Compare vocabs
This commit is contained in:
parent
a943b42416
commit
dec64ef793
1 changed files with 70 additions and 11 deletions
|
@ -112,9 +112,25 @@ class LibLlamaModel:
|
|||
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
|
||||
return str(self.ffi.buffer(self.text_buff, num), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
|
||||
|
||||
def get_vocab(self, detokenize=False) -> list[str]:
|
||||
vocab: list[str] = []
|
||||
num_tokens = self.lib.llama_n_vocab(self.model)
|
||||
for id in range(num_tokens):
|
||||
if detokenize:
|
||||
text = self.detokenize([id], remove_special=False, unparse_special=True)
|
||||
else:
|
||||
text = self.lib.llama_token_get_text(self.model, id)
|
||||
text = self.ffi.string(text)
|
||||
text = str(text, encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
|
||||
vocab.append(text)
|
||||
return vocab
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
|
||||
def get_vocab(self, detokenize=False) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@ -125,7 +141,7 @@ class Tokenizer:
|
|||
class TokenizerGroundtruth (Tokenizer):
|
||||
|
||||
def __init__(self, dir_tokenizer: str):
|
||||
self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
|
||||
self.model = AutoTokenizer.from_pretrained(dir_tokenizer, trust_remote_code=False)
|
||||
# guess BOS and EOS
|
||||
ids = self.encode("a")
|
||||
assert 1 <= len(ids) <= 3
|
||||
|
@ -134,15 +150,24 @@ class TokenizerGroundtruth (Tokenizer):
|
|||
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
|
||||
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
|
||||
# build vocab
|
||||
tokens = list(self.model.get_vocab().values())
|
||||
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
|
||||
self.vocab = list(sorted(self.vocab))
|
||||
self.vocab = self.get_vocab(detokenize=True)
|
||||
# tokens and lists
|
||||
self.special_tokens = list(self.model.all_special_tokens)
|
||||
self.added_tokens = list(self.model.added_tokens_encoder)
|
||||
self.bos_token = self.model.bos_token
|
||||
self.eos_token = self.model.eos_token
|
||||
|
||||
def get_vocab(self, detokenize=False) -> list[str]:
|
||||
max_token_id = max(self.model.get_vocab().values())
|
||||
if detokenize:
|
||||
ids = list(range(max_token_id + 1))
|
||||
vocab = self.model.batch_decode(ids, skip_special_tokens=False)
|
||||
else:
|
||||
vocab = [None] * (max_token_id + 1)
|
||||
for text, id in self.model.get_vocab().items():
|
||||
vocab[id] = text
|
||||
return vocab
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
return self.model.encode(text, add_special_tokens=True)
|
||||
|
||||
|
@ -159,6 +184,9 @@ class TokenizerLlamaCpp (Tokenizer):
|
|||
self.libllama = LibLlama()
|
||||
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||
|
||||
def get_vocab(self, detokenize=False) -> list[str]:
|
||||
return self.model.get_vocab(detokenize)
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
return self.model.tokenize(text, add_special=True, parse_special=True)
|
||||
|
||||
|
@ -491,6 +519,34 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
|
|||
logger.info(f"{generator.__name__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
|
||||
|
||||
|
||||
def compare_vocabs(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp):
|
||||
|
||||
MAX_PRINT_ERRORS = 10
|
||||
|
||||
logger.info("compare_vocabs: ini")
|
||||
|
||||
t_start = time.perf_counter()
|
||||
|
||||
for detokenize in (False, True):
|
||||
vocab1 = tokenizer1.get_vocab(detokenize)
|
||||
vocab2 = tokenizer2.get_vocab(detokenize)
|
||||
if vocab1 != vocab2:
|
||||
num_errors = 0
|
||||
for i in range(max(len(vocab1), len(vocab2))):
|
||||
text1 = vocab1[i] if i < len(vocab1) else ""
|
||||
text2 = vocab2[i] if i < len(vocab2) else ""
|
||||
is_unused = text1.startswith("[UNUSED_TOKEN_") # AutoTokenizer adds more unused tokens than SentencePiece ?
|
||||
if text1 != text2 and is_unused and text2:
|
||||
num_errors += 1
|
||||
if num_errors < MAX_PRINT_ERRORS:
|
||||
logger.error(f" {detokenize=} id={i} expected={repr(text1)} result={repr(text2)}")
|
||||
if num_errors:
|
||||
logger.error(f" {num_errors=}")
|
||||
|
||||
t_total = time.perf_counter() - t_start
|
||||
logger.info(f"compare_vocabs: end, {t_total=:.3f}")
|
||||
|
||||
|
||||
def main(argv: list[str] = None):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
|
||||
|
@ -504,13 +560,16 @@ def main(argv: list[str] = None):
|
|||
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
|
||||
tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
|
||||
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
|
||||
compare_vocabs(tokenizer1, tokenizer2)
|
||||
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_representative(tokenizer1))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue