llama : simplify use of context params

This commit is contained in:
Cebtenzzre 2023-09-20 21:33:33 -04:00
parent a06c72924c
commit dc26a0dd32

View file

@ -1650,22 +1650,21 @@ static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
}
}
static void llm_load_hparams(
llama_model_loader & ml,
llama_model & model,
int n_ctx,
float rope_freq_base,
float rope_freq_scale,
float rope_ext_factor,
float rope_attn_factor,
float rope_beta_fast,
float rope_beta_slow) {
static void llm_load_hparams(llama_model_loader & ml, llama_model & model, const llama_context_params & params) {
struct gguf_context * ctx = ml.ctx_gguf;
const auto kv = LLM_KV(model.arch);
auto & hparams = model.hparams;
hparams.n_ctx = params.n_ctx;
hparams.rope_freq_base = params.rope_freq_base;
hparams.rope_freq_scale = params.rope_freq_scale;
hparams.rope_ext_factor = params.rope_ext_factor;
hparams.rope_attn_factor = params.rope_attn_factor;
hparams.rope_beta_fast = params.rope_beta_fast;
hparams.rope_beta_slow = params.rope_beta_slow;
// get general kv
GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
@ -1682,16 +1681,17 @@ static void llm_load_hparams(
GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
// rope_freq_base (optional)
if (rope_freq_base == 0.0f) {
rope_freq_base = 10000.0f;
if (hparams.rope_freq_base == 0.0f) {
float rope_freq_base = 10000.0f;
GGUF_GET_KEY(ctx, rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
hparams.rope_freq_base = rope_freq_base;
}
// rope_freq_scale (inverse of the kv) is optional
if (rope_freq_scale == 0.0f) {
if (hparams.rope_freq_scale == 0.0f) {
float ropescale = 1.0f;
GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
rope_freq_scale = 1.0f/ropescale;
hparams.rope_freq_scale = 1.0f/ropescale;
}
// sanity check for n_rot (optional)
@ -1759,14 +1759,6 @@ static void llm_load_hparams(
};
model.ftype = ml.ftype;
hparams.n_ctx = n_ctx;
hparams.rope_freq_base = rope_freq_base;
hparams.rope_freq_scale = rope_freq_scale;
hparams.rope_ext_factor = rope_ext_factor;
hparams.rope_attn_factor = rope_attn_factor;
hparams.rope_beta_fast = rope_beta_fast;
hparams.rope_beta_slow = rope_beta_slow;
}
// TODO: This should probably be in llama.h
@ -2388,36 +2380,12 @@ static void llm_load_tensors(
model.t_load_us = ggml_time_us() - model.t_start_us;
}
static bool llama_model_load(
const std::string & fname,
llama_model & model,
int n_ctx,
int n_batch,
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
const bool mul_mat_q,
float rope_freq_base,
float rope_freq_scale,
float rope_ext_factor,
float rope_attn_factor,
float rope_beta_fast,
float rope_beta_slow,
bool low_vram,
ggml_type memory_type,
bool use_mmap,
bool use_mlock,
bool vocab_only,
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
static bool llama_model_load(const std::string & fname, llama_model & model, const llama_context_params & params) {
try {
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, params.use_mmap));
llm_load_arch (*ml, model);
llm_load_hparams(
*ml, model, n_ctx, rope_freq_base, rope_freq_scale, rope_ext_factor, rope_attn_factor, rope_beta_fast,
rope_beta_slow
);
llm_load_hparams(*ml, model, params);
llm_load_vocab (*ml, model);
llm_load_print_meta(*ml, model);
@ -2426,15 +2394,18 @@ static bool llama_model_load(
throw std::runtime_error("vocab size mismatch");
}
if (vocab_only) {
if (params.vocab_only) {
LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
return true;
}
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
llm_load_tensors(
*ml, model, n_batch, n_gpu_layers,
main_gpu, tensor_split, mul_mat_q, low_vram, memory_type,
use_mlock, progress_callback, progress_callback_user_data);
*ml, model, params.n_batch, params.n_gpu_layers, params.main_gpu, params.tensor_split, params.mul_mat_q,
params.low_vram, memory_type, params.use_mlock, params.progress_callback,
params.progress_callback_user_data
);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
return false;
@ -5695,7 +5666,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
llama_model model;
llm_load_arch (*ml, model);
llm_load_hparams(*ml, model, 0, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f);
llm_load_hparams(*ml, model, llama_context_default_params());
if (params->only_copy) {
ftype = model.ftype;
@ -6298,8 +6269,6 @@ struct llama_model * llama_load_model_from_file(
llama_model * model = new llama_model;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
unsigned cur_percentage = 0;
if (params.progress_callback == NULL) {
params.progress_callback_user_data = &cur_percentage;
@ -6316,13 +6285,7 @@ struct llama_model * llama_load_model_from_file(
};
}
if (!llama_model_load(
path_model, *model, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu, params.tensor_split,
params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale, params.rope_ext_factor,
params.rope_attn_factor, params.rope_beta_fast, params.rope_beta_slow, params.low_vram, memory_type,
params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
params.progress_callback_user_data
)) {
if (!llama_model_load(path_model, *model, params)) {
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
delete model;
return nullptr;