diff --git a/src/llama.cpp b/src/llama.cpp index d4403dea1..b6f0c3cc2 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -16386,8 +16386,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n // original formula use_more_bits : // return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2; // The intervals of 3 are replaced by a broad bump in the central layers. - // In the case of a 32 layers model, layers 5-7 and layers 12-16 are always skipped. - // In the case of a 40 layers model, layers 6-9 and layers 15-20 are always skipped. + // In the case of a 32 layers model, layers 5-7 and layers 12-16 are always skipped. + // In the case of a 40 layers model, layers 6-9 and layers 15-20 are always skipped. // difquant_half_tensors replaces it and keeps the broad 50% bump to the upper quant. Ex : 16/32 auto difquant_half_tensors = [](int i_layer, int n_layers) -> bool { return i_layer <= n_layers/8 || i_layer > 6*n_layers/8 || (i_layer >= 2*n_layers/8 && i_layer < 3*n_layers/8); @@ -16448,7 +16448,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n else new_type = GGML_TYPE_IQ4_XS; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XL || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || - ftype == LLAMA_FTYPE_MOSTLY_IQ2_S) { + ftype == LLAMA_FTYPE_MOSTLY_IQ2_S) { if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q6_K; else if (qs.model.hparams.n_head() <= 20) new_type = GGML_TYPE_IQ4_XS; else new_type = GGML_TYPE_Q4_K; @@ -16478,7 +16478,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n if (qs.model.hparams.n_expert >= 4) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || - ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) { + ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || @@ -16611,20 +16611,20 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L) { if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q4_K; - else new_type = GGML_TYPE_Q3_K; + else new_type = GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) { if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q4_K; - else new_type = GGML_TYPE_Q3_K; + else new_type = GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q5_K; else if (qs.model.hparams.n_gqa() >= 2) new_type = GGML_TYPE_Q4_K; - else new_type = GGML_TYPE_Q3_K; + else new_type = GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) { if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q5_K; - else new_type = GGML_TYPE_Q4_K; + else new_type = GGML_TYPE_Q4_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) && (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)) { @@ -16722,7 +16722,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) { if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; else if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q3_K; - else new_type = GGML_TYPE_Q2_K; + else new_type = GGML_TYPE_Q2_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) { if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;