}
|
||||
#endif
|
||||
};
|
||||
using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
|
||||
|
||||
// Represents some region of memory being locked using mlock or VirtualLock;
|
||||
// will automatically unlock on destruction.
|
||||
|
@ -1448,6 +1461,7 @@ struct llama_mlock {
|
|||
static void raw_unlock(const void * addr, size_t len) {}
|
||||
#endif
|
||||
};
|
||||
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
|
||||
|
||||
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
|
@ -2023,12 +2037,12 @@ struct llama_model {
|
|||
// the model memory buffers for the tensor data
|
||||
std::vector<ggml_backend_buffer_t> bufs;
|
||||
|
||||
// model memory mapped file
|
||||
std::unique_ptr<llama_mmap> mapping;
|
||||
// model memory mapped files
|
||||
llama_mmaps mappings;
|
||||
|
||||
// objects representing data potentially being locked in memory
|
||||
std::vector<std::unique_ptr<llama_mlock>> mlock_bufs;
|
||||
llama_mlock mlock_mmap;
|
||||
llama_mlocks mlock_bufs;
|
||||
llama_mlocks mlock_mmaps;
|
||||
|
||||
// for quantize-stats only
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
||||
|
@ -2792,6 +2806,8 @@ namespace GGUFMeta {
|
|||
};
|
||||
}
|
||||
|
||||
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
|
||||
|
||||
struct llama_model_loader {
|
||||
int n_kv = 0;
|
||||
int n_tensors = 0;
|
||||
|
@ -2802,54 +2818,133 @@ struct llama_model_loader {
|
|||
|
||||
bool use_mmap = false;
|
||||
|
||||
llama_file file;
|
||||
llama_files files;
|
||||
llama_ftype ftype;
|
||||
llama_fver fver;
|
||||
|
||||
std::unique_ptr<llama_mmap> mapping;
|
||||
llama_mmaps mappings;
|
||||
|
||||
// Holds information on a model weights
|
||||
struct llama_tensor_weights {
|
||||
uint16_t idx; // source file index
|
||||
size_t offs; // tensor data offset in the original file
|
||||
|
||||
ggml_tensor * tensor;
|
||||
|
||||
llama_tensor_weights(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
|
||||
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
|
||||
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
|
||||
}
|
||||
};
|
||||
std::vector<llama_tensor_weights> weights;
|
||||
|
||||
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
|
||||
|
||||
struct gguf_context * ctx_gguf = NULL;
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
struct gguf_context * meta = NULL;
|
||||
std::vector<ggml_context *> contexts;
|
||||
|
||||
std::string arch_name;
|
||||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
|
||||
llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") {
|
||||
llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
|
||||
int trace = 0;
|
||||
if (getenv("LLAMA_TRACE")) {
|
||||
trace = atoi(getenv("LLAMA_TRACE"));
|
||||
}
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx_meta,
|
||||
};
|
||||
|
||||
if (param_overrides_p != nullptr) {
|
||||
for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
|
||||
kv_overrides.insert({std::string(p->key), *p});
|
||||
}
|
||||
}
|
||||
|
||||
ctx_gguf = gguf_init_from_file(fname.c_str(), params);
|
||||
if (!ctx_gguf) {
|
||||
struct ggml_context * ctx = NULL;
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx,
|
||||
};
|
||||
|
||||
meta = gguf_init_from_file(fname.c_str(), params);
|
||||
if (!meta) {
|
||||
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
|
||||
}
|
||||
|
||||
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
|
||||
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
|
||||
|
||||
n_kv = gguf_get_n_kv(ctx_gguf);
|
||||
n_tensors = gguf_get_n_tensors(ctx_gguf);
|
||||
// Save tensors data offset of the main file.
|
||||
// For subsidiary files, `meta` tensor data offset must not be used,
|
||||
// so we build a unified tensors index for weights.
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
weights.emplace_back(llama_tensor_weights(0, cur->name, meta, cur));
|
||||
}
|
||||
files.emplace_back(new llama_file(fname.c_str(), "rb"));
|
||||
contexts.emplace_back(ctx);
|
||||
|
||||
fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
|
||||
uint16_t n_split = 0;
|
||||
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
|
||||
|
||||
for (int i = 0; i < n_tensors; i++) {
|
||||
const char * name = gguf_get_tensor_name(ctx_gguf, i);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
|
||||
n_elements += ggml_nelements(t);
|
||||
n_bytes += ggml_nbytes(t);
|
||||
// Load additional GGML contexts
|
||||
if (n_split > 1) {
|
||||
uint16_t idx = 0;
|
||||
get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
|
||||
if (idx != 0) {
|
||||
throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
|
||||
}
|
||||
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
|
||||
throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
|
||||
}
|
||||
|
||||
if (trace > 0) {
|
||||
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
|
||||
}
|
||||
|
||||
char split_path[PATH_MAX] = {0};
|
||||
for (idx = 1; idx < n_split; idx++) {
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
|
||||
|
||||
struct gguf_init_params split_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx,
|
||||
};
|
||||
struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
|
||||
}
|
||||
|
||||
// Save tensors data offset info of the shard.
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
weights.emplace_back(llama_tensor_weights(idx, cur->name, ctx_gguf, cur));
|
||||
}
|
||||
files.emplace_back(new llama_file(split_path, "rb"));
|
||||
contexts.emplace_back(ctx);
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
|
||||
|
||||
// sanity check
|
||||
{
|
||||
const int n_tensors_loaded = (int) weights.size();
|
||||
if (n_tensors != n_tensors_loaded) {
|
||||
throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split);
|
||||
}
|
||||
|
||||
n_kv = gguf_get_n_kv(meta);
|
||||
n_tensors = weights.size();
|
||||
|
||||
fver = (enum llama_fver) gguf_get_version(meta);
|
||||
|
||||
for (auto & w : weights) {
|
||||
n_elements += ggml_nelements(w.tensor);
|
||||
n_bytes += ggml_nbytes(w.tensor);
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
|
||||
|
@ -2864,7 +2959,8 @@ struct llama_model_loader {
|
|||
enum ggml_type type_max = GGML_TYPE_F32;
|
||||
|
||||
for (int i = 0; i < n_tensors; i++) {
|
||||
enum ggml_type type = gguf_get_tensor_type(ctx_gguf, i);
|
||||
const ggml_tensor * tensor = weights.at(i).tensor;
|
||||
enum ggml_type type = tensor->type;
|
||||
|
||||
n_type[type]++;
|
||||
|
||||
|
@ -2874,8 +2970,8 @@ struct llama_model_loader {
|
|||
}
|
||||
|
||||
if (trace > 0) {
|
||||
struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
|
||||
LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str());
|
||||
const uint16_t sid = weights.at(i).idx;
|
||||
LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2911,22 +3007,23 @@ struct llama_model_loader {
|
|||
ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
|
||||
|
||||
{
|
||||
const int kid = gguf_find_key(ctx_gguf, "general.file_type");
|
||||
const int kid = gguf_find_key(meta, "general.file_type");
|
||||
if (kid >= 0) {
|
||||
ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
|
||||
ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
|
||||
for (int i = 0; i < n_kv; i++) {
|
||||
const char * name = gguf_get_key(ctx_gguf, i);
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
const char * name = gguf_get_key(meta, i);
|
||||
const enum gguf_type type = gguf_get_kv_type(meta, i);
|
||||
const std::string type_name =
|
||||
type == GGUF_TYPE_ARRAY
|
||||
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
|
||||
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
|
||||
: gguf_type_name(type);
|
||||
|
||||
std::string value = gguf_kv_to_str(ctx_gguf, i);
|
||||
std::string value = gguf_kv_to_str(meta, i);
|
||||
const size_t MAX_VALUE_LEN = 40;
|
||||
if (value.size() > MAX_VALUE_LEN) {
|
||||
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
|
||||
|
@ -2955,18 +3052,18 @@ struct llama_model_loader {
|
|||
}
|
||||
|
||||
~llama_model_loader() {
|
||||
if (ctx_gguf) {
|
||||
gguf_free(ctx_gguf);
|
||||
if (meta) {
|
||||
gguf_free(meta);
|
||||
}
|
||||
if (ctx_meta) {
|
||||
ggml_free(ctx_meta);
|
||||
for (auto * ctx : contexts) {
|
||||
ggml_free(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
typename std::enable_if<std::is_integral<T>::value, bool>::type
|
||||
get_arr_n(const std::string & key, T & result, const bool required = true) {
|
||||
const int kid = gguf_find_key(ctx_gguf, key.c_str());
|
||||
const int kid = gguf_find_key(meta, key.c_str());
|
||||
|
||||
if (kid < 0) {
|
||||
if (required) {
|
||||
|
@ -2976,7 +3073,7 @@ struct llama_model_loader {
|
|||
}
|
||||
|
||||
struct GGUFMeta::ArrayInfo arr_info =
|
||||
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx_gguf, kid);
|
||||
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
|
||||
|
||||
|
||||
result = arr_info.length;
|
||||
|
@ -2996,7 +3093,7 @@ struct llama_model_loader {
|
|||
const struct llama_model_kv_override * override =
|
||||
it != kv_overrides.end() ? &it->second : nullptr;
|
||||
|
||||
const bool found = GGUFMeta::GKV<T>::set(ctx_gguf, key, result, override);
|
||||
const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
|
||||
|
||||
if (required && !found) {
|
||||
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
|
||||
|
@ -3019,20 +3116,33 @@ struct llama_model_loader {
|
|||
}
|
||||
|
||||
const char * get_tensor_name(int i) const {
|
||||
return gguf_get_tensor_name(ctx_gguf, i);
|
||||
return weights.at(i).tensor->name;
|
||||
}
|
||||
|
||||
const llama_tensor_weights & get_weights(const char * name) const {
|
||||
for (const auto & weight : weights) {
|
||||
if (strcmp(name, weight.tensor->name) == 0) {
|
||||
return weight;
|
||||
}
|
||||
}
|
||||
throw std::runtime_error(format("tensor %s not found", name));
|
||||
}
|
||||
|
||||
struct ggml_tensor * get_tensor_meta(const char * name) const {
|
||||
return ggml_get_tensor(ctx_meta, name);
|
||||
try {
|
||||
return get_weights(name).tensor;
|
||||
} catch (const std::runtime_error & e) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * get_tensor_meta(int i) const {
|
||||
return get_tensor_meta(get_tensor_name(i));
|
||||
}
|
||||
|
||||
struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta) {
|
||||
struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
|
||||
ggml_set_name(tensor, ggml_get_name(meta));
|
||||
struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
|
||||
struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
|
||||
ggml_set_name(tensor, ggml_get_name(cur));
|
||||
|
||||
n_created++;
|
||||
|
||||
|
@ -3040,7 +3150,7 @@ struct llama_model_loader {
|
|||
}
|
||||
|
||||
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
|
||||
const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
|
||||
|
||||
if (cur == NULL) {
|
||||
if (!required) {
|
||||
|
@ -3075,76 +3185,79 @@ struct llama_model_loader {
|
|||
}
|
||||
}
|
||||
|
||||
size_t file_offset(const char * name) const {
|
||||
const int idx = gguf_find_tensor(ctx_gguf, name);
|
||||
|
||||
if (idx < 0) {
|
||||
throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
|
||||
}
|
||||
|
||||
return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
|
||||
}
|
||||
|
||||
void init_mapping(bool prefetch = true, llama_mlock * lmlock = nullptr) {
|
||||
// prefetch the whole file - all the data is needed anyway
|
||||
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
|
||||
if (use_mmap) {
|
||||
mapping.reset(new llama_mmap(&file, prefetch ? -1 : 0, ggml_is_numa()));
|
||||
mappings.reserve(files.size());
|
||||
mmaps_used.reserve(files.size());
|
||||
for (const auto & file : files) {
|
||||
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
|
||||
mmaps_used.emplace_back(std::make_pair(mapping->size, 0));
|
||||
if (mlock_mmaps) {
|
||||
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
|
||||
mlock_mmap->init(mapping->addr);
|
||||
mlock_mmaps->emplace_back(std::move(mlock_mmap));
|
||||
}
|
||||
mappings.emplace_back(std::move(mapping));
|
||||
}
|
||||
}
|
||||
|
||||
// compute the total size of all tensors for progress reporting
|
||||
for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
|
||||
size_data += ggml_nbytes(cur);
|
||||
}
|
||||
|
||||
if (use_mmap && mapping) {
|
||||
if (lmlock) {
|
||||
lmlock->init(mapping->addr);
|
||||
}
|
||||
mmap_used_first = mapping->size;
|
||||
for (auto & w : weights) {
|
||||
size_data += ggml_nbytes(w.tensor);
|
||||
}
|
||||
}
|
||||
|
||||
void get_mapping_range(size_t * first, size_t * last, ggml_context * ctx) const {
|
||||
GGML_ASSERT(mapping);
|
||||
void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
|
||||
GGML_ASSERT(!mappings.empty());
|
||||
const auto & mapping = mappings.at(idx);
|
||||
|
||||
*first = mapping->size;
|
||||
*last = 0;
|
||||
*addr = mapping->addr;
|
||||
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
|
||||
const size_t offs = file_offset(ggml_get_name(tensor));
|
||||
*first = std::min(*first, offs);
|
||||
*last = std::max(*last, offs + ggml_nbytes(tensor));
|
||||
const auto & w = get_weights(ggml_get_name(tensor));
|
||||
if (w.idx != idx) {
|
||||
continue;
|
||||
}
|
||||
*first = std::min(*first, w.offs);
|
||||
*last = std::max(*last, w.offs + ggml_nbytes(tensor));
|
||||
}
|
||||
}
|
||||
|
||||
// for backwards compatibility, does not support ggml-backend
|
||||
void load_data_for(struct ggml_tensor * cur) const {
|
||||
const size_t offs = file_offset(ggml_get_name(cur));
|
||||
const auto & w = get_weights(ggml_get_name(cur));
|
||||
|
||||
if (use_mmap && mapping) {
|
||||
if (use_mmap) {
|
||||
const auto & mapping = mappings.at(w.idx);
|
||||
if (cur->data == nullptr) {
|
||||
cur->data = (uint8_t *)mapping->addr + offs;
|
||||
cur->data = (uint8_t *)mapping->addr + w.offs;
|
||||
} else {
|
||||
memcpy(cur->data, (uint8_t *)mapping->addr + offs, ggml_nbytes(cur));
|
||||
memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(cur->data != nullptr);
|
||||
file.seek(offs, SEEK_SET);
|
||||
file.read_raw(cur->data, ggml_nbytes(cur));
|
||||
GGML_ASSERT(w.idx < files.size());
|
||||
const auto & file = files.at(w.idx);
|
||||
file->seek(w.offs, SEEK_SET);
|
||||
file->read_raw(cur->data, ggml_nbytes(cur));
|
||||
}
|
||||
}
|
||||
|
||||
size_t size_done = 0;
|
||||
size_t size_data = 0;
|
||||
size_t mmap_used_first = -1;
|
||||
size_t mmap_used_last = 0;
|
||||
std::vector<std::pair<size_t, size_t>> mmaps_used;
|
||||
|
||||
// Returns false if cancelled by progress_callback
|
||||
bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) {
|
||||
GGML_ASSERT(size_data != 0 && "call init_mapping() first");
|
||||
bool load_all_data(
|
||||
struct ggml_context * ctx,
|
||||
llama_buf_map & bufs_mmap,
|
||||
llama_mlocks * lmlocks,
|
||||
llama_progress_callback progress_callback,
|
||||
void * progress_callback_user_data) {
|
||||
GGML_ASSERT(size_data != 0 && "call init_mappings() first");
|
||||
|
||||
std::vector<no_init<uint8_t>> read_buf;
|
||||
|
||||
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
if (progress_callback) {
|
||||
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
|
||||
|
@ -3152,41 +3265,57 @@ struct llama_model_loader {
|
|||
}
|
||||
}
|
||||
|
||||
const size_t offs = file_offset(ggml_get_name(cur));
|
||||
const auto & w = get_weights(ggml_get_name(cur));
|
||||
size_t n_size = ggml_nbytes(cur);
|
||||
|
||||
if (use_mmap && mapping) {
|
||||
if (use_mmap) {
|
||||
const auto & mapping = mappings.at(w.idx);
|
||||
ggml_backend_buffer_t buf_mmap = nullptr;
|
||||
if (bufs_mmap.count(w.idx)) {
|
||||
buf_mmap = bufs_mmap.at(w.idx);
|
||||
}
|
||||
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
|
||||
if (buf_mmap && cur->data == nullptr) {
|
||||
ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + offs);
|
||||
if (lmlock) {
|
||||
lmlock->grow_to(offs + ggml_nbytes(cur));
|
||||
ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + w.offs);
|
||||
if (lmlocks) {
|
||||
const auto & lmlock = lmlocks->at(w.idx);
|
||||
lmlock->grow_to(w.offs + ggml_nbytes(cur));
|
||||
}
|
||||
mmap_used_first = std::min(mmap_used_first, offs);
|
||||
mmap_used_last = std::max(mmap_used_last, offs + ggml_nbytes(cur));
|
||||
|
||||
auto & mmap_used = mmaps_used[w.idx];
|
||||
mmap_used.first = std::min(mmap_used.first, w.offs);
|
||||
mmap_used.second = std::max(mmap_used.second, w.offs + n_size);
|
||||
} else {
|
||||
ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + offs, 0, ggml_nbytes(cur));
|
||||
ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + w.offs, 0, n_size);
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(w.idx < files.size());
|
||||
const auto & file = files.at(w.idx);
|
||||
if (ggml_backend_buffer_is_host(cur->buffer)) {
|
||||
file.seek(offs, SEEK_SET);
|
||||
file.read_raw(cur->data, ggml_nbytes(cur));
|
||||
file->seek(w.offs, SEEK_SET);
|
||||
file->read_raw(cur->data, ggml_nbytes(cur));
|
||||
} else {
|
||||
read_buf.resize(ggml_nbytes(cur));
|
||||
file.seek(offs, SEEK_SET);
|
||||
file.read_raw(read_buf.data(), ggml_nbytes(cur));
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, ggml_nbytes(cur));
|
||||
file->seek(w.offs, SEEK_SET);
|
||||
file->read_raw(read_buf.data(), ggml_nbytes(cur));
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
|
||||
}
|
||||
}
|
||||
|
||||
size_done += ggml_nbytes(cur);
|
||||
size_done += n_size;
|
||||
}
|
||||
|
||||
// check if this is the last call and do final cleanup
|
||||
if (size_done >= size_data) {
|
||||
// unmap offloaded tensors and metadata
|
||||
if (use_mmap && mapping) {
|
||||
mapping->unmap_fragment(0, mmap_used_first);
|
||||
if (mmap_used_last != 0) {
|
||||
mapping->unmap_fragment(mmap_used_last, mapping->size);
|
||||
if (use_mmap) {
|
||||
for (uint32_t idx = 0; idx < mappings.size(); idx++) {
|
||||
const auto & mmap_used = mmaps_used.at(idx);
|
||||
auto & mapping = mappings.at(idx);
|
||||
mapping->unmap_fragment(0, mmap_used.first);
|
||||
if (mmap_used.second != 0) {
|
||||
mapping->unmap_fragment(mmap_used.second, mapping->size);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (progress_callback) {
|
||||
|
@ -3319,7 +3448,7 @@ static void llm_load_hparams(
|
|||
llama_model_loader & ml,
|
||||
llama_model & model) {
|
||||
auto & hparams = model.hparams;
|
||||
const gguf_context * ctx = ml.ctx_gguf;
|
||||
const gguf_context * ctx = ml.meta;
|
||||
|
||||
// get metadata as string
|
||||
for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
|
||||
|
@ -3709,7 +3838,7 @@ static void llm_load_vocab(
|
|||
llama_model & model) {
|
||||
auto & vocab = model.vocab;
|
||||
|
||||
struct gguf_context * ctx = ml.ctx_gguf;
|
||||
struct gguf_context * ctx = ml.meta;
|
||||
|
||||
const auto kv = LLM_KV(model.arch);
|
||||
|
||||
|
@ -4319,10 +4448,8 @@ static bool llm_load_tensors(
|
|||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||||
|
||||
if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
|
||||
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
|
||||
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
|
||||
}
|
||||
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
|
||||
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
|
||||
|
||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
|
@ -5024,56 +5151,97 @@ static bool llm_load_tensors(
|
|||
|
||||
ml.done_getting_tensors();
|
||||
|
||||
ml.init_mapping(true, use_mlock ? &model.mlock_mmap : nullptr);
|
||||
ml.init_mappings(true, &model.mlock_mmaps);
|
||||
model.mappings.reserve(ml.mappings.size());
|
||||
|
||||
// create the backend buffers
|
||||
std::vector<std::pair<ggml_context *, ggml_backend_buffer_t>> ctx_bufs;
|
||||
std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
|
||||
ctx_bufs.reserve(ctx_map.size());
|
||||
|
||||
// Ensure we have enough capacity for the maximum backend buffer we will potentially create
|
||||
size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
|
||||
model.bufs.reserve(n_max_backend_buffer);
|
||||
|
||||
for (auto & it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx = it.second;
|
||||
ggml_backend_buffer_t buf = nullptr;
|
||||
ggml_context * ctx = it.second;
|
||||
|
||||
llama_buf_map bufs;
|
||||
bufs.reserve(n_max_backend_buffer);
|
||||
|
||||
// only the mmap region containing the tensors in the model is mapped to the backend buffer
|
||||
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
|
||||
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
|
||||
if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) {
|
||||
size_t first, last;
|
||||
ml.get_mapping_range(&first, &last, ctx);
|
||||
buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
|
||||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||||
void * addr = nullptr;
|
||||
size_t first, last;
|
||||
ml.get_mapping_range(&first, &last, &addr, idx, ctx);
|
||||
if (first >= last) {
|
||||
continue;
|
||||
}
|
||||
ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
|
||||
if (buf == nullptr) {
|
||||
throw std::runtime_error("unable to allocate backend CPU buffer");
|
||||
}
|
||||
model.bufs.push_back(buf);
|
||||
bufs.emplace(idx, buf);
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (n_layer >= n_gpu_layers) {
|
||||
ggml_backend_cuda_register_host_buffer(
|
||||
if (n_layer >= n_gpu_layers) {
|
||||
ggml_backend_cuda_register_host_buffer(
|
||||
ggml_backend_buffer_get_base(buf),
|
||||
ggml_backend_buffer_get_size(buf));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#ifdef GGML_USE_METAL
|
||||
else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
|
||||
const size_t max_size = ggml_get_max_tensor_size(ctx);
|
||||
size_t first, last;
|
||||
ml.get_mapping_range(&first, &last, ctx);
|
||||
buf = ggml_backend_metal_buffer_from_ptr((char *) ml.mapping->addr + first, last - first, max_size);
|
||||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||||
const size_t max_size = ggml_get_max_tensor_size(ctx);
|
||||
void * addr = nullptr;
|
||||
size_t first, last;
|
||||
ml.get_mapping_range(&first, &last, &addr, idx, ctx);
|
||||
if (first >= last) {
|
||||
continue;
|
||||
}
|
||||
ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
|
||||
if (buf == nullptr) {
|
||||
throw std::runtime_error("unable to allocate backend metal buffer");
|
||||
}
|
||||
model.bufs.push_back(buf);
|
||||
bufs.emplace(idx, buf);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
else {
|
||||
buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (buf != nullptr && use_mlock && ggml_backend_buffer_is_host(buf)) {
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (buf == nullptr) {
|
||||
throw std::runtime_error("unable to allocate backend buffer");
|
||||
}
|
||||
model.bufs.push_back(buf);
|
||||
if (use_mlock && ggml_backend_buffer_is_host(buf)) {
|
||||
model.mlock_bufs.emplace_back(new llama_mlock);
|
||||
auto & mlock_buf = model.mlock_bufs.back();
|
||||
mlock_buf->init (ggml_backend_buffer_get_base(buf));
|
||||
mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
|
||||
}
|
||||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||||
bufs.emplace(idx, buf);
|
||||
}
|
||||
}
|
||||
if (buf == nullptr) {
|
||||
|
||||
if (bufs.empty()) {
|
||||
throw std::runtime_error("failed to allocate buffer");
|
||||
}
|
||||
// indicate that this buffer contains weights
|
||||
// this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
|
||||
ggml_backend_buffer_set_usage(buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
||||
model.bufs.push_back(buf);
|
||||
ctx_bufs.emplace_back(ctx, buf);
|
||||
|
||||
for (auto & buf : bufs) {
|
||||
// indicate that this buffer contains weights
|
||||
// this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
|
||||
ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
||||
}
|
||||
|
||||
ctx_bufs.emplace_back(ctx, bufs);
|
||||
}
|
||||
|
||||
if (llama_supports_gpu_offload()) {
|
||||
|
@ -5105,13 +5273,15 @@ static bool llm_load_tensors(
|
|||
// load tensor data
|
||||
for (auto & it : ctx_bufs) {
|
||||
ggml_context * ctx = it.first;
|
||||
ggml_backend_buffer_t buf = it.second;
|
||||
if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf, use_mlock ? &model.mlock_mmap : NULL)) {
|
||||
auto & bufs = it.second;
|
||||
if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
model.mapping = std::move(ml.mapping);
|
||||
for (auto & mapping : ml.mappings) {
|
||||
model.mappings.emplace_back(std::move(mapping));
|
||||
}
|
||||
|
||||
// loading time will be recalculate after the first eval, so
|
||||
// we take page faults deferred by mmap() into consideration
|
||||
|
@ -12302,7 +12472,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
#endif
|
||||
|
||||
llama_model_loader ml(fname_inp, use_mmap, NULL);
|
||||
ml.init_mapping(false); // no prefetching?
|
||||
ml.init_mappings(false); // no prefetching?
|
||||
|
||||
llama_model model;
|
||||
llm_load_arch(ml, model);
|
||||
|
@ -12326,12 +12496,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
struct gguf_context * ctx_out = gguf_init_empty();
|
||||
|
||||
// copy the KV pairs from the input file
|
||||
gguf_set_kv (ctx_out, ml.ctx_gguf);
|
||||
gguf_set_kv (ctx_out, ml.meta);
|
||||
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
|
||||
gguf_set_val_u32(ctx_out, "general.file_type", ftype);
|
||||
|
||||
for (int i = 0; i < ml.n_tensors; ++i) {
|
||||
struct ggml_tensor * meta = ml.get_tensor_meta(i);
|
||||
const struct ggml_tensor * meta = ml.get_tensor_meta(i);
|
||||
|
||||
const std::string name = ggml_get_name(meta);
|
||||
|
||||
|
@ -12371,7 +12541,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
|
||||
// populate the original tensors so we get an initial meta data
|
||||
for (int i = 0; i < ml.n_tensors; ++i) {
|
||||
struct ggml_tensor * meta = ml.get_tensor_meta(i);
|
||||
const struct ggml_tensor * meta = ml.get_tensor_meta(i);
|
||||
gguf_add_tensor(ctx_out, meta);
|
||||
}
|
||||
|
||||
|
@ -12576,7 +12746,7 @@ static int llama_apply_lora_from_file_internal(
|
|||
if (path_base_model) {
|
||||
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
|
||||
ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
|
||||
ml->init_mapping(/*prefetch*/ false); // no prefetching
|
||||
ml->init_mappings(/*prefetch*/ false); // no prefetching
|
||||
}
|
||||
|
||||
struct tensor_meta {
|
||||
|
@ -12697,7 +12867,7 @@ static int llama_apply_lora_from_file_internal(
|
|||
|
||||
ggml_tensor * base_t;
|
||||
if (ml) {
|
||||
if (gguf_find_tensor(ml->ctx_gguf, base_name.c_str()) < 0) {
|
||||
if (!ml->get_tensor_meta(base_name.c_str())) {
|
||||
LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
@ -14645,6 +14815,30 @@ LLAMA_API int32_t llama_chat_apply_template(
|
|||
return res;
|
||||
}
|
||||
|
||||
LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
|
||||
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
|
||||
if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
|
||||
return strlen(split_path);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
|
||||
std::string str_split_path(split_path);
|
||||
char postfix[32];
|
||||
snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
|
||||
std::string str_postfix(postfix);
|
||||
|
||||
// check if dest ends with postfix
|
||||
int size_prefix = str_split_path.size() - str_postfix.size();
|
||||
if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
|
||||
snprintf(dest, std::min((size_t) size_prefix, maxlen), "%s", split_path);
|
||||
return size_prefix;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct llama_timings llama_get_timings(struct llama_context * ctx) {
|
||||
struct llama_timings result = {
|
||||
/*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue