Merge branch 'gguf' of https://github.com/ggerganov/llama.cpp into gguf
This commit is contained in:
commit
dea1e4c03e
4 changed files with 451 additions and 195 deletions
|
@ -1,4 +1,4 @@
|
|||
# 7b pth llama --> gguf conversion, GQA/70b not supported
|
||||
# 7b pth llama --> gguf conversion
|
||||
# Only models with a single datafile are supported, like 7B
|
||||
# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
|
||||
|
||||
|
@ -96,10 +96,20 @@ if "_name_or_path" in hparams:
|
|||
else:
|
||||
hf_repo = ""
|
||||
|
||||
if "max_sequence_length" in hparams:
|
||||
ctx_length = hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in hparams:
|
||||
ctx_length = hparams["max_position_embeddings"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
|
||||
gguf_writer.add_name(last_dir)
|
||||
gguf_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
|
@ -155,18 +165,20 @@ if Path(dir_model + "/tokenizer.model").is_file():
|
|||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
|
||||
print("gguf: get special token ids")
|
||||
|
||||
if Path(dir_model + "/tokenizer.json").is_file():
|
||||
# Look for special tokens in tokenizer.json if it exists
|
||||
|
||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
tokenizer = json.load(f)
|
||||
|
||||
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||
print("gguf: get special token ids")
|
||||
|
||||
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
# find special token ids
|
||||
|
||||
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["bos_token"]["content"]:
|
||||
|
@ -191,6 +203,23 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
|||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["pad_token"]["content"]:
|
||||
gguf_writer.add_pad_token_id(key["id"])
|
||||
else:
|
||||
# If no tokenizer.json: Look for special tokens in config.json
|
||||
|
||||
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
|
||||
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
|
||||
|
||||
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
|
||||
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
|
||||
|
||||
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
|
||||
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
|
||||
|
||||
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
|
||||
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
|
||||
|
||||
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
|
||||
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
|
||||
|
||||
|
||||
# TENSORS
|
||||
|
|
|
@ -173,18 +173,20 @@ if Path(dir_model + "/tokenizer.model").is_file():
|
|||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
|
||||
print("gguf: get special token ids")
|
||||
|
||||
if Path(dir_model + "/tokenizer.json").is_file():
|
||||
# Look for special tokens in tokenizer.json if it exists
|
||||
|
||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
tokenizer = json.load(f)
|
||||
|
||||
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||
print("gguf: get special token ids")
|
||||
|
||||
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
# find special token ids
|
||||
|
||||
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["bos_token"]["content"]:
|
||||
|
@ -209,6 +211,23 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
|||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["pad_token"]["content"]:
|
||||
gguf_writer.add_pad_token_id(key["id"])
|
||||
else:
|
||||
# If no tokenizer.json: Look for special tokens in config.json
|
||||
|
||||
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
|
||||
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
|
||||
|
||||
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
|
||||
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
|
||||
|
||||
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
|
||||
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
|
||||
|
||||
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
|
||||
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
|
||||
|
||||
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
|
||||
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
|
||||
|
||||
|
||||
# TENSORS
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -54,7 +54,8 @@ To get started right away, run the following command, making sure to use the cor
|
|||
### Windows:
|
||||
|
||||
```powershell
|
||||
|
||||
server.exe -m models\7B\ggml-model.gguf -c 2048
|
||||
```
|
||||
The above command will start a server that by default listens on `127.0.0.1:8080`.
|
||||
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue