Merge branch 'master' of github.com:ggerganov/llama.cpp
This commit is contained in:
commit
dbdb2c1353
23 changed files with 4960 additions and 3011 deletions
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -1,6 +1,7 @@
|
||||||
*.o
|
*.o
|
||||||
*.a
|
*.a
|
||||||
*.so
|
*.so
|
||||||
|
*.bin
|
||||||
.DS_Store
|
.DS_Store
|
||||||
.build/
|
.build/
|
||||||
.cache/
|
.cache/
|
||||||
|
@ -39,6 +40,7 @@ models-mnt
|
||||||
/perplexity
|
/perplexity
|
||||||
/embedding
|
/embedding
|
||||||
/train-text-from-scratch
|
/train-text-from-scratch
|
||||||
|
/convert-llama2c-to-ggml
|
||||||
/simple
|
/simple
|
||||||
/benchmark-matmult
|
/benchmark-matmult
|
||||||
/vdot
|
/vdot
|
||||||
|
@ -68,6 +70,7 @@ poetry.lock
|
||||||
poetry.toml
|
poetry.toml
|
||||||
|
|
||||||
# Test binaries
|
# Test binaries
|
||||||
|
tests/test-grammar-parser
|
||||||
tests/test-double-float
|
tests/test-double-float
|
||||||
tests/test-grad0
|
tests/test-grad0
|
||||||
tests/test-opt
|
tests/test-opt
|
||||||
|
|
|
@ -69,7 +69,6 @@ option(LLAMA_BLAS "llama: use BLAS"
|
||||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||||
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
|
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
|
||||||
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
|
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
|
||||||
set(LLAMA_CUDA_MMQ_Y "64" CACHE STRING "llama: y tile size for mmq CUDA kernels")
|
|
||||||
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
||||||
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
|
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
|
||||||
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
|
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
|
||||||
|
@ -256,7 +255,6 @@ if (LLAMA_CUBLAS)
|
||||||
# if (LLAMA_CUDA_CUBLAS)
|
# if (LLAMA_CUDA_CUBLAS)
|
||||||
# add_compile_definitions(GGML_CUDA_CUBLAS)
|
# add_compile_definitions(GGML_CUDA_CUBLAS)
|
||||||
# endif()
|
# endif()
|
||||||
add_compile_definitions(GGML_CUDA_MMQ_Y=${LLAMA_CUDA_MMQ_Y})
|
|
||||||
if (LLAMA_CUDA_FORCE_DMMV)
|
if (LLAMA_CUDA_FORCE_DMMV)
|
||||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||||
endif()
|
endif()
|
||||||
|
|
12
Makefile
12
Makefile
|
@ -1,8 +1,8 @@
|
||||||
# Define the default target now so that it is always the first target
|
# Define the default target now so that it is always the first target
|
||||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple server embd-input-test
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test
|
||||||
|
|
||||||
# Binaries only useful for tests
|
# Binaries only useful for tests
|
||||||
TEST_TARGETS = tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
|
TEST_TARGETS = tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
|
||||||
|
|
||||||
default: $(BUILD_TARGETS)
|
default: $(BUILD_TARGETS)
|
||||||
|
|
||||||
|
@ -345,7 +345,7 @@ libllama.so: llama.o ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch embd-input-test build-info.h $(TEST_TARGETS)
|
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test build-info.h $(TEST_TARGETS)
|
||||||
|
|
||||||
#
|
#
|
||||||
# Examples
|
# Examples
|
||||||
|
@ -388,6 +388,9 @@ embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-te
|
||||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
|
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||||
@sh scripts/build-info.sh > $@.tmp
|
@sh scripts/build-info.sh > $@.tmp
|
||||||
@if ! cmp -s $@.tmp $@; then \
|
@if ! cmp -s $@.tmp $@; then \
|
||||||
|
@ -409,6 +412,9 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
|
||||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
tests/test-grammar-parser: tests/test-grammar-parser.cpp examples/grammar-parser.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
|
|
@ -42,6 +42,7 @@ else()
|
||||||
add_subdirectory(benchmark)
|
add_subdirectory(benchmark)
|
||||||
add_subdirectory(baby-llama)
|
add_subdirectory(baby-llama)
|
||||||
add_subdirectory(train-text-from-scratch)
|
add_subdirectory(train-text-from-scratch)
|
||||||
|
add_subdirectory(convert-llama2c-to-ggml)
|
||||||
add_subdirectory(simple)
|
add_subdirectory(simple)
|
||||||
add_subdirectory(embd-input)
|
add_subdirectory(embd-input)
|
||||||
if (LLAMA_METAL)
|
if (LLAMA_METAL)
|
||||||
|
|
|
@ -543,7 +543,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||||
fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
||||||
fprintf(stdout, " -f FNAME, --file FNAME\n");
|
fprintf(stdout, " -f FNAME, --file FNAME\n");
|
||||||
fprintf(stdout, " prompt file to start generation.\n");
|
fprintf(stdout, " prompt file to start generation.\n");
|
||||||
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
|
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||||
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||||
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
|
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
|
||||||
|
|
|
@ -10,6 +10,9 @@
|
||||||
#include <windows.h>
|
#include <windows.h>
|
||||||
#include <fcntl.h>
|
#include <fcntl.h>
|
||||||
#include <io.h>
|
#include <io.h>
|
||||||
|
#ifndef ENABLE_VIRTUAL_TERMINAL_PROCESSING
|
||||||
|
#define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
|
||||||
|
#endif
|
||||||
#else
|
#else
|
||||||
#include <climits>
|
#include <climits>
|
||||||
#include <sys/ioctl.h>
|
#include <sys/ioctl.h>
|
||||||
|
@ -68,9 +71,10 @@ namespace console {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (hConsole) {
|
if (hConsole) {
|
||||||
// Enable ANSI colors on Windows 10+
|
// Check conditions combined to reduce nesting
|
||||||
if (advanced_display && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
|
if (advanced_display && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING) &&
|
||||||
SetConsoleMode(hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING);
|
!SetConsoleMode(hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
|
||||||
|
advanced_display = false;
|
||||||
}
|
}
|
||||||
// Set console output codepage to UTF8
|
// Set console output codepage to UTF8
|
||||||
SetConsoleOutputCP(CP_UTF8);
|
SetConsoleOutputCP(CP_UTF8);
|
||||||
|
|
5
examples/convert-llama2c-to-ggml/CMakeLists.txt
Normal file
5
examples/convert-llama2c-to-ggml/CMakeLists.txt
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
set(TARGET convert-llama2c-to-ggml)
|
||||||
|
add_executable(${TARGET} convert-llama2c-to-ggml.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
26
examples/convert-llama2c-to-ggml/README.md
Normal file
26
examples/convert-llama2c-to-ggml/README.md
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
## Convert llama2.c model to ggml
|
||||||
|
|
||||||
|
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
|
||||||
|
|
||||||
|
To convert the model first download the models from the [llma2.c](https://github.com/karpathy/llama2.c) repository:
|
||||||
|
|
||||||
|
`$ make -j`
|
||||||
|
|
||||||
|
After successful compilation, following usage options are available:
|
||||||
|
```
|
||||||
|
usage: ./convert-llama2c-to-ggml [options]
|
||||||
|
|
||||||
|
options:
|
||||||
|
-h, --help show this help message and exit
|
||||||
|
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'models/ggml-vocab.bin')
|
||||||
|
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
|
||||||
|
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
|
||||||
|
```
|
||||||
|
|
||||||
|
An example command is as follows:
|
||||||
|
|
||||||
|
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model <ggml-vocab.bin> --llama2c-model <llama2.c model path> --llama2c-output-model <ggml output model path>`
|
||||||
|
|
||||||
|
Now you can use the model with command like:
|
||||||
|
|
||||||
|
`$ ./main -m <ggml output model path> -p "One day, Lily met a Shoggoth" -n 500 -c 256 -eps 1e-5`
|
825
examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp
Normal file
825
examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp
Normal file
|
@ -0,0 +1,825 @@
|
||||||
|
#include "ggml.h"
|
||||||
|
#include "llama.h"
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <vector>
|
||||||
|
#include <cassert>
|
||||||
|
#include <climits>
|
||||||
|
#include <cstring>
|
||||||
|
#include <cstdarg>
|
||||||
|
#include <ctime>
|
||||||
|
#include <random>
|
||||||
|
#include <stdexcept>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
#endif
|
||||||
|
|
||||||
|
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
||||||
|
typedef struct {
|
||||||
|
int dim; // transformer dimension
|
||||||
|
int hidden_dim; // for ffn layers
|
||||||
|
int n_layers; // number of layers
|
||||||
|
int n_heads; // number of query heads
|
||||||
|
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
|
||||||
|
int vocab_size; // vocabulary size, usually 256 (byte-level)
|
||||||
|
int seq_len; // max sequence length
|
||||||
|
} Config;
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
// token embedding table
|
||||||
|
float* token_embedding_table; // (vocab_size, dim)
|
||||||
|
// weights for rmsnorms
|
||||||
|
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
||||||
|
float* rms_ffn_weight; // (layer, dim)
|
||||||
|
// weights for matmuls
|
||||||
|
float* wq; // (layer, dim, dim)
|
||||||
|
float* wk; // (layer, dim, dim)
|
||||||
|
float* wv; // (layer, dim, dim)
|
||||||
|
float* wo; // (layer, dim, dim)
|
||||||
|
// weights for ffn
|
||||||
|
float* w1; // (layer, hidden_dim, dim)
|
||||||
|
float* w2; // (layer, dim, hidden_dim)
|
||||||
|
float* w3; // (layer, hidden_dim, dim)
|
||||||
|
// final rmsnorm
|
||||||
|
float* rms_final_weight; // (dim,)
|
||||||
|
// freq_cis for RoPE relatively positional embeddings
|
||||||
|
// float* freq_cis_real; // (seq_len, dim/2)
|
||||||
|
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||||
|
// (optional) classifier weights for the logits, on the last layer
|
||||||
|
//float* wcls;
|
||||||
|
} TransformerWeights;
|
||||||
|
|
||||||
|
void malloc_weights(TransformerWeights* w, Config* p) {
|
||||||
|
// we calloc instead of malloc to keep valgrind happy
|
||||||
|
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||||
|
|
||||||
|
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||||
|
|
||||||
|
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||||
|
|
||||||
|
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
|
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
|
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
|
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
|
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
|
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
|
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
|
w->rms_final_weight = new float[p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||||
|
}
|
||||||
|
|
||||||
|
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) {
|
||||||
|
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||||
|
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||||
|
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||||
|
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||||
|
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||||
|
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||||
|
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||||
|
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||||
|
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
||||||
|
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||||
|
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void free_weights(TransformerWeights* w) {
|
||||||
|
delete w->token_embedding_table;
|
||||||
|
delete w->rms_att_weight;
|
||||||
|
delete w->rms_ffn_weight;
|
||||||
|
delete w->wq;
|
||||||
|
delete w->wk;
|
||||||
|
delete w->wv;
|
||||||
|
delete w->wo;
|
||||||
|
delete w->w1;
|
||||||
|
delete w->w2;
|
||||||
|
delete w->w3;
|
||||||
|
delete w->rms_final_weight;
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_sample_weights(TransformerWeights *w){
|
||||||
|
printf("----- Quick print of first of the weight vales of all the variables\n");
|
||||||
|
printf("%f\n", w->token_embedding_table[0]);
|
||||||
|
printf("%f\n", w->rms_att_weight[0]);
|
||||||
|
printf("%f\n", w->rms_ffn_weight[0]);
|
||||||
|
|
||||||
|
printf("%f\n", w->wq[0]);
|
||||||
|
printf("%f\n", w->wk[0]);
|
||||||
|
printf("%f\n", w->wv[0]);
|
||||||
|
printf("%f\n", w->wo[0]);
|
||||||
|
printf("%f\n", w->w1[0]);
|
||||||
|
printf("%f\n", w->w2[0]);
|
||||||
|
printf("%f\n", w->w3[0]);
|
||||||
|
printf("%f\n", w->rms_att_weight[0]);
|
||||||
|
}
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
|
||||||
|
|
||||||
|
struct llama_vocab {
|
||||||
|
using id = int32_t;
|
||||||
|
using token = std::string;
|
||||||
|
|
||||||
|
struct token_score {
|
||||||
|
token tok;
|
||||||
|
float score;
|
||||||
|
};
|
||||||
|
|
||||||
|
std::unordered_map<token, id> token_to_id;
|
||||||
|
std::vector<token_score> id_to_token;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct my_llama_hparams {
|
||||||
|
uint32_t n_vocab = 32000;
|
||||||
|
uint32_t n_ctx = 512; // this is provided as user input?
|
||||||
|
uint32_t n_embd = 4096;
|
||||||
|
uint32_t n_mult = 4;
|
||||||
|
uint32_t n_head = 32;
|
||||||
|
uint32_t n_layer = 32;
|
||||||
|
uint32_t n_rot = 64;
|
||||||
|
bool operator!=(const my_llama_hparams& other) const {
|
||||||
|
return memcmp(this, &other, sizeof(my_llama_hparams));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct my_llama_layer {
|
||||||
|
// normalization
|
||||||
|
struct ggml_tensor * attention_norm;
|
||||||
|
|
||||||
|
// attention
|
||||||
|
struct ggml_tensor * wq;
|
||||||
|
struct ggml_tensor * wk;
|
||||||
|
struct ggml_tensor * wv;
|
||||||
|
struct ggml_tensor * wo;
|
||||||
|
|
||||||
|
// normalization
|
||||||
|
struct ggml_tensor * ffn_norm;
|
||||||
|
|
||||||
|
// ff
|
||||||
|
struct ggml_tensor * w1;
|
||||||
|
struct ggml_tensor * w2;
|
||||||
|
struct ggml_tensor * w3;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct my_llama_model {
|
||||||
|
struct ggml_context * ctx = NULL;
|
||||||
|
|
||||||
|
my_llama_hparams hparams;
|
||||||
|
|
||||||
|
struct ggml_tensor * tok_embeddings;
|
||||||
|
|
||||||
|
struct ggml_tensor * norm;
|
||||||
|
struct ggml_tensor * output;
|
||||||
|
|
||||||
|
std::vector<my_llama_layer> layers;
|
||||||
|
|
||||||
|
uint32_t train_its = 0;
|
||||||
|
uint32_t train_samples = 0;
|
||||||
|
uint32_t train_tokens = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct train_params {
|
||||||
|
const char * fn_vocab_model;
|
||||||
|
const char * fn_llama2c_model;
|
||||||
|
const char * fn_llama2c_output_model;
|
||||||
|
const char * fn_train_data;
|
||||||
|
const char * fn_checkpoint_in;
|
||||||
|
const char * fn_checkpoint_out;
|
||||||
|
const char * fn_model_out;
|
||||||
|
|
||||||
|
uint32_t seed;
|
||||||
|
|
||||||
|
int n_ctx;
|
||||||
|
int n_embd;
|
||||||
|
int n_mult;
|
||||||
|
int n_head;
|
||||||
|
int n_layer;
|
||||||
|
int n_rotmax;
|
||||||
|
|
||||||
|
int n_threads;
|
||||||
|
int n_batch;
|
||||||
|
int n_examples;
|
||||||
|
int n_predict;
|
||||||
|
|
||||||
|
int print_info_interval;
|
||||||
|
int print_details_interval;
|
||||||
|
|
||||||
|
bool samples_start_after_nl;
|
||||||
|
bool use_adam;
|
||||||
|
bool use_flash;
|
||||||
|
bool use_scratch;
|
||||||
|
|
||||||
|
// only adam
|
||||||
|
int warmup;
|
||||||
|
int cos_decay_steps;
|
||||||
|
float cos_decay_restart;
|
||||||
|
float cos_decay_alpha;
|
||||||
|
|
||||||
|
int lbfgs_n_iter;
|
||||||
|
int adam_n_iter;
|
||||||
|
float adam_alpha;
|
||||||
|
float adam_decay;
|
||||||
|
|
||||||
|
int mem_model_gb;
|
||||||
|
int mem_compute_gb;
|
||||||
|
int mem_compute0_gb;
|
||||||
|
int mem_compute1_gb;
|
||||||
|
};
|
||||||
|
|
||||||
|
uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
|
||||||
|
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
|
||||||
|
return n_ff;
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_params(struct my_llama_hparams * params) {
|
||||||
|
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
||||||
|
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
||||||
|
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
||||||
|
printf("%s: n_mult: %d\n", __func__, params->n_mult);
|
||||||
|
printf("%s: n_head: %d\n", __func__, params->n_head);
|
||||||
|
printf("%s: n_ff: %d\n", __func__, get_n_ff(params));
|
||||||
|
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
||||||
|
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
||||||
|
}
|
||||||
|
|
||||||
|
void init_model(struct my_llama_model * model) {
|
||||||
|
const auto & hparams = model->hparams;
|
||||||
|
|
||||||
|
const uint32_t n_embd = hparams.n_embd;
|
||||||
|
const uint32_t n_layer = hparams.n_layer;
|
||||||
|
const uint32_t n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
|
const uint32_t n_ff = get_n_ff(&hparams);
|
||||||
|
struct ggml_context * ctx = model->ctx;
|
||||||
|
|
||||||
|
model->train_its = 0;
|
||||||
|
model->train_samples = 0;
|
||||||
|
model->train_tokens = 0;
|
||||||
|
|
||||||
|
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||||
|
printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||||
|
|
||||||
|
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
|
||||||
|
|
||||||
|
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||||
|
|
||||||
|
// printing the per-layer allocations here so we dont print in the for loop.
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||||
|
|
||||||
|
printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
|
||||||
|
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||||
|
|
||||||
|
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||||
|
ggml_set_name(model->norm, "norm.weight");
|
||||||
|
ggml_set_name(model->output, "output.weight");
|
||||||
|
|
||||||
|
model->layers.resize(n_layer);
|
||||||
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||||
|
auto & layer = model->layers[i];
|
||||||
|
|
||||||
|
std::string layers_i = "layers." + std::to_string(i);
|
||||||
|
|
||||||
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
|
||||||
|
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
|
||||||
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
|
||||||
|
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||||
|
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||||
|
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||||
|
|
||||||
|
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
|
||||||
|
|
||||||
|
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
|
||||||
|
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
|
||||||
|
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
|
||||||
|
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
|
||||||
|
|
||||||
|
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
|
||||||
|
|
||||||
|
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
|
||||||
|
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
||||||
|
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||||
|
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
||||||
|
return *ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||||
|
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
||||||
|
return *ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_row(struct ggml_tensor * probs, int i) {
|
||||||
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||||
|
float p = get_f32_2d(probs, k, i);
|
||||||
|
printf(" %f", p);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_matrix(struct ggml_tensor * probs) {
|
||||||
|
assert(probs->n_dims == 2);
|
||||||
|
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||||
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||||
|
float p = get_f32_2d(probs, k, i);
|
||||||
|
printf(" %.2f", p);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef __GNUC__
|
||||||
|
#ifdef __MINGW32__
|
||||||
|
__attribute__((format(gnu_printf, 1, 2)))
|
||||||
|
#else
|
||||||
|
__attribute__((format(printf, 1, 2)))
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
static std::string format(const char * fmt, ...) {
|
||||||
|
va_list ap, ap2;
|
||||||
|
va_start(ap, fmt);
|
||||||
|
va_copy(ap2, ap);
|
||||||
|
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||||
|
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
||||||
|
std::vector<char> buf(size + 1);
|
||||||
|
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||||
|
GGML_ASSERT(size2 == size);
|
||||||
|
va_end(ap2);
|
||||||
|
va_end(ap);
|
||||||
|
return std::string(buf.data(), size);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct llama_file {
|
||||||
|
// use FILE * so we don't have to re-open the file to mmap
|
||||||
|
FILE * fp;
|
||||||
|
size_t size;
|
||||||
|
|
||||||
|
llama_file(const char * fname, const char * mode) {
|
||||||
|
fp = std::fopen(fname, mode);
|
||||||
|
if (fp == NULL) {
|
||||||
|
size = 0;
|
||||||
|
} else {
|
||||||
|
seek(0, SEEK_END);
|
||||||
|
size = tell();
|
||||||
|
seek(0, SEEK_SET);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t tell() const {
|
||||||
|
#ifdef _WIN32
|
||||||
|
__int64 ret = _ftelli64(fp);
|
||||||
|
#else
|
||||||
|
long ret = std::ftell(fp);
|
||||||
|
#endif
|
||||||
|
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||||
|
return (size_t) ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
void seek(size_t offset, int whence) {
|
||||||
|
#ifdef _WIN32
|
||||||
|
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||||
|
#else
|
||||||
|
int ret = std::fseek(fp, (long) offset, whence);
|
||||||
|
#endif
|
||||||
|
GGML_ASSERT(ret == 0); // same
|
||||||
|
}
|
||||||
|
|
||||||
|
void read_raw(void * ptr, size_t size) {
|
||||||
|
if (size == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
errno = 0;
|
||||||
|
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||||
|
if (ferror(fp)) {
|
||||||
|
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||||
|
}
|
||||||
|
if (ret != 1) {
|
||||||
|
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::uint32_t read_u32() {
|
||||||
|
std::uint32_t ret;
|
||||||
|
read_raw(&ret, sizeof(ret));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
std::float_t read_f32() {
|
||||||
|
std::float_t ret;
|
||||||
|
read_raw(&ret, sizeof(ret));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string read_string(std::uint32_t len) {
|
||||||
|
std::vector<char> chars(len);
|
||||||
|
read_raw(chars.data(), len);
|
||||||
|
return std::string(chars.data(), len);
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_raw(const void * ptr, size_t size) {
|
||||||
|
if (size == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
errno = 0;
|
||||||
|
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||||
|
if (ret != 1) {
|
||||||
|
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_u32(std::uint32_t val) {
|
||||||
|
write_raw(&val, sizeof(val));
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_file() {
|
||||||
|
if (fp) {
|
||||||
|
std::fclose(fp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
|
||||||
|
if (tensor == NULL) {
|
||||||
|
file->write_u32(0);
|
||||||
|
file->write_u32(0);
|
||||||
|
file->write_u32(GGML_TYPE_F32);
|
||||||
|
file->seek((0-file->tell()) & 31, SEEK_CUR);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
const char * name = ggml_get_name(tensor);
|
||||||
|
uint32_t name_len = strlen(name);
|
||||||
|
uint32_t nd = tensor->n_dims;
|
||||||
|
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
|
||||||
|
(uint32_t)tensor->ne[1],
|
||||||
|
(uint32_t)tensor->ne[2],
|
||||||
|
(uint32_t)tensor->ne[3] };
|
||||||
|
file->write_u32(nd);
|
||||||
|
file->write_u32(name_len);
|
||||||
|
file->write_u32(tensor->type);
|
||||||
|
file->write_raw(ne, sizeof(ne[0]) * nd);
|
||||||
|
file->write_raw(name, name_len);
|
||||||
|
file->seek((0-file->tell()) & 31, SEEK_CUR);
|
||||||
|
file->write_raw(tensor->data, ggml_nbytes(tensor));
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_ggml_file(const char *filename) {
|
||||||
|
llama_file file(filename, "rb");
|
||||||
|
if (file.size < 4) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
uint32_t magic = file.read_u32();
|
||||||
|
return magic == LLAMA_FILE_MAGIC;
|
||||||
|
}
|
||||||
|
|
||||||
|
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||||
|
// heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
|
||||||
|
if (is_ggml_file(filename)) {
|
||||||
|
|
||||||
|
struct llama_context_params llama_params = llama_context_default_params();
|
||||||
|
llama_params.vocab_only = true;
|
||||||
|
|
||||||
|
struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
|
||||||
|
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
|
||||||
|
|
||||||
|
std::vector<const char *> strings;
|
||||||
|
std::vector<float> scores;
|
||||||
|
int n_vocab = llama_n_vocab(lctx);
|
||||||
|
strings.resize(n_vocab, NULL);
|
||||||
|
scores.resize(n_vocab, 0);
|
||||||
|
n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
|
||||||
|
GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
|
||||||
|
vocab->id_to_token.resize(n_vocab);
|
||||||
|
for (int i=0; i<n_vocab; ++i) {
|
||||||
|
std::string tok = std::string(strings[i]);
|
||||||
|
float score = scores[i];
|
||||||
|
vocab->id_to_token[i].tok = tok;
|
||||||
|
vocab->id_to_token[i].score = score;
|
||||||
|
vocab->token_to_id.emplace(tok, i);
|
||||||
|
}
|
||||||
|
llama_free(lctx);
|
||||||
|
llama_free_model(lmodel);
|
||||||
|
} else { // assume llama2.c vocabulary
|
||||||
|
printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
|
||||||
|
llama_file file(filename, "rb");
|
||||||
|
uint32_t n_vocab = config->vocab_size;
|
||||||
|
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
||||||
|
vocab->id_to_token.resize(n_vocab);
|
||||||
|
for (uint32_t i=0; i<n_vocab; ++i) {
|
||||||
|
float_t score = file.read_f32();
|
||||||
|
uint32_t len = file.read_u32();
|
||||||
|
std::string tok = file.read_string(len);
|
||||||
|
vocab->id_to_token[i].tok = tok;
|
||||||
|
vocab->id_to_token[i].score = score;
|
||||||
|
vocab->token_to_id.emplace(tok, i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
|
||||||
|
int ct;
|
||||||
|
switch (gg_weights->n_dims){
|
||||||
|
case 1:
|
||||||
|
ct = 0;
|
||||||
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
||||||
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
||||||
|
*ptr = karpathy_weights[ct];
|
||||||
|
ct++;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
ct = 0;
|
||||||
|
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||||
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||||
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
||||||
|
*ptr = karpathy_weights[ct];
|
||||||
|
ct++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
ct = 0;
|
||||||
|
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
||||||
|
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||||
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||||
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
||||||
|
*ptr = karpathy_weights[ct];
|
||||||
|
ct++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
|
||||||
|
struct llama_file file(filename, "wb");
|
||||||
|
if (file.fp == NULL) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
// write_magic
|
||||||
|
file.write_u32(LLAMA_FILE_MAGIC); // magic
|
||||||
|
file.write_u32(LLAMA_FILE_VERSION); // version
|
||||||
|
// write_hparams
|
||||||
|
file.write_u32(model->hparams.n_vocab);
|
||||||
|
file.write_u32(model->hparams.n_embd);
|
||||||
|
file.write_u32(model->hparams.n_mult);
|
||||||
|
file.write_u32(model->hparams.n_head);
|
||||||
|
file.write_u32(model->hparams.n_layer);
|
||||||
|
file.write_u32(model->hparams.n_rot);
|
||||||
|
file.write_u32(LLAMA_FTYPE_ALL_F32);
|
||||||
|
|
||||||
|
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
|
||||||
|
uint32_t n_vocab = model->hparams.n_vocab;
|
||||||
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
||||||
|
const auto & token_score = vocab->id_to_token.at(i);
|
||||||
|
file.write_u32((uint32_t) token_score.tok.size());
|
||||||
|
file.write_raw(token_score.tok.data(), token_score.tok.size());
|
||||||
|
file.write_raw(&token_score.score, sizeof(token_score.score));
|
||||||
|
}
|
||||||
|
|
||||||
|
// stuff AK weights into GG weights one by one.
|
||||||
|
// w->token_embedding_table -> model->tok_embeddings
|
||||||
|
// float* -> struct ggml_tensor
|
||||||
|
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
||||||
|
stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
|
||||||
|
|
||||||
|
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
||||||
|
//print_row(model->norm, 0);
|
||||||
|
|
||||||
|
// for rms-att-weight
|
||||||
|
int row_length = model->hparams.n_embd;
|
||||||
|
const auto & hparams = model->hparams;
|
||||||
|
//int n_ff = model->hparams.n_embd;
|
||||||
|
int n_ff = get_n_ff(&hparams);
|
||||||
|
|
||||||
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||||
|
auto & layer = model->layers[i];
|
||||||
|
// 1d
|
||||||
|
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||||
|
|
||||||
|
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||||
|
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||||
|
|
||||||
|
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||||
|
}
|
||||||
|
// write tensors
|
||||||
|
write_tensor(&file, model->tok_embeddings);
|
||||||
|
write_tensor(&file, model->norm);
|
||||||
|
write_tensor(&file, model->output); // ?
|
||||||
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||||
|
auto & layer = model->layers[i];
|
||||||
|
|
||||||
|
write_tensor(&file, layer.attention_norm);
|
||||||
|
write_tensor(&file, layer.wq);
|
||||||
|
write_tensor(&file, layer.wk);
|
||||||
|
write_tensor(&file, layer.wv);
|
||||||
|
write_tensor(&file, layer.wo);
|
||||||
|
write_tensor(&file, layer.ffn_norm);
|
||||||
|
write_tensor(&file, layer.w1);
|
||||||
|
write_tensor(&file, layer.w2);
|
||||||
|
write_tensor(&file, layer.w3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct train_params get_default_train_params() {
|
||||||
|
struct train_params params;
|
||||||
|
params.fn_vocab_model = "models/ggml-vocab.bin";
|
||||||
|
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||||
|
params.fn_train_data = "shakespeare.txt";
|
||||||
|
params.fn_checkpoint_in = "checkpoint.bin";
|
||||||
|
params.fn_checkpoint_out = "checkpoint.bin";
|
||||||
|
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||||
|
|
||||||
|
params.seed = -1;
|
||||||
|
|
||||||
|
params.n_ctx = 128;
|
||||||
|
params.n_embd = 256;
|
||||||
|
params.n_mult = 256;
|
||||||
|
params.n_head = 8;
|
||||||
|
params.n_layer = 16;
|
||||||
|
params.n_rotmax = 64;
|
||||||
|
|
||||||
|
params.n_threads = 6;
|
||||||
|
params.n_batch = 8;
|
||||||
|
params.n_examples = 8;
|
||||||
|
params.n_predict = 1024;
|
||||||
|
|
||||||
|
params.print_info_interval = 1;
|
||||||
|
params.print_details_interval = 2;
|
||||||
|
|
||||||
|
params.samples_start_after_nl = false;
|
||||||
|
params.use_adam = true;
|
||||||
|
params.use_flash = true;
|
||||||
|
params.use_scratch = true;
|
||||||
|
|
||||||
|
// only adam
|
||||||
|
params.warmup = 100;
|
||||||
|
params.cos_decay_steps = 1000;
|
||||||
|
params.cos_decay_restart = 1.1f;
|
||||||
|
params.cos_decay_alpha = 0.0f;
|
||||||
|
|
||||||
|
params.lbfgs_n_iter = 16;
|
||||||
|
params.adam_n_iter = 16;
|
||||||
|
params.adam_alpha = 1e-3f;
|
||||||
|
params.adam_decay = 1e-3f;
|
||||||
|
|
||||||
|
params.mem_model_gb = 2;
|
||||||
|
params.mem_compute_gb = 24;
|
||||||
|
params.mem_compute0_gb = 8;
|
||||||
|
params.mem_compute1_gb = 2;
|
||||||
|
|
||||||
|
return params;
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
|
||||||
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "options:\n");
|
||||||
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||||
|
fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggml model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
||||||
|
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
||||||
|
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
bool params_parse(int argc, char ** argv, struct train_params * params) {
|
||||||
|
bool invalid_param = false;
|
||||||
|
bool reqd_param_found = false;
|
||||||
|
std::string arg;
|
||||||
|
struct train_params default_params = get_default_train_params();
|
||||||
|
const std::string arg_prefix = "--";
|
||||||
|
|
||||||
|
for (int i = 1; i < argc; i++) {
|
||||||
|
arg = argv[i];
|
||||||
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||||
|
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||||
|
}
|
||||||
|
|
||||||
|
if (arg == "--copy-vocab-from-model") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params->fn_vocab_model = argv[i];
|
||||||
|
} else if (arg == "--llama2c-model") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
reqd_param_found = true;
|
||||||
|
params->fn_llama2c_model = argv[i];
|
||||||
|
} else if (arg == "--llama2c-output-model") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params->fn_llama2c_output_model = argv[i];
|
||||||
|
} else if (arg == "-h" || arg == "--help") {
|
||||||
|
print_usage(argc, argv, &default_params);
|
||||||
|
exit(0);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||||
|
print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (invalid_param) {
|
||||||
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||||
|
print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
if (!reqd_param_found){
|
||||||
|
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
|
||||||
|
print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
struct train_params params = get_default_train_params();
|
||||||
|
if (!params_parse(argc, argv, ¶ms)) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
Config config;
|
||||||
|
TransformerWeights weights;
|
||||||
|
{
|
||||||
|
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
||||||
|
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||||
|
// read in the config header
|
||||||
|
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
||||||
|
// read in the Transformer weights
|
||||||
|
malloc_weights(&weights, &config);
|
||||||
|
if(checkpoint_init_weights(&weights, &config, file)) { return 1; }
|
||||||
|
fclose(file);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct llama_vocab vocab;
|
||||||
|
load_vocab(params.fn_vocab_model, &config, &vocab);
|
||||||
|
|
||||||
|
struct my_llama_model model;
|
||||||
|
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||||
|
model.hparams.n_ctx = params.n_ctx;
|
||||||
|
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||||
|
model.hparams.n_mult = 32;//params.n_mult;
|
||||||
|
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||||
|
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||||
|
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||||
|
print_params(&model.hparams);
|
||||||
|
struct ggml_init_params lcparams;
|
||||||
|
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
||||||
|
lcparams.mem_buffer = NULL;
|
||||||
|
lcparams.no_alloc = false;
|
||||||
|
|
||||||
|
model.ctx = ggml_init(lcparams);
|
||||||
|
|
||||||
|
init_model(&model);
|
||||||
|
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||||
|
|
||||||
|
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||||
|
|
||||||
|
ggml_free(model.ctx);
|
||||||
|
free_weights(&weights);
|
||||||
|
return 0;
|
||||||
|
}
|
|
@ -160,9 +160,13 @@ The following options allow you to control the text generation process and fine-
|
||||||
|
|
||||||
### Number of Tokens to Predict
|
### Number of Tokens to Predict
|
||||||
|
|
||||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity).
|
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity, -2 = until context filled)
|
||||||
|
|
||||||
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. A value of -1 will cause text to be generated without limit.
|
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
|
||||||
|
|
||||||
|
A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--n-keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in significant pause in output.
|
||||||
|
|
||||||
|
If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
|
||||||
|
|
||||||
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
|
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
|
||||||
|
|
||||||
|
|
|
@ -431,8 +431,12 @@ int main(int argc, char ** argv) {
|
||||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||||
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
||||||
const int n_left = n_past - params.n_keep;
|
if (params.n_predict == -2) {
|
||||||
|
fprintf(stderr, "\n\n%s: context full, stopping generation\n", __func__);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_left = n_past - params.n_keep;
|
||||||
// always keep the first token - BOS
|
// always keep the first token - BOS
|
||||||
n_past = std::max(1, params.n_keep);
|
n_past = std::max(1, params.n_keep);
|
||||||
n_past_guidance = std::max(1, params.n_keep + guidance_offset);
|
n_past_guidance = std::max(1, params.n_keep + guidance_offset);
|
||||||
|
|
|
@ -1,5 +1,34 @@
|
||||||
import * as readline from 'node:readline'
|
import * as readline from 'node:readline'
|
||||||
import { stdin, stdout } from 'node:process'
|
import { stdin, stdout } from 'node:process'
|
||||||
|
import { readFileSync } from 'node:fs'
|
||||||
|
import { SchemaConverter } from './public/json-schema-to-grammar.mjs'
|
||||||
|
|
||||||
|
const args = process.argv.slice(2);
|
||||||
|
const grammarJsonSchemaFile = args.find(
|
||||||
|
(_, index) => args[index - 1] === "--grammar-json-schema"
|
||||||
|
);
|
||||||
|
const grammarFile = args.find((_, index) => args[index - 1] === "--grammar");
|
||||||
|
|
||||||
|
// Example usage: function,arguments
|
||||||
|
const grammarJsonSchemaPropOrder = args.find(
|
||||||
|
(_, index) => args[index - 1] === "--grammar-json-schema-prop-order"
|
||||||
|
);
|
||||||
|
const propOrder = grammarJsonSchemaPropOrder
|
||||||
|
? grammarJsonSchemaPropOrder
|
||||||
|
.split(",")
|
||||||
|
.reduce((acc, cur, index) => ({ ...acc, [cur]: index }), {})
|
||||||
|
: {};
|
||||||
|
|
||||||
|
let grammar = null
|
||||||
|
if (grammarJsonSchemaFile) {
|
||||||
|
const schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
|
||||||
|
const converter = new SchemaConverter(propOrder)
|
||||||
|
converter.visit(schema, '')
|
||||||
|
grammar = converter.formatGrammar()
|
||||||
|
}
|
||||||
|
if (grammarFile) {
|
||||||
|
grammar = readFileSync(grammarFile, 'utf-8')
|
||||||
|
}
|
||||||
|
|
||||||
const API_URL = 'http://127.0.0.1:8080'
|
const API_URL = 'http://127.0.0.1:8080'
|
||||||
|
|
||||||
|
@ -48,6 +77,7 @@ async function chat_completion(question) {
|
||||||
n_keep: n_keep,
|
n_keep: n_keep,
|
||||||
n_predict: 256,
|
n_predict: 256,
|
||||||
stop: ["\n### Human:"], // stop completion after generating this
|
stop: ["\n### Human:"], // stop completion after generating this
|
||||||
|
grammar,
|
||||||
stream: true,
|
stream: true,
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
|
|
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
311
examples/server/json-schema-to-grammar.mjs.hpp
Normal file
311
examples/server/json-schema-to-grammar.mjs.hpp
Normal file
|
@ -0,0 +1,311 @@
|
||||||
|
unsigned char json_schema_to_grammar_mjs[] = {
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x53, 0x50, 0x41, 0x43, 0x45, 0x5f,
|
||||||
|
0x52, 0x55, 0x4c, 0x45, 0x20, 0x3d, 0x20, 0x27, 0x22, 0x20, 0x22, 0x3f,
|
||||||
|
0x27, 0x3b, 0x0a, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x50, 0x52,
|
||||||
|
0x49, 0x4d, 0x49, 0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||||
|
0x53, 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x62, 0x6f, 0x6f, 0x6c,
|
||||||
|
0x65, 0x61, 0x6e, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x74, 0x72, 0x75, 0x65,
|
||||||
|
0x22, 0x20, 0x7c, 0x20, 0x22, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x22, 0x29,
|
||||||
|
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x6e,
|
||||||
|
0x75, 0x6d, 0x62, 0x65, 0x72, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x2d, 0x22,
|
||||||
|
0x3f, 0x20, 0x28, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x20, 0x7c, 0x20, 0x5b,
|
||||||
|
0x31, 0x2d, 0x39, 0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2a, 0x29,
|
||||||
|
0x29, 0x20, 0x28, 0x22, 0x2e, 0x22, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d,
|
||||||
|
0x2b, 0x29, 0x3f, 0x20, 0x28, 0x5b, 0x65, 0x45, 0x5d, 0x20, 0x5b, 0x2d,
|
||||||
|
0x2b, 0x5d, 0x3f, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2b, 0x29, 0x3f,
|
||||||
|
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x69,
|
||||||
|
0x6e, 0x74, 0x65, 0x67, 0x65, 0x72, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x2d,
|
||||||
|
0x22, 0x3f, 0x20, 0x28, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x20, 0x7c, 0x20,
|
||||||
|
0x5b, 0x31, 0x2d, 0x39, 0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2a,
|
||||||
|
0x29, 0x29, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20,
|
||||||
|
0x20, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x60, 0x20, 0x22,
|
||||||
|
0x5c, 0x5c, 0x22, 0x22, 0x20, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x5b, 0x5e, 0x22, 0x5c, 0x5c, 0x5c, 0x5c, 0x5d, 0x20,
|
||||||
|
0x7c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x22, 0x5c,
|
||||||
|
0x5c, 0x5c, 0x5c, 0x22, 0x20, 0x28, 0x5b, 0x22, 0x5c, 0x5c, 0x5c, 0x5c,
|
||||||
|
0x2f, 0x62, 0x66, 0x6e, 0x72, 0x74, 0x5d, 0x20, 0x7c, 0x20, 0x22, 0x75,
|
||||||
|
0x22, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||||
|
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||||
|
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||||
|
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||||
|
0x5d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x2a, 0x20,
|
||||||
|
0x22, 0x5c, 0x5c, 0x22, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x60,
|
||||||
|
0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3a, 0x20, 0x27, 0x22,
|
||||||
|
0x6e, 0x75, 0x6c, 0x6c, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||||
|
0x2c, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||||
|
0x49, 0x4e, 0x56, 0x41, 0x4c, 0x49, 0x44, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||||
|
0x5f, 0x43, 0x48, 0x41, 0x52, 0x53, 0x5f, 0x52, 0x45, 0x20, 0x3d, 0x20,
|
||||||
|
0x2f, 0x5b, 0x5e, 0x5c, 0x64, 0x41, 0x2d, 0x5a, 0x61, 0x2d, 0x7a, 0x2d,
|
||||||
|
0x5d, 0x2b, 0x2f, 0x67, 0x3b, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||||
|
0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54, 0x45,
|
||||||
|
0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x5f, 0x52,
|
||||||
|
0x45, 0x20, 0x3d, 0x20, 0x2f, 0x5b, 0x5c, 0x6e, 0x5c, 0x72, 0x22, 0x5d,
|
||||||
|
0x2f, 0x67, 0x3b, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x47, 0x52,
|
||||||
|
0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54, 0x45, 0x52, 0x41,
|
||||||
|
0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x53, 0x20, 0x3d, 0x20,
|
||||||
|
0x7b, 0x27, 0x5c, 0x72, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x72, 0x27,
|
||||||
|
0x2c, 0x20, 0x27, 0x5c, 0x6e, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x6e,
|
||||||
|
0x27, 0x2c, 0x20, 0x27, 0x22, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x22,
|
||||||
|
0x27, 0x7d, 0x3b, 0x0a, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20,
|
||||||
|
0x63, 0x6c, 0x61, 0x73, 0x73, 0x20, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61,
|
||||||
|
0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a,
|
||||||
|
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f,
|
||||||
|
0x72, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x29,
|
||||||
|
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||||
|
0x5f, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x3d,
|
||||||
|
0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x7c,
|
||||||
|
0x7c, 0x20, 0x7b, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68,
|
||||||
|
0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x20, 0x3d, 0x20,
|
||||||
|
0x6e, 0x65, 0x77, 0x20, 0x4d, 0x61, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c,
|
||||||
|
0x65, 0x73, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x27, 0x73, 0x70, 0x61, 0x63,
|
||||||
|
0x65, 0x27, 0x2c, 0x20, 0x53, 0x50, 0x41, 0x43, 0x45, 0x5f, 0x52, 0x55,
|
||||||
|
0x4c, 0x45, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||||
|
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||||
|
0x61, 0x6c, 0x28, 0x6c, 0x69, 0x74, 0x65, 0x72, 0x61, 0x6c, 0x29, 0x20,
|
||||||
|
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||||
|
0x65, 0x73, 0x63, 0x61, 0x70, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x4a, 0x53,
|
||||||
|
0x4f, 0x4e, 0x2e, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79,
|
||||||
|
0x28, 0x6c, 0x69, 0x74, 0x65, 0x72, 0x61, 0x6c, 0x29, 0x2e, 0x72, 0x65,
|
||||||
|
0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54,
|
||||||
|
0x45, 0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x5f,
|
||||||
|
0x52, 0x45, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x20,
|
||||||
|
0x3d, 0x3e, 0x20, 0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c,
|
||||||
|
0x49, 0x54, 0x45, 0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50,
|
||||||
|
0x45, 0x53, 0x5b, 0x6d, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||||
|
0x60, 0x22, 0x24, 0x7b, 0x65, 0x73, 0x63, 0x61, 0x70, 0x65, 0x64, 0x7d,
|
||||||
|
0x22, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x5f,
|
||||||
|
0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x6e, 0x61, 0x6d, 0x65,
|
||||||
|
0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d,
|
||||||
|
0x65, 0x20, 0x3d, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2e, 0x72, 0x65, 0x70,
|
||||||
|
0x6c, 0x61, 0x63, 0x65, 0x28, 0x49, 0x4e, 0x56, 0x41, 0x4c, 0x49, 0x44,
|
||||||
|
0x5f, 0x52, 0x55, 0x4c, 0x45, 0x5f, 0x43, 0x48, 0x41, 0x52, 0x53, 0x5f,
|
||||||
|
0x52, 0x45, 0x2c, 0x20, 0x27, 0x2d, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6b, 0x65, 0x79, 0x20, 0x3d, 0x20,
|
||||||
|
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x3b, 0x0a, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f,
|
||||||
|
0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x68, 0x61, 0x73, 0x28, 0x65, 0x73,
|
||||||
|
0x63, 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73,
|
||||||
|
0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x67, 0x65, 0x74, 0x28,
|
||||||
|
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x20, 0x3d, 0x3d, 0x3d,
|
||||||
|
0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||||
|
0x6b, 0x65, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||||
|
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||||
|
0x69, 0x20, 0x3d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73,
|
||||||
|
0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x68, 0x61, 0x73, 0x28,
|
||||||
|
0x60, 0x24, 0x7b, 0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||||
|
0x7b, 0x69, 0x7d, 0x60, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x20, 0x2b, 0x3d, 0x20, 0x31, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x6b, 0x65, 0x79, 0x20, 0x3d, 0x20, 0x60, 0x24, 0x7b,
|
||||||
|
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x24, 0x7b, 0x69, 0x7d,
|
||||||
|
0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65,
|
||||||
|
0x73, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x6b, 0x65, 0x79, 0x2c, 0x20, 0x72,
|
||||||
|
0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||||
|
0x74, 0x75, 0x72, 0x6e, 0x20, 0x6b, 0x65, 0x79, 0x3b, 0x0a, 0x20, 0x20,
|
||||||
|
0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x76, 0x69, 0x73, 0x69, 0x74, 0x28, 0x73,
|
||||||
|
0x63, 0x68, 0x65, 0x6d, 0x61, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x29,
|
||||||
|
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||||
|
0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x20,
|
||||||
|
0x3d, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x74, 0x79, 0x70,
|
||||||
|
0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||||
|
0x20, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20,
|
||||||
|
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x7c, 0x7c, 0x20, 0x27, 0x72, 0x6f, 0x6f,
|
||||||
|
0x74, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||||
|
0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x6f, 0x6e, 0x65, 0x4f,
|
||||||
|
0x66, 0x20, 0x7c, 0x7c, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e,
|
||||||
|
0x61, 0x6e, 0x79, 0x4f, 0x66, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c,
|
||||||
|
0x65, 0x20, 0x3d, 0x20, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e,
|
||||||
|
0x6f, 0x6e, 0x65, 0x4f, 0x66, 0x20, 0x7c, 0x7c, 0x20, 0x73, 0x63, 0x68,
|
||||||
|
0x65, 0x6d, 0x61, 0x2e, 0x61, 0x6e, 0x79, 0x4f, 0x66, 0x29, 0x2e, 0x6d,
|
||||||
|
0x61, 0x70, 0x28, 0x28, 0x61, 0x6c, 0x74, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||||
|
0x61, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x69,
|
||||||
|
0x73, 0x69, 0x74, 0x28, 0x61, 0x6c, 0x74, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||||
|
0x61, 0x2c, 0x20, 0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||||
|
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20,
|
||||||
|
0x3a, 0x20, 0x22, 0x22, 0x7d, 0x24, 0x7b, 0x69, 0x7d, 0x60, 0x29, 0x0a,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e,
|
||||||
|
0x28, 0x27, 0x20, 0x7c, 0x20, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74,
|
||||||
|
0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65,
|
||||||
|
0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x72,
|
||||||
|
0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20,
|
||||||
|
0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x27, 0x63, 0x6f,
|
||||||
|
0x6e, 0x73, 0x74, 0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65,
|
||||||
|
0x6d, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||||
|
0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c,
|
||||||
|
0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||||
|
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||||
|
0x61, 0x6c, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x63, 0x6f,
|
||||||
|
0x6e, 0x73, 0x74, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||||
|
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x27, 0x65,
|
||||||
|
0x6e, 0x75, 0x6d, 0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65,
|
||||||
|
0x6d, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x3d,
|
||||||
|
0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x65, 0x6e, 0x75, 0x6d,
|
||||||
|
0x2e, 0x6d, 0x61, 0x70, 0x28, 0x76, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x68,
|
||||||
|
0x69, 0x73, 0x2e, 0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69,
|
||||||
|
0x74, 0x65, 0x72, 0x61, 0x6c, 0x28, 0x76, 0x29, 0x29, 0x2e, 0x6a, 0x6f,
|
||||||
|
0x69, 0x6e, 0x28, 0x27, 0x20, 0x7c, 0x20, 0x27, 0x29, 0x3b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||||
|
0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c,
|
||||||
|
0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20,
|
||||||
|
0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||||
|
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x73, 0x63,
|
||||||
|
0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x20, 0x3d, 0x3d, 0x3d,
|
||||||
|
0x20, 0x27, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x27, 0x20, 0x26, 0x26,
|
||||||
|
0x20, 0x27, 0x70, 0x72, 0x6f, 0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73,
|
||||||
|
0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x29,
|
||||||
|
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||||
|
0x54, 0x4f, 0x44, 0x4f, 0x3a, 0x20, 0x60, 0x72, 0x65, 0x71, 0x75, 0x69,
|
||||||
|
0x72, 0x65, 0x64, 0x60, 0x20, 0x6b, 0x65, 0x79, 0x77, 0x6f, 0x72, 0x64,
|
||||||
|
0x20, 0x28, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x70, 0x79, 0x74, 0x68, 0x6f,
|
||||||
|
0x6e, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x61,
|
||||||
|
0x74, 0x69, 0x6f, 0x6e, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72,
|
||||||
|
0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f,
|
||||||
|
0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x3b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70,
|
||||||
|
0x72, 0x6f, 0x70, 0x50, 0x61, 0x69, 0x72, 0x73, 0x20, 0x3d, 0x20, 0x4f,
|
||||||
|
0x62, 0x6a, 0x65, 0x63, 0x74, 0x2e, 0x65, 0x6e, 0x74, 0x72, 0x69, 0x65,
|
||||||
|
0x73, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x70, 0x72, 0x6f,
|
||||||
|
0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73, 0x29, 0x2e, 0x73, 0x6f, 0x72,
|
||||||
|
0x74, 0x28, 0x28, 0x61, 0x2c, 0x20, 0x62, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||||
|
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||||
|
0x20, 0x73, 0x6f, 0x72, 0x74, 0x20, 0x62, 0x79, 0x20, 0x70, 0x6f, 0x73,
|
||||||
|
0x69, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x70, 0x72, 0x6f,
|
||||||
|
0x70, 0x5f, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x28, 0x69, 0x66, 0x20,
|
||||||
|
0x73, 0x70, 0x65, 0x63, 0x69, 0x66, 0x69, 0x65, 0x64, 0x29, 0x20, 0x74,
|
||||||
|
0x68, 0x65, 0x6e, 0x20, 0x62, 0x79, 0x20, 0x6b, 0x65, 0x79, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||||
|
0x20, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x41, 0x20, 0x3d, 0x20, 0x74, 0x79,
|
||||||
|
0x70, 0x65, 0x6f, 0x66, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64,
|
||||||
|
0x65, 0x72, 0x5b, 0x61, 0x5b, 0x30, 0x5d, 0x5d, 0x20, 0x3d, 0x3d, 0x3d,
|
||||||
|
0x20, 0x27, 0x6e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x27, 0x20, 0x3f, 0x20,
|
||||||
|
0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x5b, 0x61, 0x5b,
|
||||||
|
0x30, 0x5d, 0x5d, 0x20, 0x3a, 0x20, 0x49, 0x6e, 0x66, 0x69, 0x6e, 0x69,
|
||||||
|
0x74, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x42,
|
||||||
|
0x20, 0x3d, 0x20, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x70, 0x72,
|
||||||
|
0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x5b, 0x62, 0x5b, 0x30, 0x5d,
|
||||||
|
0x5d, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x6e, 0x75, 0x6d, 0x62, 0x65,
|
||||||
|
0x72, 0x27, 0x20, 0x3f, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64,
|
||||||
|
0x65, 0x72, 0x5b, 0x62, 0x5b, 0x30, 0x5d, 0x5d, 0x20, 0x3a, 0x20, 0x49,
|
||||||
|
0x6e, 0x66, 0x69, 0x6e, 0x69, 0x74, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||||
|
0x6f, 0x72, 0x64, 0x65, 0x72, 0x41, 0x20, 0x2d, 0x20, 0x6f, 0x72, 0x64,
|
||||||
|
0x65, 0x72, 0x42, 0x20, 0x7c, 0x7c, 0x20, 0x61, 0x5b, 0x30, 0x5d, 0x2e,
|
||||||
|
0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x65, 0x43, 0x6f, 0x6d, 0x70, 0x61, 0x72,
|
||||||
|
0x65, 0x28, 0x62, 0x5b, 0x30, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x3d,
|
||||||
|
0x20, 0x27, 0x22, 0x7b, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||||
|
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, 0x6f, 0x70,
|
||||||
|
0x50, 0x61, 0x69, 0x72, 0x73, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63,
|
||||||
|
0x68, 0x28, 0x28, 0x5b, 0x70, 0x72, 0x6f, 0x70, 0x4e, 0x61, 0x6d, 0x65,
|
||||||
|
0x2c, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61,
|
||||||
|
0x5d, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||||
|
0x20, 0x70, 0x72, 0x6f, 0x70, 0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d,
|
||||||
|
0x65, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x69, 0x73,
|
||||||
|
0x69, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||||
|
0x61, 0x2c, 0x20, 0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||||
|
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20,
|
||||||
|
0x3a, 0x20, 0x22, 0x22, 0x7d, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70, 0x4e,
|
||||||
|
0x61, 0x6d, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x69, 0x20, 0x3e, 0x20,
|
||||||
|
0x30, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x2b, 0x3d, 0x20, 0x27,
|
||||||
|
0x20, 0x22, 0x2c, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20,
|
||||||
|
0x2b, 0x3d, 0x20, 0x60, 0x20, 0x24, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||||
|
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||||
|
0x61, 0x6c, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x4e, 0x61, 0x6d, 0x65, 0x29,
|
||||||
|
0x7d, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x22, 0x3a, 0x22, 0x20,
|
||||||
|
0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70,
|
||||||
|
0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x60, 0x3b, 0x0a,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x2b, 0x3d, 0x20,
|
||||||
|
0x27, 0x20, 0x22, 0x7d, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||||
|
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74,
|
||||||
|
0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64,
|
||||||
|
0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61,
|
||||||
|
0x6d, 0x65, 0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66,
|
||||||
|
0x20, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65,
|
||||||
|
0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x61, 0x72, 0x72, 0x61, 0x79, 0x27,
|
||||||
|
0x20, 0x26, 0x26, 0x20, 0x27, 0x69, 0x74, 0x65, 0x6d, 0x73, 0x27, 0x20,
|
||||||
|
0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x29, 0x20, 0x7b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x4f,
|
||||||
|
0x44, 0x4f, 0x20, 0x60, 0x70, 0x72, 0x65, 0x66, 0x69, 0x78, 0x49, 0x74,
|
||||||
|
0x65, 0x6d, 0x73, 0x60, 0x20, 0x6b, 0x65, 0x79, 0x77, 0x6f, 0x72, 0x64,
|
||||||
|
0x20, 0x28, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x70, 0x79, 0x74, 0x68, 0x6f,
|
||||||
|
0x6e, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x61,
|
||||||
|
0x74, 0x69, 0x6f, 0x6e, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x69, 0x74, 0x65, 0x6d, 0x52, 0x75,
|
||||||
|
0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69,
|
||||||
|
0x73, 0x2e, 0x76, 0x69, 0x73, 0x69, 0x74, 0x28, 0x73, 0x63, 0x68, 0x65,
|
||||||
|
0x6d, 0x61, 0x2e, 0x69, 0x74, 0x65, 0x6d, 0x73, 0x2c, 0x20, 0x60, 0x24,
|
||||||
|
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65,
|
||||||
|
0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20, 0x3a, 0x20, 0x22, 0x22, 0x7d,
|
||||||
|
0x69, 0x74, 0x65, 0x6d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65,
|
||||||
|
0x20, 0x3d, 0x20, 0x60, 0x22, 0x5b, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63,
|
||||||
|
0x65, 0x20, 0x28, 0x24, 0x7b, 0x69, 0x74, 0x65, 0x6d, 0x52, 0x75, 0x6c,
|
||||||
|
0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x20, 0x28, 0x22, 0x2c, 0x22, 0x20,
|
||||||
|
0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x24, 0x7b, 0x69, 0x74, 0x65, 0x6d,
|
||||||
|
0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x29, 0x2a, 0x29,
|
||||||
|
0x3f, 0x20, 0x22, 0x5d, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x60,
|
||||||
|
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
|
||||||
|
0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64,
|
||||||
|
0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d,
|
||||||
|
0x65, 0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x50, 0x52,
|
||||||
|
0x49, 0x4d, 0x49, 0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||||
|
0x53, 0x5b, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65,
|
||||||
|
0x5d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45,
|
||||||
|
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x55, 0x6e, 0x72, 0x65, 0x63, 0x6f,
|
||||||
|
0x67, 0x6e, 0x69, 0x7a, 0x65, 0x64, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d,
|
||||||
|
0x61, 0x3a, 0x20, 0x24, 0x7b, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74,
|
||||||
|
0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x73, 0x63, 0x68, 0x65,
|
||||||
|
0x6d, 0x61, 0x29, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||||
|
0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61,
|
||||||
|
0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65,
|
||||||
|
0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x72, 0x6f, 0x6f, 0x74, 0x27, 0x20,
|
||||||
|
0x3f, 0x20, 0x27, 0x72, 0x6f, 0x6f, 0x74, 0x27, 0x20, 0x3a, 0x20, 0x73,
|
||||||
|
0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x2c, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x50, 0x52, 0x49, 0x4d, 0x49,
|
||||||
|
0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45, 0x53, 0x5b, 0x73,
|
||||||
|
0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x5d, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72,
|
||||||
|
0x6d, 0x61, 0x74, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x28, 0x29,
|
||||||
|
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x67,
|
||||||
|
0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x3d, 0x20, 0x27, 0x27, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72,
|
||||||
|
0x75, 0x6c, 0x65, 0x73, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68,
|
||||||
|
0x28, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65,
|
||||||
|
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x2b, 0x3d, 0x20,
|
||||||
|
0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x20, 0x3a, 0x3a, 0x3d,
|
||||||
|
0x20, 0x24, 0x7b, 0x72, 0x75, 0x6c, 0x65, 0x7d, 0x5c, 0x6e, 0x60, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x72, 0x61, 0x6d,
|
||||||
|
0x6d, 0x61, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a
|
||||||
|
};
|
||||||
|
unsigned int json_schema_to_grammar_mjs_len = 3695;
|
|
@ -141,6 +141,7 @@
|
||||||
} from '/index.js';
|
} from '/index.js';
|
||||||
|
|
||||||
import { llama } from '/completion.js';
|
import { llama } from '/completion.js';
|
||||||
|
import { SchemaConverter } from '/json-schema-to-grammar.mjs';
|
||||||
|
|
||||||
const session = signal({
|
const session = signal({
|
||||||
prompt: "This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.",
|
prompt: "This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.",
|
||||||
|
@ -166,6 +167,7 @@
|
||||||
mirostat: 0, // 0/1/2
|
mirostat: 0, // 0/1/2
|
||||||
mirostat_tau: 5, // target entropy
|
mirostat_tau: 5, // target entropy
|
||||||
mirostat_eta: 0.1, // learning rate
|
mirostat_eta: 0.1, // learning rate
|
||||||
|
grammar: null,
|
||||||
})
|
})
|
||||||
|
|
||||||
const llamaStats = signal(null)
|
const llamaStats = signal(null)
|
||||||
|
@ -304,6 +306,26 @@
|
||||||
const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
|
const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
|
||||||
const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
|
const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
|
||||||
|
|
||||||
|
const grammarJsonSchemaPropOrder = signal('')
|
||||||
|
const updateGrammarJsonSchemaPropOrder = (el) => grammarJsonSchemaPropOrder.value = el.target.value
|
||||||
|
const convertJSONSchemaGrammar = () => {
|
||||||
|
try {
|
||||||
|
const schema = JSON.parse(params.value.grammar)
|
||||||
|
const converter = new SchemaConverter(
|
||||||
|
grammarJsonSchemaPropOrder.value
|
||||||
|
.split(',')
|
||||||
|
.reduce((acc, cur, i) => ({...acc, [cur.trim()]: i}), {})
|
||||||
|
)
|
||||||
|
converter.visit(schema, '')
|
||||||
|
params.value = {
|
||||||
|
...params.value,
|
||||||
|
grammar: converter.formatGrammar(),
|
||||||
|
}
|
||||||
|
} catch (e) {
|
||||||
|
alert(`Convert failed: ${e.message}`)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
const FloatField = ({label, max, min, name, step, value}) => {
|
const FloatField = ({label, max, min, name, step, value}) => {
|
||||||
return html`
|
return html`
|
||||||
<div>
|
<div>
|
||||||
|
@ -355,6 +377,13 @@
|
||||||
<label for="template">Chat history template</label>
|
<label for="template">Chat history template</label>
|
||||||
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
|
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div>
|
||||||
|
<label for="template">Grammar</label>
|
||||||
|
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||||
|
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
|
||||||
|
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
|
||||||
|
</div>
|
||||||
</fieldset>
|
</fieldset>
|
||||||
|
|
||||||
<fieldset class="two">
|
<fieldset class="two">
|
||||||
|
|
File diff suppressed because one or more lines are too long
112
examples/server/public/json-schema-to-grammar.mjs
Normal file
112
examples/server/public/json-schema-to-grammar.mjs
Normal file
|
@ -0,0 +1,112 @@
|
||||||
|
const SPACE_RULE = '" "?';
|
||||||
|
|
||||||
|
const PRIMITIVE_RULES = {
|
||||||
|
boolean: '("true" | "false") space',
|
||||||
|
number: '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
|
||||||
|
integer: '("-"? ([0-9] | [1-9] [0-9]*)) space',
|
||||||
|
string: ` "\\"" (
|
||||||
|
[^"\\\\] |
|
||||||
|
"\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
||||||
|
)* "\\"" space`,
|
||||||
|
null: '"null" space',
|
||||||
|
};
|
||||||
|
|
||||||
|
const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g;
|
||||||
|
const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g;
|
||||||
|
const GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'};
|
||||||
|
|
||||||
|
export class SchemaConverter {
|
||||||
|
constructor(propOrder) {
|
||||||
|
this._propOrder = propOrder || {};
|
||||||
|
this._rules = new Map();
|
||||||
|
this._rules.set('space', SPACE_RULE);
|
||||||
|
}
|
||||||
|
|
||||||
|
_formatLiteral(literal) {
|
||||||
|
const escaped = JSON.stringify(literal).replace(
|
||||||
|
GRAMMAR_LITERAL_ESCAPE_RE,
|
||||||
|
m => GRAMMAR_LITERAL_ESCAPES[m]
|
||||||
|
);
|
||||||
|
return `"${escaped}"`;
|
||||||
|
}
|
||||||
|
|
||||||
|
_addRule(name, rule) {
|
||||||
|
let escName = name.replace(INVALID_RULE_CHARS_RE, '-');
|
||||||
|
let key = escName;
|
||||||
|
|
||||||
|
if (this._rules.has(escName)) {
|
||||||
|
if (this._rules.get(escName) === rule) {
|
||||||
|
return key;
|
||||||
|
}
|
||||||
|
|
||||||
|
let i = 0;
|
||||||
|
while (this._rules.has(`${escName}${i}`)) {
|
||||||
|
i += 1;
|
||||||
|
}
|
||||||
|
key = `${escName}${i}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
this._rules.set(key, rule);
|
||||||
|
return key;
|
||||||
|
}
|
||||||
|
|
||||||
|
visit(schema, name) {
|
||||||
|
const schemaType = schema.type;
|
||||||
|
const ruleName = name || 'root';
|
||||||
|
|
||||||
|
if (schema.oneOf || schema.anyOf) {
|
||||||
|
const rule = (schema.oneOf || schema.anyOf).map((altSchema, i) =>
|
||||||
|
this.visit(altSchema, `${name}${name ? "-" : ""}${i}`)
|
||||||
|
).join(' | ');
|
||||||
|
|
||||||
|
return this._addRule(ruleName, rule);
|
||||||
|
} else if ('const' in schema) {
|
||||||
|
return this._addRule(ruleName, this._formatLiteral(schema.const));
|
||||||
|
} else if ('enum' in schema) {
|
||||||
|
const rule = schema.enum.map(v => this._formatLiteral(v)).join(' | ');
|
||||||
|
return this._addRule(ruleName, rule);
|
||||||
|
} else if (schemaType === 'object' && 'properties' in schema) {
|
||||||
|
// TODO: `required` keyword (from python implementation)
|
||||||
|
const propOrder = this._propOrder;
|
||||||
|
const propPairs = Object.entries(schema.properties).sort((a, b) => {
|
||||||
|
// sort by position in prop_order (if specified) then by key
|
||||||
|
const orderA = typeof propOrder[a[0]] === 'number' ? propOrder[a[0]] : Infinity;
|
||||||
|
const orderB = typeof propOrder[b[0]] === 'number' ? propOrder[b[0]] : Infinity;
|
||||||
|
return orderA - orderB || a[0].localeCompare(b[0]);
|
||||||
|
});
|
||||||
|
|
||||||
|
let rule = '"{" space';
|
||||||
|
propPairs.forEach(([propName, propSchema], i) => {
|
||||||
|
const propRuleName = this.visit(propSchema, `${name}${name ? "-" : ""}${propName}`);
|
||||||
|
if (i > 0) {
|
||||||
|
rule += ' "," space';
|
||||||
|
}
|
||||||
|
rule += ` ${this._formatLiteral(propName)} space ":" space ${propRuleName}`;
|
||||||
|
});
|
||||||
|
rule += ' "}" space';
|
||||||
|
|
||||||
|
return this._addRule(ruleName, rule);
|
||||||
|
} else if (schemaType === 'array' && 'items' in schema) {
|
||||||
|
// TODO `prefixItems` keyword (from python implementation)
|
||||||
|
const itemRuleName = this.visit(schema.items, `${name}${name ? "-" : ""}item`);
|
||||||
|
const rule = `"[" space (${itemRuleName} ("," space ${itemRuleName})*)? "]" space`;
|
||||||
|
return this._addRule(ruleName, rule);
|
||||||
|
} else {
|
||||||
|
if (!PRIMITIVE_RULES[schemaType]) {
|
||||||
|
throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`);
|
||||||
|
}
|
||||||
|
return this._addRule(
|
||||||
|
ruleName === 'root' ? 'root' : schemaType,
|
||||||
|
PRIMITIVE_RULES[schemaType]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
formatGrammar() {
|
||||||
|
let grammar = '';
|
||||||
|
this._rules.forEach((rule, name) => {
|
||||||
|
grammar += `${name} ::= ${rule}\n`;
|
||||||
|
});
|
||||||
|
return grammar;
|
||||||
|
}
|
||||||
|
}
|
|
@ -196,6 +196,7 @@ struct llama_server_context
|
||||||
llama_context *ctx = nullptr;
|
llama_context *ctx = nullptr;
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
llama_grammar *grammar = nullptr;
|
llama_grammar *grammar = nullptr;
|
||||||
|
|
||||||
bool truncated = false;
|
bool truncated = false;
|
||||||
|
@ -241,10 +242,13 @@ struct llama_server_context
|
||||||
stopped_limit = false;
|
stopped_limit = false;
|
||||||
stopping_word = "";
|
stopping_word = "";
|
||||||
multibyte_pending = 0;
|
multibyte_pending = 0;
|
||||||
grammar = nullptr;
|
|
||||||
|
|
||||||
n_remain = 0;
|
n_remain = 0;
|
||||||
n_past = 0;
|
n_past = 0;
|
||||||
|
|
||||||
|
if (grammar != nullptr) {
|
||||||
|
llama_grammar_free(grammar);
|
||||||
|
grammar = nullptr;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool loadModel(const gpt_params ¶ms_)
|
bool loadModel(const gpt_params ¶ms_)
|
||||||
|
@ -265,8 +269,6 @@ struct llama_server_context
|
||||||
bool loadGrammar()
|
bool loadGrammar()
|
||||||
{
|
{
|
||||||
if (!params.grammar.empty()) {
|
if (!params.grammar.empty()) {
|
||||||
grammar_parser::parse_state parsed_grammar;
|
|
||||||
|
|
||||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||||
// will be empty (default) if there are parse errors
|
// will be empty (default) if there are parse errors
|
||||||
if (parsed_grammar.rules.empty()) {
|
if (parsed_grammar.rules.empty()) {
|
||||||
|
@ -1006,7 +1008,7 @@ static json format_timings(llama_server_context &llama)
|
||||||
assert(timings.n_eval == llama.num_tokens_predicted);
|
assert(timings.n_eval == llama.num_tokens_predicted);
|
||||||
|
|
||||||
return json{
|
return json{
|
||||||
{"prompt_n", timings.n_eval},
|
{"prompt_n", timings.n_p_eval},
|
||||||
{"prompt_ms", timings.t_p_eval_ms},
|
{"prompt_ms", timings.t_p_eval_ms},
|
||||||
{"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
|
{"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
|
||||||
{"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
|
{"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
|
||||||
|
@ -1035,7 +1037,6 @@ static json format_final_response(llama_server_context &llama, const std::string
|
||||||
{"stopped_limit", llama.stopped_limit},
|
{"stopped_limit", llama.stopped_limit},
|
||||||
{"stopping_word", llama.stopping_word},
|
{"stopping_word", llama.stopping_word},
|
||||||
{"tokens_cached", llama.n_past},
|
{"tokens_cached", llama.n_past},
|
||||||
{"tokens_predicted", llama.num_tokens_predicted},
|
|
||||||
{"timings", format_timings(llama)},
|
{"timings", format_timings(llama)},
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
976
ggml-cuda.cu
976
ggml-cuda.cu
File diff suppressed because it is too large
Load diff
31
llama-util.h
31
llama-util.h
|
@ -271,20 +271,29 @@ struct llama_mmap {
|
||||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||||
}
|
}
|
||||||
|
|
||||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
|
||||||
if (prefetch) {
|
if (prefetch) {
|
||||||
// Advise the kernel to preload the mapped memory
|
// The PrefetchVirtualMemory API is only present on Windows 8 and above, so we
|
||||||
WIN32_MEMORY_RANGE_ENTRY range;
|
// will dynamically load it using GetProcAddress.
|
||||||
range.VirtualAddress = addr;
|
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
|
||||||
range.NumberOfBytes = (SIZE_T)size;
|
HMODULE hKernel32;
|
||||||
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
|
||||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
// This call is guaranteed to succeed.
|
||||||
llama_format_win_err(GetLastError()).c_str());
|
hKernel32 = GetModuleHandleW(L"kernel32.dll");
|
||||||
|
|
||||||
|
// This call may fail if on a pre-Win8 system.
|
||||||
|
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
|
||||||
|
|
||||||
|
if (pPrefetchVirtualMemory) {
|
||||||
|
// Advise the kernel to preload the mapped memory.
|
||||||
|
WIN32_MEMORY_RANGE_ENTRY range;
|
||||||
|
range.VirtualAddress = addr;
|
||||||
|
range.NumberOfBytes = (SIZE_T)size;
|
||||||
|
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||||
|
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||||
|
llama_format_win_err(GetLastError()).c_str());
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
|
|
||||||
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
|
||||||
}
|
}
|
||||||
|
|
||||||
~llama_mmap() {
|
~llama_mmap() {
|
||||||
|
|
|
@ -11,5 +11,6 @@ llama_add_test(test-quantize-fns.cpp)
|
||||||
llama_add_test(test-quantize-perf.cpp)
|
llama_add_test(test-quantize-perf.cpp)
|
||||||
llama_add_test(test-sampling.cpp)
|
llama_add_test(test-sampling.cpp)
|
||||||
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
|
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
|
||||||
|
llama_add_test(test-grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp)
|
||||||
llama_add_test(test-grad0.cpp) # SLOW
|
llama_add_test(test-grad0.cpp) # SLOW
|
||||||
# llama_add_test(test-opt.cpp) # SLOW
|
# llama_add_test(test-opt.cpp) # SLOW
|
||||||
|
|
249
tests/test-grammar-parser.cpp
Normal file
249
tests/test-grammar-parser.cpp
Normal file
|
@ -0,0 +1,249 @@
|
||||||
|
#ifdef NDEBUG
|
||||||
|
#undef NDEBUG
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include "llama.h"
|
||||||
|
#include "examples/grammar-parser.cpp"
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
const char *grammar_bytes = R"""(root ::= (expr "=" term "\n")+
|
||||||
|
expr ::= term ([-+*/] term)*
|
||||||
|
term ::= [0-9]+)""";
|
||||||
|
|
||||||
|
parsed_grammar = grammar_parser::parse(grammar_bytes);
|
||||||
|
|
||||||
|
std::vector<std::pair<std::string, uint32_t>> expected = {
|
||||||
|
{"expr", 2},
|
||||||
|
{"expr_5", 5},
|
||||||
|
{"expr_6", 6},
|
||||||
|
{"root", 0},
|
||||||
|
{"root_1", 1},
|
||||||
|
{"root_4", 4},
|
||||||
|
{"term", 3},
|
||||||
|
{"term_7", 7},
|
||||||
|
};
|
||||||
|
|
||||||
|
uint32_t index = 0;
|
||||||
|
for (auto it = parsed_grammar.symbol_ids.begin(); it != parsed_grammar.symbol_ids.end(); ++it)
|
||||||
|
{
|
||||||
|
std::string key = it->first;
|
||||||
|
uint32_t value = it->second;
|
||||||
|
std::pair<std::string, uint32_t> expected_pair = expected[index];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_pair.first != key || expected_pair.second != value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "expected_pair: %s, %d\n", expected_pair.first.c_str(), expected_pair.second);
|
||||||
|
fprintf(stderr, "actual_pair: %s, %d\n", key.c_str(), value);
|
||||||
|
fprintf(stderr, "expected_pair != actual_pair\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_pair.first == key && expected_pair.second == value);
|
||||||
|
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
std::vector<llama_grammar_element> expected_rules = {
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 2},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 10},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 6},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 1},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 1},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 45},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 43},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 42},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 47},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 6},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
};
|
||||||
|
|
||||||
|
index = 0;
|
||||||
|
for (auto rule : parsed_grammar.rules)
|
||||||
|
{
|
||||||
|
// compare rule to expected rule
|
||||||
|
for (uint32_t i = 0; i < rule.size(); i++)
|
||||||
|
{
|
||||||
|
llama_grammar_element element = rule[i];
|
||||||
|
llama_grammar_element expected_element = expected_rules[index];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_element.type != element.type || expected_element.value != element.value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "index: %d\n", index);
|
||||||
|
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
|
||||||
|
fprintf(stderr, "actual_element: %d, %d\n", element.type, element.value);
|
||||||
|
fprintf(stderr, "expected_element != actual_element\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_element.type == element.type && expected_element.value == element.value);
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const char *longer_grammar_bytes = R"""(
|
||||||
|
root ::= (expr "=" ws term "\n")+
|
||||||
|
expr ::= term ([-+*/] term)*
|
||||||
|
term ::= ident | num | "(" ws expr ")" ws
|
||||||
|
ident ::= [a-z] [a-z0-9_]* ws
|
||||||
|
num ::= [0-9]+ ws
|
||||||
|
ws ::= [ \t\n]*
|
||||||
|
)""";
|
||||||
|
|
||||||
|
parsed_grammar = grammar_parser::parse(longer_grammar_bytes);
|
||||||
|
|
||||||
|
expected = {
|
||||||
|
{"expr", 2},
|
||||||
|
{"expr_6", 6},
|
||||||
|
{"expr_7", 7},
|
||||||
|
{"ident", 8},
|
||||||
|
{"ident_10", 10},
|
||||||
|
{"num", 9},
|
||||||
|
{"num_11", 11},
|
||||||
|
{"root", 0},
|
||||||
|
{"root_1", 1},
|
||||||
|
{"root_5", 5},
|
||||||
|
{"term", 4},
|
||||||
|
{"ws", 3},
|
||||||
|
{"ws_12", 12},
|
||||||
|
};
|
||||||
|
|
||||||
|
index = 0;
|
||||||
|
for (auto it = parsed_grammar.symbol_ids.begin(); it != parsed_grammar.symbol_ids.end(); ++it)
|
||||||
|
{
|
||||||
|
std::string key = it->first;
|
||||||
|
uint32_t value = it->second;
|
||||||
|
std::pair<std::string, uint32_t> expected_pair = expected[index];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_pair.first != key || expected_pair.second != value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "expected_pair: %s, %d\n", expected_pair.first.c_str(), expected_pair.second);
|
||||||
|
fprintf(stderr, "actual_pair: %s, %d\n", key.c_str(), value);
|
||||||
|
fprintf(stderr, "expected_pair != actual_pair\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_pair.first == key && expected_pair.second == value);
|
||||||
|
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
expected_rules = {
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 2},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 10},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 12},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 8},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 9},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 40},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 2},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 41},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 1},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 1},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 45},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 43},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 42},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 47},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 6},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 97},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 10},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 11},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 97},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 95},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 10},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 11},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 32},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 9},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 10},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 12},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
};
|
||||||
|
|
||||||
|
index = 0;
|
||||||
|
for (auto rule : parsed_grammar.rules)
|
||||||
|
{
|
||||||
|
// compare rule to expected rule
|
||||||
|
for (uint32_t i = 0; i < rule.size(); i++)
|
||||||
|
{
|
||||||
|
llama_grammar_element element = rule[i];
|
||||||
|
llama_grammar_element expected_element = expected_rules[index];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_element.type != element.type || expected_element.value != element.value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "index: %d\n", index);
|
||||||
|
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
|
||||||
|
fprintf(stderr, "actual_element: %d, %d\n", element.type, element.value);
|
||||||
|
fprintf(stderr, "expected_element != actual_element\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_element.type == element.type && expected_element.value == element.value);
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
Loading…
Add table
Add a link
Reference in a new issue