convert : various script cleanups/fixes + merges and special token handling (#2842)
* convert: Fix permute calls and method/func definitions * Cleanups for gguf-py * Minor types cleanups. * Initial implementation of handling merges and special tokens * convert: Handle special tokens and merges in vocab only mode convert: Vocab only mode no longer requires loading model tensors * gguf: Refactor tensor name mapping * convert: Fix type hint for special_token_types in SpecialVocab * Use common special vocab handling in various conversion scripts * First pass at implementing suggested changes * Second pass * gguf: SpecialVocab: Fix issue with special token content not in a dict gguf: SpecialVocab: Allow skipping handling of merges * convert-falcon-hf-to-gguf: Support --vocab-only option, bail out if no tokenizer.json * convert-gptneox-hf-to-gguf and convert: Only handle merges for BPE tokenizer * gguf: SpecialVocab: Actually set load_merges in object * Uniform args parsing and vocab only mode for convert examples * convert.py: Set gpt2 as tokenizer model when using BPE * Squish last type warning in gguf.py - yay!
This commit is contained in:
parent
ad9ddcff6e
commit
dc07dc492e
10 changed files with 728 additions and 748 deletions
|
@ -4,9 +4,13 @@ import sys
|
|||
import struct
|
||||
import tempfile
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from enum import IntEnum, auto
|
||||
from typing import Any, IO, List, Optional
|
||||
from io import BufferedWriter
|
||||
from typing import Any, BinaryIO, Callable, IO, Dict, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
#
|
||||
# constants
|
||||
|
@ -71,35 +75,35 @@ KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
|
|||
|
||||
|
||||
class MODEL_ARCH(IntEnum):
|
||||
LLAMA = auto()
|
||||
FALCON = auto()
|
||||
GPT2 = auto()
|
||||
GPTJ = auto()
|
||||
GPTNEOX = auto()
|
||||
MPT = auto()
|
||||
LLAMA : int = auto()
|
||||
FALCON : int = auto()
|
||||
GPT2 : int = auto()
|
||||
GPTJ : int = auto()
|
||||
GPTNEOX: int = auto()
|
||||
MPT : int = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
TOKEN_EMBD = auto()
|
||||
POS_EMBD = auto()
|
||||
OUTPUT = auto()
|
||||
OUTPUT_NORM = auto()
|
||||
ROPE_FREQS = auto()
|
||||
ATTN_Q = auto()
|
||||
ATTN_K = auto()
|
||||
ATTN_V = auto()
|
||||
ATTN_QKV = auto()
|
||||
ATTN_OUT = auto()
|
||||
ATTN_NORM = auto()
|
||||
ATTN_NORM_2 = auto()
|
||||
ATTN_ROT_EMBD = auto()
|
||||
FFN_GATE = auto()
|
||||
FFN_DOWN = auto()
|
||||
FFN_UP = auto()
|
||||
FFN_NORM = auto()
|
||||
TOKEN_EMBD : int = auto()
|
||||
POS_EMBD : int = auto()
|
||||
OUTPUT : int = auto()
|
||||
OUTPUT_NORM : int = auto()
|
||||
ROPE_FREQS : int = auto()
|
||||
ATTN_Q : int = auto()
|
||||
ATTN_K : int = auto()
|
||||
ATTN_V : int = auto()
|
||||
ATTN_QKV : int = auto()
|
||||
ATTN_OUT : int = auto()
|
||||
ATTN_NORM : int = auto()
|
||||
ATTN_NORM_2 : int = auto()
|
||||
ATTN_ROT_EMBD: int = auto()
|
||||
FFN_GATE : int = auto()
|
||||
FFN_DOWN : int = auto()
|
||||
FFN_UP : int = auto()
|
||||
FFN_NORM : int = auto()
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES = {
|
||||
MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.LLAMA: "llama",
|
||||
MODEL_ARCH.FALCON: "falcon",
|
||||
MODEL_ARCH.GPT2: "gpt2",
|
||||
|
@ -108,7 +112,7 @@ MODEL_ARCH_NAMES = {
|
|||
MODEL_ARCH.MPT: "mpt",
|
||||
}
|
||||
|
||||
MODEL_TENSOR_NAMES = {
|
||||
MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = {
|
||||
MODEL_ARCH.LLAMA: {
|
||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||
|
@ -154,7 +158,7 @@ MODEL_TENSOR_NAMES = {
|
|||
}
|
||||
|
||||
# tensors that will not be serialized
|
||||
MODEL_TENSOR_SKIP = {
|
||||
MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = {
|
||||
MODEL_ARCH.LLAMA: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
|
@ -162,167 +166,198 @@ MODEL_TENSOR_SKIP = {
|
|||
}
|
||||
|
||||
|
||||
# TODO: the following helper functions should be removed
|
||||
# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
|
||||
# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
|
||||
# REMOVE
|
||||
def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
|
||||
for skip in MODEL_TENSOR_SKIP.get(arch, []):
|
||||
for i in range(n_blocks):
|
||||
if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
|
||||
return True
|
||||
class TensorNameMap:
|
||||
mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = {
|
||||
# Token embeddings
|
||||
MODEL_TENSOR.TOKEN_EMBD: (
|
||||
"gpt_neox.embed_in", # gptneox
|
||||
"transformer.wte", # gpt2 mpt
|
||||
"transformer.word_embeddings", # falcon
|
||||
"model.embed_tokens", # llama-hf
|
||||
"tok_embeddings", # llama-pth
|
||||
),
|
||||
|
||||
return False
|
||||
# Position embeddings
|
||||
MODEL_TENSOR.POS_EMBD: (
|
||||
"transformer.wpe", # gpt2
|
||||
),
|
||||
|
||||
# Output
|
||||
MODEL_TENSOR.OUTPUT: (
|
||||
"embed_out", # gptneox
|
||||
"lm_head", # gpt2 mpt falcon llama-hf
|
||||
"output", # llama-pth
|
||||
),
|
||||
|
||||
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
|
||||
tensor_map = {}
|
||||
# Output norm
|
||||
MODEL_TENSOR.OUTPUT_NORM: (
|
||||
"gpt_neox.final_layer_norm", # gptneox
|
||||
"transformer.ln_f", # gpt2 falcon
|
||||
"model.norm", # llama-hf
|
||||
"norm", # llama-pth
|
||||
),
|
||||
|
||||
# Token embeddings
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
|
||||
# Rope frequencies
|
||||
MODEL_TENSOR.ROPE_FREQS: (
|
||||
"rope.freqs", # llama-pth
|
||||
),
|
||||
}
|
||||
|
||||
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
|
||||
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
|
||||
tensor_map["transformer.word_embeddings"] = mapped_to # falcon
|
||||
tensor_map["model.embed_tokens"] = mapped_to # llama-hf
|
||||
tensor_map["tok_embeddings"] = mapped_to # llama-pth
|
||||
|
||||
# Position embeddings
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
|
||||
|
||||
tensor_map["transformer.wpe"] = mapped_to # gpt2
|
||||
|
||||
# Output
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
|
||||
|
||||
tensor_map["embed_out"] = mapped_to # gptneox
|
||||
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
|
||||
tensor_map["output"] = mapped_to # llama-pth
|
||||
|
||||
# Output norm
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
|
||||
|
||||
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
|
||||
tensor_map["transformer.norm_f"] = mapped_to # mpt
|
||||
tensor_map["model.norm"] = mapped_to # llama-hf
|
||||
tensor_map["norm"] = mapped_to # llama-pth
|
||||
|
||||
# Rope frequencies
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
|
||||
|
||||
tensor_map["rope.freqs"] = mapped_to # llama-pth
|
||||
|
||||
# Attention and feed-forward blocks
|
||||
for i in range(0, n_blocks):
|
||||
block_mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = {
|
||||
# Attention norm
|
||||
# TODO: is there are simpler way to write these 2 lines in Python?
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to else None
|
||||
|
||||
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
|
||||
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
|
||||
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.ATTN_NORM: (
|
||||
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||
"transformer.h.{bid}.ln_1", # gpt2
|
||||
"transformer.blocks.{bid}.norm_1", # mpt
|
||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||
"transformer.h.{bid}.ln_mlp", # falcon40b
|
||||
"model.layers.{bid}.input_layernorm", # llama-hf
|
||||
"layers.{bid}.attention_norm", # llama-pth
|
||||
),
|
||||
|
||||
# Attention norm 2
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
|
||||
MODEL_TENSOR.ATTN_NORM_2: (
|
||||
"transformer.h.{bid}.ln_attn", # falcon40b
|
||||
),
|
||||
|
||||
# Attention query-key-value
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
|
||||
MODEL_TENSOR.ATTN_QKV: (
|
||||
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
||||
"transformer.h.{bid}.attn.c_attn", # gpt2
|
||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||
),
|
||||
|
||||
# Attention query
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.ATTN_Q: (
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
||||
"layers.{bid}.attention.wq", # llama-pth
|
||||
),
|
||||
|
||||
# Attention key
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.ATTN_K: (
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
||||
"layers.{bid}.attention.wk", # llama-pth
|
||||
),
|
||||
|
||||
# Attention value
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.ATTN_V: (
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
||||
"layers.{bid}.attention.wv", # llama-pth
|
||||
),
|
||||
|
||||
# Attention output
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.ATTN_OUT: (
|
||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||
"transformer.h.{bid}.attn.c_proj", # gpt2
|
||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||
"layers.{bid}.attention.wo", # llama-pth
|
||||
),
|
||||
|
||||
# Rotary embeddings
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: (
|
||||
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
|
||||
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
|
||||
),
|
||||
|
||||
# Feed-forward norm
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
|
||||
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.FFN_NORM: (
|
||||
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
||||
"transformer.h.{bid}.ln_2", # gpt2
|
||||
"transformer.blocks.{bid}.norm_2", # mpt
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
||||
"layers.{bid}.ffn_norm", # llama-pth
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.FFN_UP: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
||||
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
||||
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
||||
"model.layers.{bid}.mlp.up_proj", # llama-hf
|
||||
"layers.{bid}.feed_forward.w3", # llama-pth
|
||||
),
|
||||
|
||||
# Feed-forward gate
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
|
||||
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
|
||||
MODEL_TENSOR.FFN_GATE: (
|
||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf
|
||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
|
||||
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
|
||||
MODEL_TENSOR.FFN_DOWN: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
||||
"transformer.h.{bid}.mlp.c_proj", # gpt2
|
||||
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
||||
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
||||
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
||||
"layers.{bid}.feed_forward.w2", # llama-pth
|
||||
),
|
||||
}
|
||||
|
||||
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
|
||||
mapping: Dict[str, Tuple[MODEL_TENSOR, str]]
|
||||
|
||||
return tensor_map
|
||||
tensor_names: Dict[MODEL_TENSOR, str]
|
||||
|
||||
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
||||
mapping = self.mapping = {}
|
||||
tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch]
|
||||
for tensor, keys in self.mappings_cfg.items():
|
||||
tensor_name = tensor_names.get(tensor)
|
||||
if tensor_name is None:
|
||||
continue
|
||||
for key in keys:
|
||||
mapping[key] = (tensor, tensor_name)
|
||||
for bid in range(n_blocks):
|
||||
for tensor, keys in self.block_mappings_cfg.items():
|
||||
tensor_name = tensor_names.get(tensor)
|
||||
if tensor_name is None:
|
||||
continue
|
||||
tensor_name = tensor_name.format(bid = bid)
|
||||
for key in keys:
|
||||
key = key.format(bid = bid)
|
||||
mapping[key] = (tensor, tensor_name)
|
||||
|
||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[Tuple[MODEL_TENSOR, str]]:
|
||||
result = self.mapping.get(key)
|
||||
if result is not None:
|
||||
return result
|
||||
for suffix in try_suffixes:
|
||||
if key.endswith(suffix):
|
||||
result = self.mapping.get(key[:-len(suffix)])
|
||||
if result is not None:
|
||||
return (result[0], result[1] + suffix)
|
||||
return None
|
||||
|
||||
def get_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[str]:
|
||||
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||
if result is None:
|
||||
return None
|
||||
return result[1]
|
||||
|
||||
def get_type(self, key: str, try_suffixes: Sequence[str]) -> Optional[MODEL_TENSOR]:
|
||||
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||
if result is None:
|
||||
return None
|
||||
return result[0]
|
||||
|
||||
def __getitem__(self, key: str) -> str:
|
||||
try:
|
||||
return self.mapping[key][1]
|
||||
except KeyError:
|
||||
raise KeyError(key)
|
||||
|
||||
def __contains__(self, key: str) -> bool:
|
||||
return key in self.mapping
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return repr(self.mapping)
|
||||
|
||||
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
|
||||
return TensorNameMap(arch, n_blocks)
|
||||
|
||||
class TokenType(IntEnum):
|
||||
NORMAL = 1
|
||||
|
@ -388,15 +423,21 @@ class GGUFValueType(IntEnum):
|
|||
|
||||
|
||||
class GGUFWriter:
|
||||
def __init__(self, path: str, arch: str, use_temp_file = True):
|
||||
fout: BufferedWriter
|
||||
arch: str
|
||||
offset_tensor = 0
|
||||
data_alignment = GGUF_DEFAULT_ALIGNMENT
|
||||
kv_data = b""
|
||||
kv_data_count = 0
|
||||
ti_data = b""
|
||||
ti_data_count = 0
|
||||
use_temp_file: bool
|
||||
temp_file: Optional[tempfile.SpooledTemporaryFile[bytes]] = None
|
||||
tensors: List[Tuple[np.ndarray[Any, Any], int]]
|
||||
|
||||
def __init__(self, path: Union[os.PathLike[str], str], arch: str, use_temp_file = True):
|
||||
self.fout = open(path, "wb")
|
||||
self.arch = arch
|
||||
self.offset_tensor = 0
|
||||
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
|
||||
self.kv_data = b""
|
||||
self.kv_data_count = 0
|
||||
self.ti_data = b""
|
||||
self.ti_data_count = 0
|
||||
self.add_architecture()
|
||||
self.use_temp_file = use_temp_file
|
||||
self.tensors = []
|
||||
|
@ -470,14 +511,27 @@ class GGUFWriter:
|
|||
self.add_key(key)
|
||||
self.add_val(val, GGUFValueType.STRING)
|
||||
|
||||
def add_array(self, key: str, val: list):
|
||||
if not isinstance(val, list):
|
||||
raise ValueError("Value must be a list for array type")
|
||||
def add_array(self, key: str, val: Sequence[Any]):
|
||||
if not isinstance(val, Sequence):
|
||||
raise ValueError("Value must be a sequence for array type")
|
||||
|
||||
self.add_key(key)
|
||||
self.add_val(val, GGUFValueType.ARRAY)
|
||||
|
||||
def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
|
||||
_simple_value_packing = {
|
||||
GGUFValueType.UINT8: "<B",
|
||||
GGUFValueType.INT8: "<b",
|
||||
GGUFValueType.UINT16: "<H",
|
||||
GGUFValueType.INT16: "<h",
|
||||
GGUFValueType.UINT32: "<I",
|
||||
GGUFValueType.INT32: "<i",
|
||||
GGUFValueType.FLOAT32: "<f",
|
||||
GGUFValueType.UINT64: "<Q",
|
||||
GGUFValueType.INT64: "<q",
|
||||
GGUFValueType.FLOAT64: "<d",
|
||||
GGUFValueType.BOOL: "?" ,
|
||||
}
|
||||
def add_val(self, val: Any, vtype: Optional[GGUFValueType] = None, add_vtype: bool = True):
|
||||
if vtype is None:
|
||||
vtype = GGUFValueType.get_type(val)
|
||||
|
||||
|
@ -485,47 +539,29 @@ class GGUFWriter:
|
|||
self.kv_data += struct.pack("<I", vtype)
|
||||
self.kv_data_count += 1
|
||||
|
||||
if vtype == GGUFValueType.UINT8:
|
||||
self.kv_data += struct.pack("<B", val)
|
||||
elif vtype == GGUFValueType.INT8:
|
||||
self.kv_data += struct.pack("<b", val)
|
||||
elif vtype == GGUFValueType.UINT16:
|
||||
self.kv_data += struct.pack("<H", val)
|
||||
elif vtype == GGUFValueType.INT16:
|
||||
self.kv_data += struct.pack("<h", val)
|
||||
elif vtype == GGUFValueType.UINT32:
|
||||
self.kv_data += struct.pack("<I", val)
|
||||
elif vtype == GGUFValueType.INT32:
|
||||
self.kv_data += struct.pack("<i", val)
|
||||
elif vtype == GGUFValueType.FLOAT32:
|
||||
self.kv_data += struct.pack("<f", val)
|
||||
elif vtype == GGUFValueType.UINT64:
|
||||
self.kv_data += struct.pack("<Q", val)
|
||||
elif vtype == GGUFValueType.INT64:
|
||||
self.kv_data += struct.pack("<q", val)
|
||||
elif vtype == GGUFValueType.FLOAT64:
|
||||
self.kv_data += struct.pack("<d", val)
|
||||
elif vtype == GGUFValueType.BOOL:
|
||||
self.kv_data += struct.pack("?", val)
|
||||
pack_fmt = self._simple_value_packing.get(vtype)
|
||||
if pack_fmt is not None:
|
||||
self.kv_data += struct.pack(pack_fmt, val)
|
||||
elif vtype == GGUFValueType.STRING:
|
||||
encoded_val = val.encode("utf8") if isinstance(val, str) else val
|
||||
self.kv_data += struct.pack("<Q", len(encoded_val))
|
||||
self.kv_data += encoded_val
|
||||
elif vtype == GGUFValueType.ARRAY:
|
||||
ltype = set([GGUFValueType.get_type(item) for item in val])
|
||||
assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
|
||||
self.kv_data += struct.pack("<I", list(ltype)[0])
|
||||
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0:
|
||||
ltype = GGUFValueType.get_type(val[0])
|
||||
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
|
||||
raise ValueError("All items in a GGUF array should be of the same type")
|
||||
self.kv_data += struct.pack("<I", ltype)
|
||||
self.kv_data += struct.pack("<Q", len(val))
|
||||
for item in val:
|
||||
self.add_val(item, add_vtype=False)
|
||||
else:
|
||||
raise ValueError("Invalid GGUF metadata value type")
|
||||
raise ValueError("Invalid GGUF metadata value type or value")
|
||||
|
||||
@staticmethod
|
||||
def ggml_pad(x: int, n: int) -> int:
|
||||
return ((x + n - 1) // n) * n
|
||||
|
||||
def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
|
||||
def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: Union[np.dtype[np.float16], np.dtype[np.float32]], tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
|
||||
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
||||
|
||||
encoded_name = name.encode("utf8")
|
||||
|
@ -544,16 +580,18 @@ class GGUFWriter:
|
|||
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
||||
self.ti_data_count += 1
|
||||
|
||||
def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
|
||||
if self.use_temp_file and not hasattr(self, "temp_file"):
|
||||
self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
|
||||
self.temp_file.seek(0)
|
||||
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Optional[Sequence[int]] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
|
||||
if self.use_temp_file and self.temp_file is None:
|
||||
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
|
||||
fp.seek(0)
|
||||
self.temp_file = fp
|
||||
|
||||
self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
|
||||
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
|
||||
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
|
||||
|
||||
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
|
||||
|
||||
if not self.use_temp_file:
|
||||
if self.temp_file is None:
|
||||
self.tensors.append((tensor, pad))
|
||||
return
|
||||
|
||||
|
@ -562,25 +600,22 @@ class GGUFWriter:
|
|||
if pad != 0:
|
||||
self.temp_file.write(bytes([0] * pad))
|
||||
|
||||
def write_tensor_data(self, tensor: np.ndarray):
|
||||
pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
|
||||
def write_padding(self, fp: BinaryIO, n: int, align: Optional[int] = None):
|
||||
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
|
||||
if pad != 0:
|
||||
self.fout.write(bytes([0] * pad))
|
||||
fp.write(bytes([0] * pad))
|
||||
|
||||
def write_tensor_data(self, tensor: np.ndarray[Any, Any]):
|
||||
self.write_padding(self.fout, self.fout.tell())
|
||||
tensor.tofile(self.fout)
|
||||
|
||||
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
|
||||
if pad != 0:
|
||||
self.fout.write(bytes([0] * pad))
|
||||
self.write_padding(self.fout, tensor.nbytes)
|
||||
|
||||
def write_tensors_to_file(self):
|
||||
self.write_ti_data_to_file()
|
||||
|
||||
pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
|
||||
if pad != 0:
|
||||
self.fout.write(bytes([0] * pad))
|
||||
self.write_padding(self.fout, self.fout.tell())
|
||||
|
||||
if not self.use_temp_file:
|
||||
if self.temp_file is None:
|
||||
for (currtensor, currpad) in self.tensors:
|
||||
currtensor.tofile(self.fout)
|
||||
if currpad != 0:
|
||||
|
@ -654,10 +689,6 @@ class GGUFWriter:
|
|||
self.add_bool(
|
||||
KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
||||
|
||||
def add_tensor_data_layout(self, layout: str):
|
||||
self.add_string(
|
||||
KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
||||
|
||||
def add_head_count(self, count: int):
|
||||
self.add_uint32(
|
||||
KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
|
||||
|
@ -695,16 +726,16 @@ class GGUFWriter:
|
|||
def add_tokenizer_model(self, model: str):
|
||||
self.add_string(KEY_TOKENIZER_MODEL, model)
|
||||
|
||||
def add_token_list(self, tokens: List):
|
||||
def add_token_list(self, tokens: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]):
|
||||
self.add_array(KEY_TOKENIZER_LIST, tokens)
|
||||
|
||||
def add_token_merges(self, merges: List):
|
||||
def add_token_merges(self, merges: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]):
|
||||
self.add_array(KEY_TOKENIZER_MERGES, merges)
|
||||
|
||||
def add_token_types(self, types: List[int]):
|
||||
def add_token_types(self, types: Union[Sequence[TokenType], Sequence[int]]):
|
||||
self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
|
||||
|
||||
def add_token_scores(self, scores: List[float]):
|
||||
def add_token_scores(self, scores: Sequence[float]):
|
||||
self.add_array(KEY_TOKENIZER_SCORES, scores)
|
||||
|
||||
def add_bos_token_id(self, id: int):
|
||||
|
@ -723,6 +754,84 @@ class GGUFWriter:
|
|||
self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
|
||||
|
||||
|
||||
class SpecialVocab:
|
||||
load_merges: bool = False
|
||||
merges: List[str] = []
|
||||
special_token_types: Tuple[str, ...] = tuple(('bos', 'eos', 'unk', 'sep', 'pad'))
|
||||
special_token_ids: Dict[str, int] = {}
|
||||
|
||||
def __init__(self, path: Path, load_merges: bool = False, special_token_types: Optional[Tuple[str, ...]] = None):
|
||||
self.special_token_ids = {}
|
||||
self.load_merges = load_merges
|
||||
if special_token_types is not None:
|
||||
self.special_token_types = special_token_types
|
||||
self.load(path)
|
||||
|
||||
def load(self, path: Path):
|
||||
if not self.try_load_from_tokenizer_json(path):
|
||||
self.try_load_from_config_json(path)
|
||||
|
||||
def try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||
tokenizer_file = path / 'tokenizer.json'
|
||||
if not tokenizer_file.is_file():
|
||||
return False
|
||||
with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
|
||||
tokenizer = json.load(f)
|
||||
if self.load_merges:
|
||||
merges = tokenizer.get('model', {}).get('merges')
|
||||
if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str):
|
||||
self.merges = merges
|
||||
tokenizer_config_file = path / 'tokenizer_config.json'
|
||||
added_tokens = tokenizer.get('added_tokens')
|
||||
if added_tokens is None or not tokenizer_config_file.is_file():
|
||||
return True
|
||||
with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
|
||||
tokenizer_config = json.load(f)
|
||||
for typ in self.special_token_types:
|
||||
entry = tokenizer_config.get(f'{typ}_token')
|
||||
if isinstance(entry, str):
|
||||
tc_content = entry
|
||||
elif isinstance(entry, dict):
|
||||
entry_content = entry.get('content')
|
||||
if not isinstance(entry_content, str):
|
||||
continue
|
||||
tc_content = entry_content
|
||||
else:
|
||||
continue
|
||||
for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
|
||||
if isinstance(maybe_token_id, int):
|
||||
self.special_token_ids[typ] = maybe_token_id
|
||||
break
|
||||
return True
|
||||
|
||||
def try_load_from_config_json(self, path: Path) -> bool:
|
||||
config_file = path / 'config.json'
|
||||
if not config_file.is_file():
|
||||
return False
|
||||
with open(config_file, 'r', encoding = 'utf-8') as f:
|
||||
config = json.load(f)
|
||||
for typ in self.special_token_types:
|
||||
maybe_token_id = config.get(f'{typ}_token_id')
|
||||
if isinstance(maybe_token_id, int):
|
||||
self.special_token_ids[typ] = maybe_token_id
|
||||
return True
|
||||
|
||||
def add_to_gguf(self, gw: GGUFWriter):
|
||||
if len(self.merges) > 0:
|
||||
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
||||
gw.add_token_merges(self.merges)
|
||||
for typ, tokid in self.special_token_ids.items():
|
||||
handler: Optional[Callable[[int], None]] = getattr(gw, f'add_{typ}_token_id', None)
|
||||
if handler is None:
|
||||
print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
|
||||
continue
|
||||
print(f'gguf: Setting special token type {typ} to {tokid}')
|
||||
handler(tokid)
|
||||
|
||||
def __repr__(self):
|
||||
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
|
||||
|
||||
|
||||
# Example usage:
|
||||
if __name__ == "__main__":
|
||||
# Example usage with a file
|
||||
|
|
0
gguf-py/gguf/py.typed
Normal file
0
gguf-py/gguf/py.typed
Normal file
|
@ -5,6 +5,7 @@ description = "Write ML models in GGUF for GGML"
|
|||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
{include = "gguf"},
|
||||
{include = "gguf/py.typed"},
|
||||
]
|
||||
readme = "README.md"
|
||||
homepage = "https://ggml.ai"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue