mamba : reduce memory usage of ggml_ssm_scan

From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.

The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
This commit is contained in:
Francis Couture-Harpin 2024-02-17 20:30:29 -05:00
parent e73eaa7b4f
commit de50c549c4
3 changed files with 70 additions and 50 deletions

84
ggml.c
View file

@ -6087,14 +6087,15 @@ struct ggml_tensor * ggml_ssm_scan(
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B) {
struct ggml_tensor * B,
struct ggml_tensor * C) {
GGML_ASSERT(ggml_is_contiguous(s));
GGML_ASSERT(ggml_is_contiguous(x));
GGML_ASSERT(ggml_is_contiguous(dt));
GGML_ASSERT(ggml_is_contiguous(A));
GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
GGML_ASSERT(ggml_are_same_shape(x, dt));
GGML_ASSERT(ggml_is_matrix(s)); // the ssm_state should be 2D
{
const int64_t d_state = s->ne[0];
@ -6106,6 +6107,8 @@ struct ggml_tensor * ggml_ssm_scan(
GGML_ASSERT(A->ne[1] == d_inner);
GGML_ASSERT(B->ne[0] == d_state);
GGML_ASSERT(B->ne[1] == n_tokens);
GGML_ASSERT(C->ne[0] == d_state);
GGML_ASSERT(C->ne[1] == n_tokens);
}
bool is_node = false;
@ -6115,7 +6118,8 @@ struct ggml_tensor * ggml_ssm_scan(
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, s->ne[0], s->ne[1], x->ne[1]);
// 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
result->op = GGML_OP_SSM_SCAN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -6124,6 +6128,7 @@ struct ggml_tensor * ggml_ssm_scan(
result->src[2] = dt;
result->src[3] = A;
result->src[4] = B;
result->src[5] = C;
return result;
}
@ -14650,6 +14655,7 @@ static void ggml_compute_forward_ssm_scan_f32(
const struct ggml_tensor * src2, // dt
const struct ggml_tensor * src3, // A
const struct ggml_tensor * src4, // B
const struct ggml_tensor * src5, // C
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
@ -14658,67 +14664,84 @@ static void ggml_compute_forward_ssm_scan_f32(
const int ith = params->ith;
const int nth = params->nth;
const int64_t nc = src0->ne[0];
const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // d_inner
const int64_t n_t = src1->ne[1]; // number of tokens in the batch
const int64_t nr0 = ggml_nrows(src0);
GGML_ASSERT(nc*n_t*nr0 == ggml_nelements(dst));
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float));
// allow merging multiple rows in the same vec operation
GGML_ASSERT(src5->nb[0] == sizeof(float));
// required for the dot product between s and C
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
GGML_ASSERT(src3->nb[1] == src3->ne[0]*sizeof(float));
// required to get correct offset for state destination
GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
// rows per thread
const int dr = (nr0 + nth - 1)/nth;
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr0);
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
// first batch
// first token in the batch
{
float * pdst = (float *) ((char *) dst->data + ir0*( dst->nb[1])); // {d_state, d_inner, n_tokens}
float * s = (float *) ((char *) src0->data + ir0*(src0->nb[1])); // {d_state, d_inner}
float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0])); // {d_inner, n_tokens}
float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0])); // {d_inner, n_tokens}
float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
float * B = (float *) ((char *) src4->data); // {d_state, n_tokens}
float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0])); // {d_inner, n_tokens}
float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + src1->nb[2]); // {d_state, d_inner, n_kv}
float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1])); // {d_state, d_inner, n_kv}
float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0])); // {d_inner, n_tokens}
float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0])); // {d_inner, n_tokens}
float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
float * B = (float *) ((char *) src4->data); // {d_state, n_tokens}
float * C = (float *) ((char *) src5->data); // {d_state, n_tokens}
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
float dt_soft_plus = log1pf(expf(dt[i1]));
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// ssm_state * dA + dB * x
pdst[i] = s[i]*(expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// state = prev_state * dA + dB * x
float state = s0[i]*(expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state*C[i0];
// FIXME: handle simultaneous sequences
s[i] = state;
}
y[i1] = sumf;
}
}
// compute state for rest of tokens, previous state comes from dest
// rest of the batch, state comes from previous one which was stored in destination
for (int i2 = 1; i2 < n_t; ++i2) {
float * pdst = (float *) ((char *) dst->data + ir0*( dst->nb[1]) + i2 *( dst->nb[2])); // {d_state, d_inner, n_tokens}
float * s = (float *) ((char *) dst->data + ir0*( dst->nb[1]) + (i2-1)*( dst->nb[2])); // {d_state, d_inner, n_tokens}
float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2 *(src1->nb[1])); // {d_inner, n_tokens}
float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2 *(src2->nb[1])); // {d_inner, n_tokens}
float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + src1->nb[2]); // {d_state, d_inner, n_kv}
float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
float dt_soft_plus = log1pf(expf(dt[i1]));
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// ssm_state * dA + dB * x
pdst[i] = s[i]*(expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// state = prev_state * dA + dB * x
float state = s[i]*(expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state*C[i0];
// FIXME: handle simultaneous sequences
s[i] = state;
}
y[i1] = sumf;
}
}
}
@ -14730,11 +14753,12 @@ static void ggml_compute_forward_ssm_scan(
const struct ggml_tensor * src2,
const struct ggml_tensor * src3,
const struct ggml_tensor * src4,
const struct ggml_tensor * src5,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_ssm_scan_f32(params, src0, src1, src2, src3, src4, dst);
ggml_compute_forward_ssm_scan_f32(params, src0, src1, src2, src3, src4, src5, dst);
} break;
default:
{
@ -15796,7 +15820,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break;
case GGML_OP_SSM_SCAN:
{
ggml_compute_forward_ssm_scan(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
ggml_compute_forward_ssm_scan(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor->src[5], tensor);
} break;
case GGML_OP_WIN_PART:
{

3
ggml.h
View file

@ -1708,7 +1708,8 @@ extern "C" {
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B);
struct ggml_tensor * B,
struct ggml_tensor * C);
// partition into non-overlapping windows with padding if needed
// example:

View file

@ -8029,9 +8029,9 @@ struct llm_build_context {
ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], (d_conv-1)*(d_inner), kv_self.size);
ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], (d_state)*(d_inner), kv_self.size);
// clear states of sequences which are starting at the beginning of this batch
{
ggml_tensor * state_mask = ggml_view_2d(ctx0, lctx.inp_s_mask, 1, n_kv, lctx.inp_s_mask->nb[0], 0);
// clear states of sequences which are starting at the beginning of this batch
conv_states = ggml_mul(ctx0,
ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
state_mask);
@ -8040,11 +8040,8 @@ struct llm_build_context {
state_mask);
}
// TODO: support more than one sequence per batch (these could then use ggml_reshape_3d)
ggml_tensor * conv_state = ggml_view_2d(ctx0, conv_states, d_conv - 1, d_inner,
(d_conv - 1)*ggml_element_size(conv_states), 0);
ggml_tensor * ssm_state = ggml_view_2d(ctx0, ssm_states, d_state, d_inner,
(d_state)*ggml_element_size(ssm_states), 0);
struct ggml_tensor * conv_state = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
struct ggml_tensor * ssm_state = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
@ -8099,7 +8096,7 @@ struct llm_build_context {
// ssm
{
// {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
// {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
// split
struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
@ -8110,22 +8107,20 @@ struct llm_build_context {
dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
// Custom operator to implement some of the optimizations
// described in the Annex D of the Mamba paper.
// TODO: maybe also optimize step 4 of the Speed section of Annex D (the mul_mat with C)
// => {d_state, d_inner, n_tokens}
ssm_state = ggml_ssm_scan(ctx0, ssm_state, x, dt, model.layers[il].ssm_a, B);
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
// because only a single tensor can be returned.
struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_state, x, dt, model.layers[il].ssm_a, B, C);
// only store last state
// store last states (the second part of y_ssm_states)
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_2d(ctx0, ssm_state, d_state, d_inner, ssm_state->nb[1], (n_tokens-1)*ssm_state->nb[2]),
ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner, kv_self.head*d_state*d_inner*ggml_element_size(ssm_state))));
ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_self.head*d_state*d_inner*ggml_element_size(ssm_state))));
struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
// {d_state, d_inner, n_tokens} * {d_state, n_tokens} => {d_inner, 1, n_tokens}
struct ggml_tensor * y = ggml_mul_mat(ctx0, ssm_state, ggml_permute(ctx0, C, 0, 2, 1, 3));
// => {d_inner, n_tokens}
y = ggml_permute(ctx0, y, 0, 2, 1, 3);
// {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));