Replace shaderc dependency with precompiled shaders

Fix python script to generate shaders
This commit is contained in:
0cc4m 2023-10-14 09:55:08 +02:00
parent 73d01d14aa
commit de4b813c5f
5 changed files with 154 additions and 1041 deletions

View file

@ -375,14 +375,12 @@ if (LLAMA_CLBLAST)
endif() endif()
if (LLAMA_VULKAN) if (LLAMA_VULKAN)
find_package(Vulkan COMPONENTS shaderc_combined) find_package(Vulkan)
find_package(glslang)
find_package(SPIRV-Tools-opt)
if (Vulkan_FOUND) if (Vulkan_FOUND)
message(STATUS "Vulkan found") message(STATUS "Vulkan found")
add_library(ggml-vulkan STATIC ggml-vulkan.cpp ggml-vulkan.h) add_library(ggml-vulkan STATIC ggml-vulkan.cpp ggml-vulkan.h)
target_link_libraries(ggml-vulkan PUBLIC Vulkan::Vulkan Vulkan::shaderc_combined) target_link_libraries(ggml-vulkan PUBLIC Vulkan::Vulkan)
add_compile_definitions(GGML_USE_VULKAN) add_compile_definitions(GGML_USE_VULKAN)

View file

@ -430,7 +430,7 @@ endif # LLAMA_CLBLAST
ifdef LLAMA_VULKAN ifdef LLAMA_VULKAN
CFLAGS += -DGGML_USE_VULKAN CFLAGS += -DGGML_USE_VULKAN
CXXFLAGS += -DGGML_USE_VULKAN CXXFLAGS += -DGGML_USE_VULKAN
LDFLAGS += -lvulkan -lopenblas -lglslang -lSPIRV -lSPIRV-Tools-opt -lSPIRV-Tools -lshaderc_combined LDFLAGS += -lvulkan
OBJS += ggml-vulkan.o OBJS += ggml-vulkan.o
ggml-vulkan.o: ggml-vulkan.cpp ggml-vulkan.h ggml-vulkan.o: ggml-vulkan.cpp ggml-vulkan.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@

View file

@ -1,773 +0,0 @@
#include <string>
// Generic
const std::string shader_f32 = R"(
#define FLOAT_TYPE float
)";
const std::string shader_f16 = R"(
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#define FLOAT_TYPE float16_t
)";
const std::string shader_int8_ext = R"(
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
)";
// Type-specific defines
const std::string shader_f16_defines = R"(
#define QUANT_K 32
#define QUANT_R 2
#define A_TYPE float16_t
)";
const std::string shader_q4_0_defines = R"(
#define QUANT_K 32
#define QUANT_R 2
struct block_q4_0
{
float16_t d;
uint8_t qs[16];
};
#define A_TYPE block_q4_0
)";
const std::string shader_q4_1_defines = R"(
#define QUANT_K 32
#define QUANT_R 2
struct block_q4_1
{
float16_t d;
float16_t m;
uint8_t qs[16];
};
#define A_TYPE block_q4_1
)";
const std::string shader_q5_0_defines = R"(
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#define QUANT_K 32
#define QUANT_R 2
struct block_q5_0
{
float16_t d;
uint16_t qh[2];
uint8_t qs[16];
};
#define A_TYPE block_q5_0
)";
const std::string shader_q5_1_defines = R"(
#define QUANT_K 32
#define QUANT_R 2
struct block_q5_1
{
float16_t d;
float16_t m;
uint qh;
uint8_t qs[16];
};
#define A_TYPE block_q5_1
)";
const std::string shader_q8_0_defines = R"(
#define QUANT_K 32
#define QUANT_R 1
struct block_q8_0
{
float16_t d;
int8_t qs[32];
};
#define A_TYPE block_q8_0
)";
const std::string shader_q6_K_defines = R"(
#define QUANT_K 256
struct block_q6_K
{
uint8_t ql[QUANT_K/2];
uint8_t qh[QUANT_K/4];
int8_t scales[QUANT_K/16];
float16_t d;
};
#define A_TYPE block_q6_K
)";
// Dequant functions
const std::string shader_f16_dequant_func = R"(
#define DEQUANT_FUNC f16vec2 v = f16vec2(x[ib + 0], x[ib + 1]);
)";
const std::string shader_f16_dequant_func_compat = R"(
#define DEQUANT_FUNC vec2 v = vec2(x[ib + 0], x[ib + 1]);
)";
const std::string shader_q4_0_dequant_func = R"(
#define DEQUANT_FUNC const float16_t d = x[ib].d; \
const uint8_t vui = x[ib].qs[iqs]; \
f16vec2 v = f16vec2(vui & 0xF, vui >> 4); \
v = (v - 8.0hf)*d;
)";
const std::string shader_q4_0_dequant_func_compat = R"(
#define DEQUANT_FUNC const float d = float(x[ib].d); \
const uint vui = uint(x[ib].qs[iqs]); \
vec2 v = vec2(vui & 0xF, vui >> 4); \
v = (v - 8.0f)*d;
)";
const std::string shader_q4_1_dequant_func = R"(
#define DEQUANT_FUNC const float16_t d = x[ib].d; \
const float16_t m = x[ib].m; \
const uint8_t vui = x[ib].qs[iqs]; \
f16vec2 v = f16vec2(vui & 0xF, vui >> 4); \
v = v*d + m;
)";
const std::string shader_q4_1_dequant_func_compat = R"(
#define DEQUANT_FUNC const float d = float(x[ib].d); \
const float m = float(x[ib].m); \
const uint vui = uint(x[ib].qs[iqs]); \
vec2 v = vec2(vui & 0xF, vui >> 4); \
v = v*d + m;
)";
const std::string shader_q5_0_dequant_func = R"(
#define DEQUANT_FUNC const float16_t d = x[ib].d; \
const uint uint_qh = uint(x[ib].qh[1]) << 16 | x[ib].qh[0]; \
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); \
const uint8_t vui = x[ib].qs[iqs]; \
f16vec2 v = f16vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \
v = (v - 16.0hf) * d;
)";
const std::string shader_q5_0_dequant_func_compat = R"(
#define DEQUANT_FUNC const float d = float(x[ib].d); \
const uint uint_qh = uint(x[ib].qh[1]) << 16 | x[ib].qh[0]; \
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); \
const uint vui = uint(x[ib].qs[iqs]); \
vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \
v = (v - 16.0f) * d;
)";
const std::string shader_q5_1_dequant_func = R"(
#define DEQUANT_FUNC const float16_t d = x[ib].d; \
const float16_t m = x[ib].m; \
const ivec2 qh = ivec2(((x[ib].qh >> iqs) << 4) & 0x10, (x[ib].qh >> (iqs + 12)) & 0x10); \
const uint8_t vui = x[ib].qs[iqs]; \
f16vec2 v = f16vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \
v = v*d + m;
)";
const std::string shader_q5_1_dequant_func_compat = R"(
#define DEQUANT_FUNC const float d = float(x[ib].d); \
const float m = float(x[ib].m); \
const ivec2 qh = ivec2(((x[ib].qh >> iqs) << 4) & 0x10, (x[ib].qh >> (iqs + 12)) & 0x10); \
const uint vui = uint(x[ib].qs[iqs]); \
vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \
v = v*d + m;
)";
const std::string shader_q8_0_dequant_func = R"(
#define DEQUANT_FUNC const float16_t d = x[ib].d; \
f16vec2 v = f16vec2(x[ib].qs[iqs], x[ib].qs[iqs + 1]); \
v = v * d;
)";
const std::string shader_q8_0_dequant_func_compat = R"(
#define DEQUANT_FUNC const float d = float(x[ib].d); \
vec2 v = vec2(int(x[ib].qs[iqs]), int(x[ib].qs[iqs + 1])); \
v = v * d;
)";
// MULMAT
const std::string mulmat_head = R"(
#version 450
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#define WARP 32
#ifndef LOAD_VEC
#define LOAD_VEC 1
#endif
)";
const std::string mulmat_body = R"(
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A { A_TYPE data_a[]; };
layout (binding = 1) readonly buffer B { B_TYPE data_b[]; };
layout (binding = 2) writeonly buffer D { D_TYPE data_d[]; };
layout (push_constant) uniform parameter
{
int M;
int N;
int K;
int stride_a;
int stride_b;
int stride_d;
int k_split;
} p;
layout (constant_id = 1) const int BM = 64;
layout (constant_id = 2) const int BN = 64;
layout (constant_id = 3) const int BK = 16;
layout (constant_id = 4) const int WM = 32;
layout (constant_id = 5) const int WN = 32;
layout (constant_id = 6) const int WMITER = 2;
layout (constant_id = 7) const int TM = 4;
layout (constant_id = 8) const int TN = 2;
shared FLOAT_TYPE buf_a[BM * (BK+1)];
shared FLOAT_TYPE buf_b[BN * (BK+1)];
void main() {
const int blocks_x = (p.M + BM - 1) / BM;
const int ir = int(gl_WorkGroupID.x) % blocks_x;
const int ik = int(gl_WorkGroupID.x) / blocks_x;
const int ic = int(gl_WorkGroupID.y);
const int warp_i = int(gl_LocalInvocationID.x / WARP);
const int warp_r = warp_i % (BM / WM);
const int warp_c = warp_i / (BM / WM);
const int WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
const int WSUBM = WM / WMITER;
const int WSUBN = WN / WNITER;
const int tiw = int(gl_LocalInvocationID.x % WARP);
const int tiwr = tiw % (WSUBM / TM);
const int tiwc = tiw / (WSUBM / TM);
const int loadr = int(gl_LocalInvocationID.x % (BK / LOAD_VEC));
const int loadc = int(gl_LocalInvocationID.x / (BK / LOAD_VEC));
const int loadstride = int(gl_WorkGroupSize.x * LOAD_VEC) / BK;
const int start_k = ik * p.k_split;
const int end_k = (ik + 1) * p.k_split;
int pos_a = ir * BM * p.stride_a / LOAD_VEC + start_k / LOAD_VEC;
int pos_b = ic * BN * p.stride_b / LOAD_VEC + start_k / LOAD_VEC;
D_TYPE sums[WMITER * TM * WNITER * TN];
FLOAT_TYPE cache_a[WMITER * TM];
FLOAT_TYPE cache_b[WNITER * TN];
[[unroll]] for (int i = 0; i < WMITER*TM*WNITER*TN; i++) {
sums[i] = 0.0f;
}
[[unroll]] for (int block = start_k; block < end_k; block += BK) {
[[unroll]] for (int l = 0; l < BM; l += loadstride) {
#if LOAD_VEC == 8
const int idx = pos_a + (loadc + l) * p.stride_a / LOAD_VEC + loadr;
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 0] = FLOAT_TYPE(data_a[idx][0].x);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 1] = FLOAT_TYPE(data_a[idx][0].y);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 2] = FLOAT_TYPE(data_a[idx][0].z);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 3] = FLOAT_TYPE(data_a[idx][0].w);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 4] = FLOAT_TYPE(data_a[idx][1].x);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 5] = FLOAT_TYPE(data_a[idx][1].y);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 6] = FLOAT_TYPE(data_a[idx][1].z);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 7] = FLOAT_TYPE(data_a[idx][1].w);
#elif LOAD_VEC == 4
const int idx = pos_a + (loadc + l) * p.stride_a / LOAD_VEC + loadr;
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 0] = FLOAT_TYPE(data_a[idx].x);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 1] = FLOAT_TYPE(data_a[idx].y);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 2] = FLOAT_TYPE(data_a[idx].z);
buf_a[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 3] = FLOAT_TYPE(data_a[idx].w);
#else
if (ir * BM + loadc + l < p.M && block + loadr < p.K) {
buf_a[(loadc + l) * (BK+1) + loadr] = FLOAT_TYPE(data_a[pos_a + (loadc + l) * p.stride_a + loadr]);
} else {
buf_a[(loadc + l) * (BK+1) + loadr] = FLOAT_TYPE(0.0f);
}
#endif
}
[[unroll]] for (int l = 0; l < BN; l += loadstride) {
#if LOAD_VEC == 8
const int idx = pos_b + (loadc + l) * p.stride_b / LOAD_VEC + loadr;
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 0] = FLOAT_TYPE(data_b[idx][0].x);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 1] = FLOAT_TYPE(data_b[idx][0].y);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 2] = FLOAT_TYPE(data_b[idx][0].z);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 3] = FLOAT_TYPE(data_b[idx][0].w);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 4] = FLOAT_TYPE(data_b[idx][1].x);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 5] = FLOAT_TYPE(data_b[idx][1].y);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 6] = FLOAT_TYPE(data_b[idx][1].z);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 7] = FLOAT_TYPE(data_b[idx][1].w);
#elif LOAD_VEC == 4
const int idx = pos_b + (loadc + l) * p.stride_b / LOAD_VEC + loadr;
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 0] = FLOAT_TYPE(data_b[idx].x);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 1] = FLOAT_TYPE(data_b[idx].y);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 2] = FLOAT_TYPE(data_b[idx].z);
buf_b[(loadc + l) * (BK+1) + loadr * LOAD_VEC + 3] = FLOAT_TYPE(data_b[idx].w);
#else
if (ic * BN + loadc + l < p.N && block + loadr < p.K) {
buf_b[(loadc + l) * (BK+1) + loadr] = FLOAT_TYPE(data_b[pos_b + (loadc + l) * p.stride_b + loadr]);
} else {
buf_b[(loadc + l) * (BK+1) + loadr] = FLOAT_TYPE(0.0f);
}
#endif
}
barrier();
pos_a += BK / LOAD_VEC;
pos_b += BK / LOAD_VEC;
for (int i = 0; i < min(BK, p.K - block); i++) {
// Load from shared into cache
[[unroll]] for (int wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (int j = 0; j < TM; j++) {
cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i];
}
}
[[unroll]] for (int wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (int j = 0; j < TN; j++) {
cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i];
}
}
[[unroll]] for (int wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (int wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (int cc = 0; cc < TN; cc++) {
[[unroll]] for (int cr = 0; cr < TM; cr++) {
sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += D_TYPE(cache_a[wsir * TM + cr]) * D_TYPE(cache_b[wsic * TN + cc]);
}
}
}
}
}
barrier();
}
const int dr = ir * BM + warp_r * WM;
const int dc = ic * BN + warp_c * WN;
const int k_split_offset = ik * p.M * p.N;
[[unroll]] for (int wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (int wsir = 0; wsir < WMITER; wsir++) {
const int dr_warp = dr + wsir * WSUBM + tiwr * TM;
const int dc_warp = dc + wsic * WSUBN + tiwc * TN;
[[unroll]] for (int cc = 0; cc < TN; cc++) {
[[unroll]] for (int cr = 0; cr < TM; cr++) {
if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
data_d[k_split_offset + (dc_warp + cc) * p.stride_d + dr_warp + cr] = sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr];
}
}
}
}
}
}
)";
const std::string mulmat_split_k_reduce_src = R"(
#version 450
layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in;
layout (binding = 0) buffer A { float data[]; };
layout (push_constant) uniform parameter
{
int M;
int N;
int k_num;
} p;
void main() {
const int glr = int(gl_GlobalInvocationID.x);
const int glc = int(gl_GlobalInvocationID.y);
if (glr >= p.M || glc >= p.N) {
return;
}
const int idx = glc * p.M + glr;
float result = 0.0f;
for (int i = 0; i < p.k_num; i++) {
result += data[i * p.M * p.N + idx];
}
data[idx] = result;
}
)";
// DEQUANT SHADER
const std::string dequant_head = R"(
#version 450
#extension GL_EXT_control_flow_attributes : require
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
)";
const std::string dequant_body = R"(
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A { A_TYPE x[]; };
layout (binding = 1) writeonly buffer D { D_TYPE y[]; };
layout (push_constant) uniform parameter
{
int M;
int K;
int stride_a;
int stride_b;
} p;
void main() {
const int i = int(gl_GlobalInvocationID.x);
// Transposed
const int row = i % (p.K / QUANT_K);
const int col = i / (p.K / QUANT_K);
if (row * QUANT_K >= p.K || col >= p.M) {
return;
}
const int stride_a = p.stride_a / QUANT_K;
const int ib = col * stride_a + row;
const int y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
const int step = QUANT_R == 1 ? 2 : 1;
[[unroll]] for (int iqs = 0; iqs < QUANT_K/QUANT_R; iqs += step) {
DEQUANT_FUNC
y[col * p.stride_b + row*QUANT_K + iqs + 0 ] = D_TYPE(v.x);
y[col * p.stride_b + row*QUANT_K + iqs + y_offset] = D_TYPE(v.y);
}
}
)";
// K-quants
const std::string dequant_q6_K_body = R"(
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A { A_TYPE x[]; };
layout (binding = 1) writeonly buffer D { D_TYPE y[]; };
layout (push_constant) uniform parameter
{
int M;
int K;
int stride_a;
int stride_b;
} p;
void main() {
for (int wgy = 0; wgy < 256; wgy++) {
const int i = int(gl_WorkGroupID.x * 256 + wgy);
if (i >= p.M * p.K / QUANT_K) {
return;
}
const int tid = int(gl_LocalInvocationID.x);
const int ip = tid / 32;
const int il = tid - 32 * ip;
const int is = 8 * ip + il / 16;
const int y_idx = i * QUANT_K + 128 * ip + il;
const int ql_idx = 64 * ip + il;
const uint8_t qh = x[i].qh[32 * ip + il];
const FLOAT_TYPE d = FLOAT_TYPE(x[i].d);
y[y_idx + 0] = D_TYPE(d * FLOAT_TYPE(x[i].scales[is + 0] * (int8_t((x[i].ql[ql_idx + 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32)));
y[y_idx + 32] = D_TYPE(d * FLOAT_TYPE(x[i].scales[is + 2] * (int8_t((x[i].ql[ql_idx + 32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32)));
y[y_idx + 64] = D_TYPE(d * FLOAT_TYPE(x[i].scales[is + 4] * (int8_t((x[i].ql[ql_idx + 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32)));
y[y_idx + 96] = D_TYPE(d * FLOAT_TYPE(x[i].scales[is + 6] * (int8_t((x[i].ql[ql_idx + 32] >> 4) | (((qh >> 6) & 3) << 4)) - 32)));
}
}
)";
// Mul Mat Vec
const std::string mul_mat_vec_head = R"(
#version 450
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_8bit_storage : require
)";
const std::string mul_mat_vec_body = R"(
layout(local_size_x = QUANT_K, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A { A_TYPE x[]; };
layout (binding = 1) readonly buffer B { B_TYPE y[]; };
layout (binding = 2) writeonly buffer D { D_TYPE dst[]; };
layout (push_constant) uniform parameter
{
int ncols;
} p;
shared FLOAT_TYPE tmp[QUANT_K];
void main() {
const int block_size = int(gl_WorkGroupSize.x);
const int row = int(gl_WorkGroupID.x);
const int tid = int(gl_LocalInvocationID.x);
const int y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
tmp[tid] = FLOAT_TYPE(0.0f);
[[unroll]] for (int i = 0; i < p.ncols/block_size; i += 2) {
const int col = i*block_size + 2*tid;
const int ib = (row*p.ncols + col)/QUANT_K; // block index
const int iqs = (col%QUANT_K)/QUANT_R; // quant index
const int iybs = col - col%QUANT_K; // y block start index
DEQUANT_FUNC
// matrix multiplication
tmp[tid] += FLOAT_TYPE(v.x) * FLOAT_TYPE(y[iybs + iqs + 0]);
tmp[tid] += FLOAT_TYPE(v.y) * FLOAT_TYPE(y[iybs + iqs + y_offset]);
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = block_size/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
dst[row] = D_TYPE(tmp[0]);
}
}
)";
const std::string mul_mat_vec_q6_K_body = R"(
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A { A_TYPE x[]; };
layout (binding = 1) readonly buffer B { B_TYPE y[]; };
layout (binding = 2) writeonly buffer D { D_TYPE dst[]; };
layout (push_constant) uniform parameter
{
int ncols;
} p;
shared FLOAT_TYPE tmp[32];
void main() {
const int row = int(gl_WorkGroupID.x);
const int num_blocks_per_row = p.ncols / QUANT_K;
const int ib0 = row*num_blocks_per_row;
const int tid = int(gl_LocalInvocationID.x)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = int(gl_LocalInvocationID.x)%K_QUANTS_PER_ITERATION; // 0 or 0, 1
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const int v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int v_in = tid - step*v_im; // 0...15 or 0...7
#if K_QUANTS_PER_ITERATION == 1
const int l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
const int is = 0;
#else
const int l0 = 4 * v_in; // 0, 4, 8, ..., 28
const int is = v_in / 4;
#endif
const int ql_offset = 64*v_im + l0;
const int qh_offset = 32*v_im + l0;
const int s_offset = 8*v_im + is;
const int y_offset = 128*v_im + l0;
tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const int y_idx = i * QUANT_K + y_offset;
const FLOAT_TYPE d = FLOAT_TYPE(x[ib0 + i].d);
#if K_QUANTS_PER_ITERATION == 1
FLOAT_TYPE sum = FLOAT_TYPE(y[y_idx + 0]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + 0] & 0xF) | ((x[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32)
+ FLOAT_TYPE(y[y_idx + 16]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 1]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + 16] & 0xF) | ((x[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32)
+ FLOAT_TYPE(y[y_idx + 32]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + 32] & 0xF) | ((x[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32)
+ FLOAT_TYPE(y[y_idx + 48]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 3]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + 48] & 0xF) | ((x[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32)
+ FLOAT_TYPE(y[y_idx + 64]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + 0] >> 4) | ((x[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32)
+ FLOAT_TYPE(y[y_idx + 80]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 5]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + 16] >> 4) | ((x[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32)
+ FLOAT_TYPE(y[y_idx + 96]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + 32] >> 4) | ((x[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32)
+ FLOAT_TYPE(y[y_idx +112]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 7]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + 48] >> 4) | ((x[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32);
tmp[16 * ix + tid] += sum;
#else
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
for (int l = 0; l < 4; ++l) {
sum += FLOAT_TYPE(y[y_idx + l+ 0]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((x[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32)
+ FLOAT_TYPE(y[y_idx + l+32]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((x[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32)
+ FLOAT_TYPE(y[y_idx + l+64]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((x[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32)
+ FLOAT_TYPE(y[y_idx + l+96]) * FLOAT_TYPE(x[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((x[ib0 + i].ql[ql_offset + l+32] >> 4) | (((x[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32);
}
tmp[16 * ix + tid] += sum;
#endif
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = 16; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
dst[row] = D_TYPE(tmp[0]);
}
}
)";
// F16 to F32
const std::string f32_to_f16_src = R"(
#version 450
#extension GL_EXT_shader_16bit_storage : require
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A { float data_a[]; };
layout (binding = 1) writeonly buffer D { float16_t data_b[]; };
layout (push_constant) uniform parameter
{
int M;
int K;
int stride_a;
int stride_b;
} p;
void main() {
const int row = int(gl_GlobalInvocationID.x % p.K);
const int col = int(gl_GlobalInvocationID.x / p.K);
if (row < p.K && col < p.M) {
data_b[col * p.stride_b + row] = float16_t(data_a[col * p.stride_a + row]);
}
}
)";
// MUL F32
const std::string mul_f32_src = R"(
#version 450
layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in;
layout (binding = 0) buffer X { X_TYPE data_x[]; };
layout (binding = 1) buffer Y { Y_TYPE data_y[]; };
layout (binding = 2) buffer D { D_TYPE data_d[]; };
layout (push_constant) uniform parameter
{
int M;
int N;
int stride_x;
int stride_y;
int stride_d;
int x_offset;
int y_offset;
int d_offset;
float scale;
} p;
void main() {
const int x = int(gl_GlobalInvocationID.x);
const int y = int(gl_GlobalInvocationID.y);
if (x >= p.M || y >= p.N) {
return;
}
data_d[p.d_offset + y * p.stride_d + x] = D_TYPE(data_x[p.x_offset + y * p.stride_x + x]) * D_TYPE(data_y[p.y_offset + x]);
}
)";
// ADD
const std::string add_head = R"(
#version 450
#extension GL_EXT_shader_16bit_storage : require
)";
const std::string add_body = R"(
layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in;
layout (binding = 0) buffer X { X_TYPE data_x[]; };
layout (binding = 1) buffer Y { Y_TYPE data_y[]; };
layout (binding = 2) buffer D { D_TYPE data_d[]; };
layout (push_constant) uniform parameter
{
int M;
int N;
int stride_x;
int stride_y;
int stride_d;
int x_offset;
int y_offset;
int d_offset;
float scale;
} p;
void main() {
const int x = int(gl_GlobalInvocationID.x);
const int y = int(gl_GlobalInvocationID.y);
if (x >= p.M || y >= p.N) {
return;
}
data_d[p.d_offset + y * p.stride_d + x] = D_TYPE(FLOAT_TYPE(data_x[p.x_offset + y * p.stride_x + x]) + FLOAT_TYPE(data_y[p.y_offset + x]));
}
)";
// SCALE
const std::string scale_src = R"(
#version 450
layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in;
layout (binding = 0) buffer X { X_TYPE data_x[]; };
layout (binding = 1) buffer D { D_TYPE data_d[]; };
layout (push_constant) uniform parameter
{
int M;
int N;
int stride_x;
int stride_y;
int stride_d;
int x_offset;
int y_offset;
int d_offset;
float scale;
} p;
void main() {
const int x = int(gl_GlobalInvocationID.x);
const int y = int(gl_GlobalInvocationID.y);
if (x >= p.M || y >= p.N) {
return;
}
data_d[p.d_offset + y * p.stride_d + x] = D_TYPE(data_x[p.x_offset + y * p.stride_x + x]) * D_TYPE(p.scale);
}
)";

View file

@ -30,12 +30,8 @@
#include <mutex> #include <mutex>
#include <sstream> #include <sstream>
#include <shaderc/shaderc.hpp>
#include "ggml.h" #include "ggml.h"
#include "ggml-vulkan-shaders.hpp"
#define VK_API_VERSION VK_API_VERSION_1_2 #define VK_API_VERSION VK_API_VERSION_1_2
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N)) #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
@ -201,39 +197,6 @@ static std::vector<size_t> vk_preallocated_buffer_sizes;
static std::vector<vk_buffer> vk_preallocated_buffers; static std::vector<vk_buffer> vk_preallocated_buffers;
static vk::Fence vk_fence; static vk::Fence vk_fence;
static std::vector<uint32_t> ggml_vk_compile_shader(const std::string& name, const std::string& src, std::vector<std::string>&& defines) {
#ifdef VK_DEBUG
std::cerr << "ggml_vk_compile_shader(" << name << ", " << src << ")" << std::endl;
#endif
GGML_ASSERT(defines.size() % 2 == 0);
shaderc::Compiler compiler;
shaderc::CompileOptions options;
for (size_t i = 0; i < defines.size(); i += 2) {
options.AddMacroDefinition(defines[i], defines[i + 1]);
}
shaderc::SpvCompilationResult module = compiler.CompileGlslToSpv(src, shaderc_compute_shader, name.c_str(), options);
if (module.GetCompilationStatus() != shaderc_compilation_status_success) {
shaderc::PreprocessedSourceCompilationResult prep_res = compiler.PreprocessGlsl(src, shaderc_compute_shader, name.c_str(), options);
std::string prep_src = std::string{ prep_res.begin(), prep_res.end() };
std::stringstream ss(prep_src);
std::string line;
int counter = 1;
while(std::getline(ss, line, '\n')){
std::cout << std::setw(3) << counter++ << std::setw(1) << ": " << line << std::endl;
}
std::cerr << "ggml_vulkan: Shader compile error in " << name << ": " << module.GetErrorMessage();
GGML_ASSERT(false);
}
return {module.cbegin(), module.cend()};
}
static vk_pipeline ggml_vk_create_pipeline(const std::string& name, size_t spv_size, const uint32_t* spv_data, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<int>&& specialization_constants, uint32_t align) { static vk_pipeline ggml_vk_create_pipeline(const std::string& name, size_t spv_size, const uint32_t* spv_data, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<int>&& specialization_constants, uint32_t align) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_create_pipeline(" << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl; std::cerr << "ggml_vk_create_pipeline(" << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl;
@ -338,20 +301,13 @@ static vk_pipeline ggml_vk_create_pipeline(const std::string& name, size_t spv_s
return pipeline; return pipeline;
} }
static vk_pipeline ggml_vk_create_pipeline_from_string(const std::string& name, const std::string& src, std::vector<std::string>&& defines, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<int>&& specialization_constants, uint32_t align) { static vk_pipeline ggml_vk_create_pipeline_from_file(const std::string& name, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<int>&& specialization_constants, uint32_t align) {
#ifdef VK_DEBUG
std::cerr << "ggml_vk_create_pipeline_from_string(" << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl;
#endif
const std::vector<uint32_t> spv = ggml_vk_compile_shader(name, src, std::move(defines));
return ggml_vk_create_pipeline(name, spv.size() * sizeof(uint32_t), spv.data(), entrypoint, parameter_count, push_constant_size, wg_denoms, std::move(specialization_constants), align);
}
static vk_pipeline ggml_vk_create_pipeline_from_file(const std::string& path, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<int>&& specialization_constants, uint32_t align) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_create_pipeline_from_file(" << path << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl; std::cerr << "ggml_vk_create_pipeline_from_file(" << path << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl;
#endif #endif
const std::string path = "vk_shaders/" + name + (vk_device.fp16 ? "" : "_f32") + ".comp";
std::vector<char> matmul_shader_contents; std::vector<char> matmul_shader_contents;
if (std::ifstream shader_file{ path, std::ios::binary | std::ios::ate }) { if (std::ifstream shader_file{ path, std::ios::binary | std::ios::ate }) {
const size_t file_size = shader_file.tellg(); const size_t file_size = shader_file.tellg();
@ -363,7 +319,7 @@ static vk_pipeline ggml_vk_create_pipeline_from_file(const std::string& path, co
abort(); abort();
} }
return ggml_vk_create_pipeline(path, matmul_shader_contents.size(), reinterpret_cast<uint32_t *>(matmul_shader_contents.data()), entrypoint, parameter_count, push_constant_size, wg_denoms, std::move(specialization_constants), align); return ggml_vk_create_pipeline(name, matmul_shader_contents.size(), reinterpret_cast<uint32_t *>(matmul_shader_contents.data()), entrypoint, parameter_count, push_constant_size, wg_denoms, std::move(specialization_constants), align);
} }
static void ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline& pipeline, uint32_t n) { static void ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline& pipeline, uint32_t n) {
@ -699,154 +655,83 @@ static void ggml_vk_destroy_buffer(vk_buffer& buf) {
} }
} }
static inline bool ggml_vk_build_shader_type_defines(std::stringstream& stream, ggml_type type, bool compat) { static inline bool ggml_vk_build_shader(ggml_type type) {
switch(type) { switch(type) {
case GGML_TYPE_F16: case GGML_TYPE_F16:
stream << shader_f16_defines << (compat ? shader_f16_dequant_func_compat : shader_f16_dequant_func);
return true;
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
stream << shader_q4_0_defines << (compat ? shader_q4_0_dequant_func_compat : shader_q4_0_dequant_func);
return true;
case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_1:
stream << shader_q4_1_defines << (compat ? shader_q4_1_dequant_func_compat : shader_q4_1_dequant_func);
return true;
case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_0:
stream << shader_q5_0_defines << (compat ? shader_q5_0_dequant_func_compat : shader_q5_0_dequant_func);
return true;
case GGML_TYPE_Q5_1: case GGML_TYPE_Q5_1:
stream << shader_q5_1_defines << (compat ? shader_q5_1_dequant_func_compat : shader_q5_1_dequant_func);
return true;
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
stream << shader_q8_0_defines << (compat ? shader_q8_0_dequant_func_compat : shader_q8_0_dequant_func);
return true;
case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K:
stream << shader_q6_K_defines;
return true; return true;
default: default:
return false; return false;
} }
} }
static void ggml_vk_generate_shaders() { static void ggml_vk_load_shaders() {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_generate_shaders()" << std::endl; std::cerr << "ggml_vk_load_shaders()" << std::endl;
#endif #endif
std::cerr << "ggml_vulkan: Generating and compiling shaders to SPIR-V" << std::endl;
// mulmat // mulmat
auto warptile_l = { 128, 128, 128, 16, 64, 64, 2, 4, 4 }; auto warptile_l = { 128, 128, 128, 16, 64, 64, 2, 4, 4 };
auto warptile_m = { 128, 64, 64, 16, 32, 32, 2, 4, 2 }; auto warptile_m = { 128, 64, 64, 16, 32, 32, 2, 4, 2 };
auto warptile_s = { 32, 32, 32, 8, 32, 32, 2, 2, 2 }; auto warptile_s = { 32, 32, 32, 8, 32, 32, 2, 2, 2 };
std::string shader_float_type; vk_pipeline_matmul_f32_l = ggml_vk_create_pipeline_from_file("matmul_f32_l", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
std::string load_vec; vk_pipeline_matmul_f32_m = ggml_vk_create_pipeline_from_file("matmul_f32_m", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
std::string vec_type_f16; vk_pipeline_matmul_f32_s = ggml_vk_create_pipeline_from_file("matmul_f32_s", "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
std::string vec_type; vk_pipeline_matmul_f32_aligned_l = ggml_vk_create_pipeline_from_file("matmul_f32_aligned_l", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
if (vk_device.fp16) { vk_pipeline_matmul_f32_aligned_m = ggml_vk_create_pipeline_from_file("matmul_f32_aligned_m", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
shader_float_type = shader_f16; vk_pipeline_matmul_f32_aligned_s = ggml_vk_create_pipeline_from_file("matmul_f32_aligned_s", "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
load_vec = "8";
vec_type_f16 = "f16mat2x4";
vec_type = "mat2x4";
} else {
shader_float_type = shader_f32;
load_vec = "4";
vec_type_f16 = "f16vec4";
vec_type = "vec4";
}
std::stringstream stream; vk_pipeline_matmul_f16_l = ggml_vk_create_pipeline_from_file("matmul_f16_l", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
stream << mulmat_head << shader_float_type << mulmat_body; vk_pipeline_matmul_f16_m = ggml_vk_create_pipeline_from_file("matmul_f16_m", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
vk_pipeline_matmul_f32_l = ggml_vk_create_pipeline_from_string("matmul_f32_l", stream.str(), { "A_TYPE", "float", "B_TYPE", "float", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128); vk_pipeline_matmul_f16_s = ggml_vk_create_pipeline_from_file("matmul_f16_s", "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
vk_pipeline_matmul_f32_m = ggml_vk_create_pipeline_from_string("matmul_f32_m", stream.str(), { "A_TYPE", "float", "B_TYPE", "float", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
vk_pipeline_matmul_f32_s = ggml_vk_create_pipeline_from_string("matmul_f32_s", stream.str(), { "A_TYPE", "float", "B_TYPE", "float", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
vk_pipeline_matmul_f32_aligned_l = ggml_vk_create_pipeline_from_string("matmul_f32_aligned_l", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type, "B_TYPE", vec_type, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
vk_pipeline_matmul_f32_aligned_m = ggml_vk_create_pipeline_from_string("matmul_f32_aligned_m", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type, "B_TYPE", vec_type, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
vk_pipeline_matmul_f32_aligned_s = ggml_vk_create_pipeline_from_string("matmul_f32_aligned_s", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type, "B_TYPE", vec_type, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
stream.str(""); vk_pipeline_matmul_f16_aligned_l = ggml_vk_create_pipeline_from_file("matmul_f16_aligned_l", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
stream.clear(); vk_pipeline_matmul_f16_aligned_m = ggml_vk_create_pipeline_from_file("matmul_f16_aligned_m", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
stream << mulmat_head << shader_float_type << mulmat_body; vk_pipeline_matmul_f16_aligned_s = ggml_vk_create_pipeline_from_file("matmul_f16_aligned_s", "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
vk_pipeline_matmul_f16_l = ggml_vk_create_pipeline_from_string("matmul_f16_l", stream.str(), { "A_TYPE", "float16_t", "B_TYPE", "float16_t", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
vk_pipeline_matmul_f16_m = ggml_vk_create_pipeline_from_string("matmul_f16_m", stream.str(), { "A_TYPE", "float16_t", "B_TYPE", "float16_t", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
vk_pipeline_matmul_f16_s = ggml_vk_create_pipeline_from_string("matmul_f16_s", stream.str(), { "A_TYPE", "float16_t", "B_TYPE", "float16_t", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
vk_pipeline_matmul_f16_aligned_l = ggml_vk_create_pipeline_from_string("matmul_f16_aligned_l", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type_f16, "B_TYPE", vec_type_f16, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128); vk_pipeline_matmul_f16_f32_l = ggml_vk_create_pipeline_from_file("matmul_f16_f32_l", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
vk_pipeline_matmul_f16_aligned_m = ggml_vk_create_pipeline_from_string("matmul_f16_aligned_m", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type_f16, "B_TYPE", vec_type_f16, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64); vk_pipeline_matmul_f16_f32_m = ggml_vk_create_pipeline_from_file("matmul_f16_f32_m", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
vk_pipeline_matmul_f16_aligned_s = ggml_vk_create_pipeline_from_string("matmul_f16_aligned_s", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type_f16, "B_TYPE", vec_type_f16, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32); vk_pipeline_matmul_f16_f32_s = ggml_vk_create_pipeline_from_file("matmul_f16_f32_s", "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
vk_pipeline_matmul_f16_f32_aligned_l = ggml_vk_create_pipeline_from_file("matmul_f16_f32_aligned_l", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
vk_pipeline_matmul_f16_f32_l = ggml_vk_create_pipeline_from_string("matmul_f16_f32_l", stream.str(), { "A_TYPE", "float16_t", "B_TYPE", "float", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128); vk_pipeline_matmul_f16_f32_aligned_m = ggml_vk_create_pipeline_from_file("matmul_f16_f32_aligned_m", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
vk_pipeline_matmul_f16_f32_m = ggml_vk_create_pipeline_from_string("matmul_f16_f32_m", stream.str(), { "A_TYPE", "float16_t", "B_TYPE", "float", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64); vk_pipeline_matmul_f16_f32_aligned_s = ggml_vk_create_pipeline_from_file("matmul_f16_f32_aligned_s", "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
vk_pipeline_matmul_f16_f32_s = ggml_vk_create_pipeline_from_string("matmul_f16_f32_s", stream.str(), { "A_TYPE", "float16_t", "B_TYPE", "float", "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
vk_pipeline_matmul_f16_f32_aligned_l = ggml_vk_create_pipeline_from_string("matmul_f16_f32_aligned_l", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type_f16, "B_TYPE", vec_type, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
vk_pipeline_matmul_f16_f32_aligned_m = ggml_vk_create_pipeline_from_string("matmul_f16_f32_aligned_m", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type_f16, "B_TYPE", vec_type, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_m, 64);
vk_pipeline_matmul_f16_f32_aligned_s = ggml_vk_create_pipeline_from_string("matmul_f16_f32_aligned_s", stream.str(), { "LOAD_VEC", load_vec, "A_TYPE", vec_type_f16, "B_TYPE", vec_type, "D_TYPE", "float" }, "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
// Build dequant shaders // Build dequant shaders
vk_pipeline_dequant[GGML_TYPE_F32] = ggml_vk_create_pipeline_from_string("f32_to_f16", f32_to_f16_src, {}, "main", 2, 4 * sizeof(int), {64, 1, 1}, {}, 1); vk_pipeline_dequant[GGML_TYPE_F32] = ggml_vk_create_pipeline_from_file("f32_to_f16", "main", 2, 4 * sizeof(int), {64, 1, 1}, {}, 1);
for (int i = 0; i < VK_NUM_TYPES; i++) { for (int i = 0; i < VK_NUM_TYPES; i++) {
stream.str(""); if (!ggml_vk_build_shader((ggml_type)i)) {
stream.clear();
stream << dequant_head << shader_int8_ext << shader_float_type;
if (!ggml_vk_build_shader_type_defines(stream, (ggml_type)i, !vk_device.fp16)) {
continue; continue;
} }
const std::string name = "dequant_" + std::string(ggml_type_name((ggml_type)i));
switch ((ggml_type)i) { vk_pipeline_dequant[i] = ggml_vk_create_pipeline_from_file(name, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
case GGML_TYPE_Q6_K:
stream << dequant_q6_K_body;
break;
default:
stream << dequant_body;
break;
}
vk_pipeline_dequant[i] = ggml_vk_create_pipeline_from_string("dequant_" + std::string(ggml_type_name((ggml_type)i)), stream.str(), { "D_TYPE", "float16_t" }, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
} }
// mul mat vec // mul mat vec
for (int i = 0; i < VK_NUM_TYPES; i++) { for (int i = 0; i < VK_NUM_TYPES; i++) {
stream.str(""); if (!ggml_vk_build_shader((ggml_type)i)) {
stream.clear();
stream << mul_mat_vec_head << shader_int8_ext << shader_float_type;
if (!ggml_vk_build_shader_type_defines(stream, (ggml_type)i, !vk_device.fp16)) {
continue; continue;
} }
const std::string name = "mul_mat_vec_" + std::string(ggml_type_name((ggml_type)i));
switch ((ggml_type)i) { vk_pipeline_dequant_mul_mat_vec[i] = ggml_vk_create_pipeline_from_file(name, "main", 3, 1 * sizeof(int), {1, 1, 1}, {}, 1);
case GGML_TYPE_Q6_K: vk_pipeline_dequant_mul_mat_vec_f32[i] = ggml_vk_create_pipeline_from_file(name + "_f32", "main", 3, 1 * sizeof(int), {1, 1, 1}, {}, 1);
stream << mul_mat_vec_q6_K_body;
break;
default:
stream << mul_mat_vec_body;
break;
}
vk_pipeline_dequant_mul_mat_vec[i] = ggml_vk_create_pipeline_from_string("mul_mat_vec_" + std::string(ggml_type_name((ggml_type)i)), stream.str(), { "B_TYPE", "float", "D_TYPE", "float16_t", "K_QUANTS_PER_ITERATION", std::to_string(K_QUANTS_PER_ITERATION) }, "main", 3, 1 * sizeof(int), {1, 1, 1}, {}, 1);
vk_pipeline_dequant_mul_mat_vec_f32[i] = ggml_vk_create_pipeline_from_string("mul_mat_vec_" + std::string(ggml_type_name((ggml_type)i)) + "_f32", stream.str(), { "B_TYPE", "float", "D_TYPE", "float", "K_QUANTS_PER_ITERATION", std::to_string(K_QUANTS_PER_ITERATION) }, "main", 3, 1 * sizeof(int), {1, 1, 1}, {}, 1);
} }
// add // add
stream.str(""); vk_pipeline_add_f32 = ggml_vk_create_pipeline_from_file("add_f32", "main", 3, sizeof(vk_op_push_constants), {32, 32, 1}, {}, 1);
stream.clear(); vk_pipeline_add_f16_f32_f16 = ggml_vk_create_pipeline_from_file("add_f16_f32_f16", "main", 3, sizeof(vk_op_push_constants), {32, 32, 1}, {}, 1);
stream << add_head << shader_float_type << add_body;
vk_pipeline_add_f32 = ggml_vk_create_pipeline_from_string("add_f32", stream.str(), { "X_TYPE", "float", "Y_TYPE", "float", "D_TYPE", "float" }, "main", 3, sizeof(vk_op_push_constants), {32, 32, 1}, {}, 1);
stream.str("");
stream.clear();
stream << add_head << shader_float_type << add_body;
vk_pipeline_add_f16_f32_f16 = ggml_vk_create_pipeline_from_string("add_f16_f32_f16", stream.str(), { "X_TYPE", "float16_t", "Y_TYPE", "float", "D_TYPE", "float16_t" }, "main", 3, sizeof(vk_op_push_constants), {32, 32, 1}, {}, 1);
// Static shaders // Static shaders
vk_pipeline_matmul_split_k_reduce = ggml_vk_create_pipeline_from_string("split_k_reduce", mulmat_split_k_reduce_src, {}, "main", 1, 3 * sizeof(int), {32, 32, 1}, {}, 1); vk_pipeline_matmul_split_k_reduce = ggml_vk_create_pipeline_from_file("split_k_reduce", "main", 1, 3 * sizeof(int), {32, 32, 1}, {}, 1);
vk_pipeline_mul_f32 = ggml_vk_create_pipeline_from_string("mul_f32", mul_f32_src, { "X_TYPE", "float", "Y_TYPE", "float", "D_TYPE", "float" }, "main", 3, sizeof(vk_op_push_constants), {32, 32, 1}, {}, 1); vk_pipeline_mul_f32 = ggml_vk_create_pipeline_from_file("mul_f32", "main", 3, sizeof(vk_op_push_constants), {32, 32, 1}, {}, 1);
vk_pipeline_scale_f32 = ggml_vk_create_pipeline_from_string("scale_f32", scale_src, { "X_TYPE", "float", "D_TYPE", "float" }, "main", 3, sizeof(vk_op_push_constants), {32, 32, 1}, {}, 1); vk_pipeline_scale_f32 = ggml_vk_create_pipeline_from_file("scale_f32", "main", 3, sizeof(vk_op_push_constants), {32, 32, 1}, {}, 1);
} }
void ggml_vk_test_transfer(size_t ne); void ggml_vk_test_transfer(size_t ne);
@ -992,7 +877,7 @@ std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
vk_device.descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN; vk_device.descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN;
// Shaders // Shaders
ggml_vk_generate_shaders(); ggml_vk_load_shaders();
// Queues // Queues
uint32_t queue_index_offset = compute_queue_family_index == transfer_queue_family_index ? 1 : 0; uint32_t queue_index_offset = compute_queue_family_index == transfer_queue_family_index ? 1 : 0;

View file

@ -789,20 +789,20 @@ GGML_TYPE_Q8_K = 15
type_names = { type_names = {
GGML_TYPE_F32: "F32", GGML_TYPE_F32: "f32",
GGML_TYPE_F16: "F16", GGML_TYPE_F16: "f16",
GGML_TYPE_Q4_0: "Q4_0", GGML_TYPE_Q4_0: "q4_0",
GGML_TYPE_Q4_1: "Q4_1", GGML_TYPE_Q4_1: "q4_1",
GGML_TYPE_Q5_0: "Q5_0", GGML_TYPE_Q5_0: "q5_0",
GGML_TYPE_Q5_1: "Q5_1", GGML_TYPE_Q5_1: "q5_1",
GGML_TYPE_Q8_0: "Q8_0", GGML_TYPE_Q8_0: "q8_0",
GGML_TYPE_Q8_1: "Q8_1", GGML_TYPE_Q8_1: "q8_1",
GGML_TYPE_Q2_K: "Q2_K", GGML_TYPE_Q2_K: "q2_K",
GGML_TYPE_Q3_K: "Q3_K", GGML_TYPE_Q3_K: "q3_K",
GGML_TYPE_Q4_K: "Q4_K", GGML_TYPE_Q4_K: "q4_K",
GGML_TYPE_Q5_K: "Q5_K", GGML_TYPE_Q5_K: "q5_K",
GGML_TYPE_Q6_K: "Q6_K", GGML_TYPE_Q6_K: "q6_K",
GGML_TYPE_Q8_K: "Q8_K", GGML_TYPE_Q8_K: "q8_K",
} }
K_QUANTS_PER_ITERATION = 1 K_QUANTS_PER_ITERATION = 1
@ -851,7 +851,6 @@ async def main():
os.makedirs("vk_shaders", exist_ok=True) os.makedirs("vk_shaders", exist_ok=True)
async with asyncio.TaskGroup() as tg:
for fp16 in (False, True): for fp16 in (False, True):
# mulmat # mulmat
if fp16: if fp16:
@ -865,34 +864,36 @@ async def main():
vec_type_f16 = "f16vec4" vec_type_f16 = "f16vec4"
vec_type = "vec4" vec_type = "vec4"
tasks = []
stream = [] stream = []
stream.extend((mulmat_head, shader_float_type, mulmat_body)); stream.extend((mulmat_head, shader_float_type, mulmat_body));
tg.create_task(string_to_spv_file("matmul_f32_l", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f32_l", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f32_m", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f32_m", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f32_s", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f32_s", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f32_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f32_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f32_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f32_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f32_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f32_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear(); stream.clear();
stream.extend((mulmat_head, shader_float_type, mulmat_body)); stream.extend((mulmat_head, shader_float_type, mulmat_body));
tg.create_task(string_to_spv_file("matmul_f16_l", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_l", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_m", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_m", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_s", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_s", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_f32_l", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_f32_l", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_f32_m", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_f32_m", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_f32_s", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_f32_s", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_f32_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_f32_aligned_l", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_f32_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_f32_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("matmul_f16_f32_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("matmul_f16_f32_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# Build dequant shaders # Build dequant shaders
tg.create_task(string_to_spv_file("f32_to_f16", f32_to_f16_src, {}, fp16)) tasks.append(string_to_spv_file("f32_to_f16", f32_to_f16_src, {}, fp16))
for i in range(0, VK_NUM_TYPES): for i in range(0, VK_NUM_TYPES):
stream.clear(); stream.clear();
@ -916,7 +917,7 @@ async def main():
else: else:
continue continue
tg.create_task(string_to_spv_file(f"dequant_{type_names[i]}", "".join(stream), {"D_TYPE": "float16_t"}, fp16)) tasks.append(string_to_spv_file(f"dequant_{type_names[i]}", "".join(stream), {"D_TYPE": "float16_t"}, fp16))
# mul mat vec # mul mat vec
for i in range(0, VK_NUM_TYPES): for i in range(0, VK_NUM_TYPES):
@ -940,24 +941,26 @@ async def main():
else: else:
continue continue
tg.create_task(string_to_spv_file(f"mul_mat_vec_{type_names[i]}", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float16_t", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}, fp16)) tasks.append(string_to_spv_file(f"mul_mat_vec_{type_names[i]}", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float16_t", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}, fp16))
tg.create_task(string_to_spv_file(f"mul_mat_vec_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}, fp16)) tasks.append(string_to_spv_file(f"mul_mat_vec_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}, fp16))
# add # add
stream.clear(); stream.clear();
stream.extend((add_head, shader_float_type, add_body)) stream.extend((add_head, shader_float_type, add_body))
tg.create_task(string_to_spv_file("add_f32", "".join(stream), {"X_TYPE": "float", "Y_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("add_f32", "".join(stream), {"X_TYPE": "float", "Y_TYPE": "float", "D_TYPE": "float"}, fp16))
stream.clear(); stream.clear();
stream.extend((add_head, shader_float_type, add_body)) stream.extend((add_head, shader_float_type, add_body))
tg.create_task(string_to_spv_file("add_f16_f32_f16", "".join(stream), {"X_TYPE": "float16_t", "Y_TYPE": "float", "D_TYPE": "float16_t"}, fp16)) tasks.append(string_to_spv_file("add_f16_f32_f16", "".join(stream), {"X_TYPE": "float16_t", "Y_TYPE": "float", "D_TYPE": "float16_t"}, fp16))
# Static shaders # Static shaders
tg.create_task(string_to_spv_file("split_k_reduce", mulmat_split_k_reduce_src, {}, fp16)) tasks.append(string_to_spv_file("split_k_reduce", mulmat_split_k_reduce_src, {}, fp16))
tg.create_task(string_to_spv_file("mul_f32", mul_f32_src, {"X_TYPE": "float", "Y_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("mul_f32", mul_f32_src, {"X_TYPE": "float", "Y_TYPE": "float", "D_TYPE": "float"}, fp16))
tg.create_task(string_to_spv_file("scale_f32", scale_src, {"X_TYPE": "float", "D_TYPE": "float"}, fp16)) tasks.append(string_to_spv_file("scale_f32", scale_src, {"X_TYPE": "float", "D_TYPE": "float"}, fp16))
await asyncio.gather(*tasks)
asyncio.run(main()) asyncio.run(main())