Merge remote-tracking branch 'upstream/master' into fix-unicode-2
This commit is contained in:
commit
e029b50351
36 changed files with 6685 additions and 3832 deletions
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -1,6 +1,7 @@
|
||||||
*.o
|
*.o
|
||||||
*.a
|
*.a
|
||||||
*.so
|
*.so
|
||||||
|
*.bin
|
||||||
.DS_Store
|
.DS_Store
|
||||||
.build/
|
.build/
|
||||||
.cache/
|
.cache/
|
||||||
|
@ -39,6 +40,7 @@ models-mnt
|
||||||
/perplexity
|
/perplexity
|
||||||
/embedding
|
/embedding
|
||||||
/train-text-from-scratch
|
/train-text-from-scratch
|
||||||
|
/convert-llama2c-to-ggml
|
||||||
/simple
|
/simple
|
||||||
/benchmark-matmult
|
/benchmark-matmult
|
||||||
/vdot
|
/vdot
|
||||||
|
@ -68,6 +70,7 @@ poetry.lock
|
||||||
poetry.toml
|
poetry.toml
|
||||||
|
|
||||||
# Test binaries
|
# Test binaries
|
||||||
|
tests/test-grammar-parser
|
||||||
tests/test-double-float
|
tests/test-double-float
|
||||||
tests/test-grad0
|
tests/test-grad0
|
||||||
tests/test-opt
|
tests/test-opt
|
||||||
|
|
|
@ -69,7 +69,6 @@ option(LLAMA_BLAS "llama: use BLAS"
|
||||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||||
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
|
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
|
||||||
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
|
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
|
||||||
set(LLAMA_CUDA_MMQ_Y "64" CACHE STRING "llama: y tile size for mmq CUDA kernels")
|
|
||||||
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
||||||
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
|
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
|
||||||
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
|
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
|
||||||
|
@ -256,7 +255,6 @@ if (LLAMA_CUBLAS)
|
||||||
# if (LLAMA_CUDA_CUBLAS)
|
# if (LLAMA_CUDA_CUBLAS)
|
||||||
# add_compile_definitions(GGML_CUDA_CUBLAS)
|
# add_compile_definitions(GGML_CUDA_CUBLAS)
|
||||||
# endif()
|
# endif()
|
||||||
add_compile_definitions(GGML_CUDA_MMQ_Y=${LLAMA_CUDA_MMQ_Y})
|
|
||||||
if (LLAMA_CUDA_FORCE_DMMV)
|
if (LLAMA_CUDA_FORCE_DMMV)
|
||||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||||
endif()
|
endif()
|
||||||
|
@ -298,7 +296,6 @@ if (LLAMA_METAL)
|
||||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||||
find_library(METALPERFORMANCE_FRAMEWORK MetalPerformanceShaders REQUIRED)
|
|
||||||
|
|
||||||
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
||||||
|
|
||||||
|
@ -315,7 +312,6 @@ if (LLAMA_METAL)
|
||||||
${FOUNDATION_LIBRARY}
|
${FOUNDATION_LIBRARY}
|
||||||
${METAL_FRAMEWORK}
|
${METAL_FRAMEWORK}
|
||||||
${METALKIT_FRAMEWORK}
|
${METALKIT_FRAMEWORK}
|
||||||
${METALPERFORMANCE_FRAMEWORK}
|
|
||||||
)
|
)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
@ -573,6 +569,16 @@ install(
|
||||||
WORLD_READ
|
WORLD_READ
|
||||||
WORLD_EXECUTE
|
WORLD_EXECUTE
|
||||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||||
|
if (LLAMA_METAL)
|
||||||
|
install(
|
||||||
|
FILES ggml-metal.metal
|
||||||
|
PERMISSIONS
|
||||||
|
OWNER_READ
|
||||||
|
OWNER_WRITE
|
||||||
|
GROUP_READ
|
||||||
|
WORLD_READ
|
||||||
|
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||||
|
endif()
|
||||||
|
|
||||||
#
|
#
|
||||||
# programs, examples and tests
|
# programs, examples and tests
|
||||||
|
|
24
Makefile
24
Makefile
|
@ -1,8 +1,8 @@
|
||||||
# Define the default target now so that it is always the first target
|
# Define the default target now so that it is always the first target
|
||||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple server embd-input-test
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test
|
||||||
|
|
||||||
# Binaries only useful for tests
|
# Binaries only useful for tests
|
||||||
TEST_TARGETS = tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
|
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
|
||||||
|
|
||||||
default: $(BUILD_TARGETS)
|
default: $(BUILD_TARGETS)
|
||||||
|
|
||||||
|
@ -253,11 +253,6 @@ ifdef LLAMA_CUDA_KQUANTS_ITER
|
||||||
else
|
else
|
||||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
|
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
|
||||||
endif
|
endif
|
||||||
ifdef LLAMA_CUDA_MMQ_Y
|
|
||||||
NVCCFLAGS += -DGGML_CUDA_MMQ_Y=$(LLAMA_CUDA_MMQ_Y)
|
|
||||||
else
|
|
||||||
NVCCFLAGS += -DGGML_CUDA_MMQ_Y=64
|
|
||||||
endif # LLAMA_CUDA_MMQ_Y
|
|
||||||
#ifdef LLAMA_CUDA_CUBLAS
|
#ifdef LLAMA_CUDA_CUBLAS
|
||||||
# NVCCFLAGS += -DGGML_CUDA_CUBLAS
|
# NVCCFLAGS += -DGGML_CUDA_CUBLAS
|
||||||
#endif # LLAMA_CUDA_CUBLAS
|
#endif # LLAMA_CUDA_CUBLAS
|
||||||
|
@ -288,7 +283,7 @@ endif # LLAMA_CLBLAST
|
||||||
ifdef LLAMA_METAL
|
ifdef LLAMA_METAL
|
||||||
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
||||||
CXXFLAGS += -DGGML_USE_METAL
|
CXXFLAGS += -DGGML_USE_METAL
|
||||||
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||||
OBJS += ggml-metal.o
|
OBJS += ggml-metal.o
|
||||||
endif # LLAMA_METAL
|
endif # LLAMA_METAL
|
||||||
|
|
||||||
|
@ -350,7 +345,7 @@ libllama.so: llama.o ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch embd-input-test build-info.h $(TEST_TARGETS)
|
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test build-info.h $(TEST_TARGETS)
|
||||||
|
|
||||||
#
|
#
|
||||||
# Examples
|
# Examples
|
||||||
|
@ -380,7 +375,7 @@ embedding: examples/embedding/embedding.cpp build-info.h ggml.
|
||||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o $(OBJS)
|
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||||
|
|
||||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
@ -393,6 +388,9 @@ embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-te
|
||||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
|
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||||
@sh scripts/build-info.sh > $@.tmp
|
@sh scripts/build-info.sh > $@.tmp
|
||||||
@if ! cmp -s $@.tmp $@; then \
|
@if ! cmp -s $@.tmp $@; then \
|
||||||
|
@ -414,6 +412,12 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
|
||||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
tests/test-grammar-parser: tests/test-grammar-parser.cpp examples/grammar-parser.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
|
12
README.md
12
README.md
|
@ -238,12 +238,17 @@ In order to build llama.cpp you have three different options.
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release
|
||||||
```
|
```
|
||||||
|
|
||||||
- Using `Zig`:
|
- Using `Zig` (version 0.11 or later):
|
||||||
|
|
||||||
|
Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C,
|
||||||
|
it's also possible to cross compile for other operating systems and architectures:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
zig build -Doptimize=ReleaseFast
|
zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
|
||||||
```
|
```
|
||||||
|
|
||||||
|
The `zig targets` command will give you valid options to use.
|
||||||
|
|
||||||
- Using `gmake` (FreeBSD):
|
- Using `gmake` (FreeBSD):
|
||||||
|
|
||||||
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
|
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
|
||||||
|
@ -406,10 +411,9 @@ Building the program with BLAS support may lead to some performance improvements
|
||||||
--->
|
--->
|
||||||
| Option | Legal values | Default | Description |
|
| Option | Legal values | Default | Description |
|
||||||
|-------------------------|------------------------|---------|-------------|
|
|-------------------------|------------------------|---------|-------------|
|
||||||
| LLAMA_CUDA_MMQ_Y | Positive integer >= 32 | 64 | Tile size in y direction when using the custom CUDA kernels for prompt processing. Higher values can be faster depending on the amount of shared memory available. Power of 2 heavily recommended. |
|
|
||||||
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||||||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
||||||
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||||
|
|
||||||
|
|
74
build.zig
74
build.zig
|
@ -1,5 +1,6 @@
|
||||||
// Compatible with Zig Version 0.11.0
|
// Compatible with Zig Version 0.11.0
|
||||||
const std = @import("std");
|
const std = @import("std");
|
||||||
|
const ArrayList = std.ArrayList;
|
||||||
const Compile = std.Build.Step.Compile;
|
const Compile = std.Build.Step.Compile;
|
||||||
const ConfigHeader = std.Build.Step.ConfigHeader;
|
const ConfigHeader = std.Build.Step.ConfigHeader;
|
||||||
const Mode = std.builtin.Mode;
|
const Mode = std.builtin.Mode;
|
||||||
|
@ -10,11 +11,31 @@ const Maker = struct {
|
||||||
target: CrossTarget,
|
target: CrossTarget,
|
||||||
optimize: Mode,
|
optimize: Mode,
|
||||||
config_header: *ConfigHeader,
|
config_header: *ConfigHeader,
|
||||||
|
enable_lto: bool,
|
||||||
|
|
||||||
const cflags = .{"-std=c11"};
|
include_dirs: ArrayList([]const u8),
|
||||||
const cxxflags = .{"-std=c++11"};
|
cflags: ArrayList([]const u8),
|
||||||
|
cxxflags: ArrayList([]const u8),
|
||||||
|
objs: ArrayList(*Compile),
|
||||||
|
|
||||||
fn init(builder: *std.build.Builder) Maker {
|
fn addInclude(m: *Maker, dir: []const u8) !void {
|
||||||
|
try m.include_dirs.append(dir);
|
||||||
|
}
|
||||||
|
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
|
||||||
|
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
|
||||||
|
}
|
||||||
|
fn addCFlag(m: *Maker, flag: []const u8) !void {
|
||||||
|
try m.cflags.append(flag);
|
||||||
|
}
|
||||||
|
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
|
||||||
|
try m.cxxflags.append(flag);
|
||||||
|
}
|
||||||
|
fn addFlag(m: *Maker, flag: []const u8) !void {
|
||||||
|
try m.addCFlag(flag);
|
||||||
|
try m.addCxxFlag(flag);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn init(builder: *std.build.Builder) !Maker {
|
||||||
const commit_hash = @embedFile(".git/refs/heads/master");
|
const commit_hash = @embedFile(".git/refs/heads/master");
|
||||||
const config_header = builder.addConfigHeader(
|
const config_header = builder.addConfigHeader(
|
||||||
.{ .style = .blank, .include_path = "build-info.h" },
|
.{ .style = .blank, .include_path = "build-info.h" },
|
||||||
|
@ -23,58 +44,71 @@ const Maker = struct {
|
||||||
.BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline
|
.BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline
|
||||||
},
|
},
|
||||||
);
|
);
|
||||||
return Maker{
|
var m = Maker{
|
||||||
.builder = builder,
|
.builder = builder,
|
||||||
.target = builder.standardTargetOptions(.{}),
|
.target = builder.standardTargetOptions(.{}),
|
||||||
.optimize = builder.standardOptimizeOption(.{}),
|
.optimize = builder.standardOptimizeOption(.{}),
|
||||||
.config_header = config_header,
|
.config_header = config_header,
|
||||||
|
.enable_lto = false,
|
||||||
|
.include_dirs = ArrayList([]const u8).init(builder.allocator),
|
||||||
|
.cflags = ArrayList([]const u8).init(builder.allocator),
|
||||||
|
.cxxflags = ArrayList([]const u8).init(builder.allocator),
|
||||||
|
.objs = ArrayList(*Compile).init(builder.allocator),
|
||||||
};
|
};
|
||||||
|
try m.addCFlag("-std=c11");
|
||||||
|
try m.addCxxFlag("-std=c++11");
|
||||||
|
try m.addProjectInclude(&.{});
|
||||||
|
try m.addProjectInclude(&.{"examples"});
|
||||||
|
return m;
|
||||||
}
|
}
|
||||||
|
|
||||||
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
||||||
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||||
if (std.mem.endsWith(u8, src, ".c")) {
|
if (std.mem.endsWith(u8, src, ".c")) {
|
||||||
o.addCSourceFiles(&.{src}, &cflags);
|
o.addCSourceFiles(&.{src}, m.cflags.items);
|
||||||
o.linkLibC();
|
o.linkLibC();
|
||||||
} else {
|
} else {
|
||||||
o.addCSourceFiles(&.{src}, &cxxflags);
|
o.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||||
o.linkLibCpp();
|
o.linkLibCpp();
|
||||||
}
|
}
|
||||||
o.addIncludePath(.{ .path = "." });
|
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
|
||||||
o.addIncludePath(.{ .path = "./examples" });
|
o.want_lto = m.enable_lto;
|
||||||
return o;
|
return o;
|
||||||
}
|
}
|
||||||
|
|
||||||
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
|
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
|
||||||
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||||
e.addIncludePath(.{ .path = "." });
|
e.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||||
e.addIncludePath(.{ .path = "./examples" });
|
|
||||||
e.addCSourceFiles(&.{src}, &cxxflags);
|
|
||||||
for (deps) |d| e.addObject(d);
|
for (deps) |d| e.addObject(d);
|
||||||
|
for (m.objs.items) |o| e.addObject(o);
|
||||||
|
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
|
||||||
e.linkLibC();
|
e.linkLibC();
|
||||||
e.linkLibCpp();
|
e.linkLibCpp();
|
||||||
e.addConfigHeader(m.config_header);
|
e.addConfigHeader(m.config_header);
|
||||||
m.builder.installArtifact(e);
|
m.builder.installArtifact(e);
|
||||||
|
e.want_lto = m.enable_lto;
|
||||||
// Currently a bug is preventing correct linking for optimized builds for Windows:
|
|
||||||
// https://github.com/ziglang/zig/issues/15958
|
|
||||||
if (e.target.isWindows()) {
|
|
||||||
e.want_lto = false;
|
|
||||||
}
|
|
||||||
return e;
|
return e;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
pub fn build(b: *std.build.Builder) void {
|
pub fn build(b: *std.build.Builder) !void {
|
||||||
const make = Maker.init(b);
|
var make = try Maker.init(b);
|
||||||
|
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
|
||||||
|
|
||||||
|
if (b.option(bool, "k-quants", "Enable K-quants, (default: true)") orelse true) {
|
||||||
|
try make.addFlag("-DGGML_USE_K_QUANTS");
|
||||||
|
const k_quants = make.obj("k_quants", "k_quants.c");
|
||||||
|
try make.objs.append(k_quants);
|
||||||
|
}
|
||||||
|
|
||||||
const ggml = make.obj("ggml", "ggml.c");
|
const ggml = make.obj("ggml", "ggml.c");
|
||||||
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
||||||
const llama = make.obj("llama", "llama.cpp");
|
const llama = make.obj("llama", "llama.cpp");
|
||||||
const common = make.obj("common", "examples/common.cpp");
|
const common = make.obj("common", "examples/common.cpp");
|
||||||
|
const console = make.obj("common", "examples/console.cpp");
|
||||||
const grammar_parser = make.obj("grammar-parser", "examples/grammar-parser.cpp");
|
const grammar_parser = make.obj("grammar-parser", "examples/grammar-parser.cpp");
|
||||||
|
|
||||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser });
|
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser });
|
||||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama });
|
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama });
|
||||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common });
|
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common });
|
||||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common });
|
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common });
|
||||||
|
|
|
@ -42,6 +42,7 @@ else()
|
||||||
add_subdirectory(benchmark)
|
add_subdirectory(benchmark)
|
||||||
add_subdirectory(baby-llama)
|
add_subdirectory(baby-llama)
|
||||||
add_subdirectory(train-text-from-scratch)
|
add_subdirectory(train-text-from-scratch)
|
||||||
|
add_subdirectory(convert-llama2c-to-ggml)
|
||||||
add_subdirectory(simple)
|
add_subdirectory(simple)
|
||||||
add_subdirectory(embd-input)
|
add_subdirectory(embd-input)
|
||||||
if (LLAMA_METAL)
|
if (LLAMA_METAL)
|
||||||
|
|
|
@ -274,6 +274,21 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.cfg_negative_prompt = argv[i];
|
params.cfg_negative_prompt = argv[i];
|
||||||
|
} else if (arg == "--cfg-negative-prompt-file") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
std::ifstream file(argv[i]);
|
||||||
|
if (!file) {
|
||||||
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
|
||||||
|
if (params.cfg_negative_prompt.back() == '\n') {
|
||||||
|
params.cfg_negative_prompt.pop_back();
|
||||||
|
}
|
||||||
} else if (arg == "--cfg-scale") {
|
} else if (arg == "--cfg-scale") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
|
@ -543,7 +558,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||||
fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
||||||
fprintf(stdout, " -f FNAME, --file FNAME\n");
|
fprintf(stdout, " -f FNAME, --file FNAME\n");
|
||||||
fprintf(stdout, " prompt file to start generation.\n");
|
fprintf(stdout, " prompt file to start generation.\n");
|
||||||
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
|
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||||
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||||
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
|
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
|
||||||
|
@ -567,8 +582,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||||
fprintf(stdout, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
|
fprintf(stdout, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
|
||||||
fprintf(stdout, " --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
|
fprintf(stdout, " --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
|
||||||
fprintf(stdout, " --grammar-file FNAME file to read grammar from\n");
|
fprintf(stdout, " --grammar-file FNAME file to read grammar from\n");
|
||||||
fprintf(stdout, " --cfg-negative-prompt PROMPT \n");
|
fprintf(stdout, " --cfg-negative-prompt PROMPT\n");
|
||||||
fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n");
|
fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n");
|
||||||
|
fprintf(stdout, " --cfg-negative-prompt-file FNAME\n");
|
||||||
|
fprintf(stdout, " negative prompt file to use for guidance. (default: empty)\n");
|
||||||
fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
||||||
fprintf(stdout, " --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale);
|
fprintf(stdout, " --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale);
|
||||||
fprintf(stdout, " --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base);
|
fprintf(stdout, " --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base);
|
||||||
|
|
|
@ -10,6 +10,9 @@
|
||||||
#include <windows.h>
|
#include <windows.h>
|
||||||
#include <fcntl.h>
|
#include <fcntl.h>
|
||||||
#include <io.h>
|
#include <io.h>
|
||||||
|
#ifndef ENABLE_VIRTUAL_TERMINAL_PROCESSING
|
||||||
|
#define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
|
||||||
|
#endif
|
||||||
#else
|
#else
|
||||||
#include <climits>
|
#include <climits>
|
||||||
#include <sys/ioctl.h>
|
#include <sys/ioctl.h>
|
||||||
|
@ -68,9 +71,10 @@ namespace console {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (hConsole) {
|
if (hConsole) {
|
||||||
// Enable ANSI colors on Windows 10+
|
// Check conditions combined to reduce nesting
|
||||||
if (advanced_display && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
|
if (advanced_display && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING) &&
|
||||||
SetConsoleMode(hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING);
|
!SetConsoleMode(hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
|
||||||
|
advanced_display = false;
|
||||||
}
|
}
|
||||||
// Set console output codepage to UTF8
|
// Set console output codepage to UTF8
|
||||||
SetConsoleOutputCP(CP_UTF8);
|
SetConsoleOutputCP(CP_UTF8);
|
||||||
|
|
5
examples/convert-llama2c-to-ggml/CMakeLists.txt
Normal file
5
examples/convert-llama2c-to-ggml/CMakeLists.txt
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
set(TARGET convert-llama2c-to-ggml)
|
||||||
|
add_executable(${TARGET} convert-llama2c-to-ggml.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
26
examples/convert-llama2c-to-ggml/README.md
Normal file
26
examples/convert-llama2c-to-ggml/README.md
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
## Convert llama2.c model to ggml
|
||||||
|
|
||||||
|
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
|
||||||
|
|
||||||
|
To convert the model first download the models from the [llma2.c](https://github.com/karpathy/llama2.c) repository:
|
||||||
|
|
||||||
|
`$ make -j`
|
||||||
|
|
||||||
|
After successful compilation, following usage options are available:
|
||||||
|
```
|
||||||
|
usage: ./convert-llama2c-to-ggml [options]
|
||||||
|
|
||||||
|
options:
|
||||||
|
-h, --help show this help message and exit
|
||||||
|
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'models/ggml-vocab.bin')
|
||||||
|
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
|
||||||
|
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
|
||||||
|
```
|
||||||
|
|
||||||
|
An example command is as follows:
|
||||||
|
|
||||||
|
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model <ggml-vocab.bin> --llama2c-model <llama2.c model path> --llama2c-output-model <ggml output model path>`
|
||||||
|
|
||||||
|
Now you can use the model with command like:
|
||||||
|
|
||||||
|
`$ ./main -m <ggml output model path> -p "One day, Lily met a Shoggoth" -n 500 -c 256 -eps 1e-5`
|
825
examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp
Normal file
825
examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp
Normal file
|
@ -0,0 +1,825 @@
|
||||||
|
#include "ggml.h"
|
||||||
|
#include "llama.h"
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <vector>
|
||||||
|
#include <cassert>
|
||||||
|
#include <climits>
|
||||||
|
#include <cstring>
|
||||||
|
#include <cstdarg>
|
||||||
|
#include <ctime>
|
||||||
|
#include <random>
|
||||||
|
#include <stdexcept>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
#endif
|
||||||
|
|
||||||
|
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
||||||
|
typedef struct {
|
||||||
|
int dim; // transformer dimension
|
||||||
|
int hidden_dim; // for ffn layers
|
||||||
|
int n_layers; // number of layers
|
||||||
|
int n_heads; // number of query heads
|
||||||
|
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
|
||||||
|
int vocab_size; // vocabulary size, usually 256 (byte-level)
|
||||||
|
int seq_len; // max sequence length
|
||||||
|
} Config;
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
// token embedding table
|
||||||
|
float* token_embedding_table; // (vocab_size, dim)
|
||||||
|
// weights for rmsnorms
|
||||||
|
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
||||||
|
float* rms_ffn_weight; // (layer, dim)
|
||||||
|
// weights for matmuls
|
||||||
|
float* wq; // (layer, dim, dim)
|
||||||
|
float* wk; // (layer, dim, dim)
|
||||||
|
float* wv; // (layer, dim, dim)
|
||||||
|
float* wo; // (layer, dim, dim)
|
||||||
|
// weights for ffn
|
||||||
|
float* w1; // (layer, hidden_dim, dim)
|
||||||
|
float* w2; // (layer, dim, hidden_dim)
|
||||||
|
float* w3; // (layer, hidden_dim, dim)
|
||||||
|
// final rmsnorm
|
||||||
|
float* rms_final_weight; // (dim,)
|
||||||
|
// freq_cis for RoPE relatively positional embeddings
|
||||||
|
// float* freq_cis_real; // (seq_len, dim/2)
|
||||||
|
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||||
|
// (optional) classifier weights for the logits, on the last layer
|
||||||
|
//float* wcls;
|
||||||
|
} TransformerWeights;
|
||||||
|
|
||||||
|
void malloc_weights(TransformerWeights* w, Config* p) {
|
||||||
|
// we calloc instead of malloc to keep valgrind happy
|
||||||
|
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||||
|
|
||||||
|
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||||
|
|
||||||
|
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||||
|
|
||||||
|
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
|
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
|
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
|
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||||
|
|
||||||
|
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
|
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
|
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||||
|
|
||||||
|
w->rms_final_weight = new float[p->dim]();
|
||||||
|
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||||
|
}
|
||||||
|
|
||||||
|
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) {
|
||||||
|
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||||
|
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||||
|
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||||
|
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||||
|
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||||
|
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||||
|
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||||
|
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||||
|
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
||||||
|
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||||
|
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void free_weights(TransformerWeights* w) {
|
||||||
|
delete w->token_embedding_table;
|
||||||
|
delete w->rms_att_weight;
|
||||||
|
delete w->rms_ffn_weight;
|
||||||
|
delete w->wq;
|
||||||
|
delete w->wk;
|
||||||
|
delete w->wv;
|
||||||
|
delete w->wo;
|
||||||
|
delete w->w1;
|
||||||
|
delete w->w2;
|
||||||
|
delete w->w3;
|
||||||
|
delete w->rms_final_weight;
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_sample_weights(TransformerWeights *w){
|
||||||
|
printf("----- Quick print of first of the weight vales of all the variables\n");
|
||||||
|
printf("%f\n", w->token_embedding_table[0]);
|
||||||
|
printf("%f\n", w->rms_att_weight[0]);
|
||||||
|
printf("%f\n", w->rms_ffn_weight[0]);
|
||||||
|
|
||||||
|
printf("%f\n", w->wq[0]);
|
||||||
|
printf("%f\n", w->wk[0]);
|
||||||
|
printf("%f\n", w->wv[0]);
|
||||||
|
printf("%f\n", w->wo[0]);
|
||||||
|
printf("%f\n", w->w1[0]);
|
||||||
|
printf("%f\n", w->w2[0]);
|
||||||
|
printf("%f\n", w->w3[0]);
|
||||||
|
printf("%f\n", w->rms_att_weight[0]);
|
||||||
|
}
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
|
||||||
|
|
||||||
|
struct llama_vocab {
|
||||||
|
using id = int32_t;
|
||||||
|
using token = std::string;
|
||||||
|
|
||||||
|
struct token_score {
|
||||||
|
token tok;
|
||||||
|
float score;
|
||||||
|
};
|
||||||
|
|
||||||
|
std::unordered_map<token, id> token_to_id;
|
||||||
|
std::vector<token_score> id_to_token;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct my_llama_hparams {
|
||||||
|
uint32_t n_vocab = 32000;
|
||||||
|
uint32_t n_ctx = 512; // this is provided as user input?
|
||||||
|
uint32_t n_embd = 4096;
|
||||||
|
uint32_t n_mult = 4;
|
||||||
|
uint32_t n_head = 32;
|
||||||
|
uint32_t n_layer = 32;
|
||||||
|
uint32_t n_rot = 64;
|
||||||
|
bool operator!=(const my_llama_hparams& other) const {
|
||||||
|
return memcmp(this, &other, sizeof(my_llama_hparams));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct my_llama_layer {
|
||||||
|
// normalization
|
||||||
|
struct ggml_tensor * attention_norm;
|
||||||
|
|
||||||
|
// attention
|
||||||
|
struct ggml_tensor * wq;
|
||||||
|
struct ggml_tensor * wk;
|
||||||
|
struct ggml_tensor * wv;
|
||||||
|
struct ggml_tensor * wo;
|
||||||
|
|
||||||
|
// normalization
|
||||||
|
struct ggml_tensor * ffn_norm;
|
||||||
|
|
||||||
|
// ff
|
||||||
|
struct ggml_tensor * w1;
|
||||||
|
struct ggml_tensor * w2;
|
||||||
|
struct ggml_tensor * w3;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct my_llama_model {
|
||||||
|
struct ggml_context * ctx = NULL;
|
||||||
|
|
||||||
|
my_llama_hparams hparams;
|
||||||
|
|
||||||
|
struct ggml_tensor * tok_embeddings;
|
||||||
|
|
||||||
|
struct ggml_tensor * norm;
|
||||||
|
struct ggml_tensor * output;
|
||||||
|
|
||||||
|
std::vector<my_llama_layer> layers;
|
||||||
|
|
||||||
|
uint32_t train_its = 0;
|
||||||
|
uint32_t train_samples = 0;
|
||||||
|
uint32_t train_tokens = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct train_params {
|
||||||
|
const char * fn_vocab_model;
|
||||||
|
const char * fn_llama2c_model;
|
||||||
|
const char * fn_llama2c_output_model;
|
||||||
|
const char * fn_train_data;
|
||||||
|
const char * fn_checkpoint_in;
|
||||||
|
const char * fn_checkpoint_out;
|
||||||
|
const char * fn_model_out;
|
||||||
|
|
||||||
|
uint32_t seed;
|
||||||
|
|
||||||
|
int n_ctx;
|
||||||
|
int n_embd;
|
||||||
|
int n_mult;
|
||||||
|
int n_head;
|
||||||
|
int n_layer;
|
||||||
|
int n_rotmax;
|
||||||
|
|
||||||
|
int n_threads;
|
||||||
|
int n_batch;
|
||||||
|
int n_examples;
|
||||||
|
int n_predict;
|
||||||
|
|
||||||
|
int print_info_interval;
|
||||||
|
int print_details_interval;
|
||||||
|
|
||||||
|
bool samples_start_after_nl;
|
||||||
|
bool use_adam;
|
||||||
|
bool use_flash;
|
||||||
|
bool use_scratch;
|
||||||
|
|
||||||
|
// only adam
|
||||||
|
int warmup;
|
||||||
|
int cos_decay_steps;
|
||||||
|
float cos_decay_restart;
|
||||||
|
float cos_decay_alpha;
|
||||||
|
|
||||||
|
int lbfgs_n_iter;
|
||||||
|
int adam_n_iter;
|
||||||
|
float adam_alpha;
|
||||||
|
float adam_decay;
|
||||||
|
|
||||||
|
int mem_model_gb;
|
||||||
|
int mem_compute_gb;
|
||||||
|
int mem_compute0_gb;
|
||||||
|
int mem_compute1_gb;
|
||||||
|
};
|
||||||
|
|
||||||
|
uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
|
||||||
|
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
|
||||||
|
return n_ff;
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_params(struct my_llama_hparams * params) {
|
||||||
|
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
||||||
|
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
||||||
|
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
||||||
|
printf("%s: n_mult: %d\n", __func__, params->n_mult);
|
||||||
|
printf("%s: n_head: %d\n", __func__, params->n_head);
|
||||||
|
printf("%s: n_ff: %d\n", __func__, get_n_ff(params));
|
||||||
|
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
||||||
|
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
||||||
|
}
|
||||||
|
|
||||||
|
void init_model(struct my_llama_model * model) {
|
||||||
|
const auto & hparams = model->hparams;
|
||||||
|
|
||||||
|
const uint32_t n_embd = hparams.n_embd;
|
||||||
|
const uint32_t n_layer = hparams.n_layer;
|
||||||
|
const uint32_t n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
|
const uint32_t n_ff = get_n_ff(&hparams);
|
||||||
|
struct ggml_context * ctx = model->ctx;
|
||||||
|
|
||||||
|
model->train_its = 0;
|
||||||
|
model->train_samples = 0;
|
||||||
|
model->train_tokens = 0;
|
||||||
|
|
||||||
|
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||||
|
printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||||
|
|
||||||
|
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
|
||||||
|
|
||||||
|
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||||
|
|
||||||
|
// printing the per-layer allocations here so we dont print in the for loop.
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||||
|
|
||||||
|
printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
|
||||||
|
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||||
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||||
|
|
||||||
|
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||||
|
ggml_set_name(model->norm, "norm.weight");
|
||||||
|
ggml_set_name(model->output, "output.weight");
|
||||||
|
|
||||||
|
model->layers.resize(n_layer);
|
||||||
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||||
|
auto & layer = model->layers[i];
|
||||||
|
|
||||||
|
std::string layers_i = "layers." + std::to_string(i);
|
||||||
|
|
||||||
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
|
||||||
|
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||||
|
|
||||||
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
|
||||||
|
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||||
|
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||||
|
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||||
|
|
||||||
|
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
|
||||||
|
|
||||||
|
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
|
||||||
|
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
|
||||||
|
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
|
||||||
|
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
|
||||||
|
|
||||||
|
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
|
||||||
|
|
||||||
|
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
|
||||||
|
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
||||||
|
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||||
|
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
||||||
|
return *ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||||
|
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
||||||
|
return *ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_row(struct ggml_tensor * probs, int i) {
|
||||||
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||||
|
float p = get_f32_2d(probs, k, i);
|
||||||
|
printf(" %f", p);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_matrix(struct ggml_tensor * probs) {
|
||||||
|
assert(probs->n_dims == 2);
|
||||||
|
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||||
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||||
|
float p = get_f32_2d(probs, k, i);
|
||||||
|
printf(" %.2f", p);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef __GNUC__
|
||||||
|
#ifdef __MINGW32__
|
||||||
|
__attribute__((format(gnu_printf, 1, 2)))
|
||||||
|
#else
|
||||||
|
__attribute__((format(printf, 1, 2)))
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
static std::string format(const char * fmt, ...) {
|
||||||
|
va_list ap, ap2;
|
||||||
|
va_start(ap, fmt);
|
||||||
|
va_copy(ap2, ap);
|
||||||
|
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||||
|
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
||||||
|
std::vector<char> buf(size + 1);
|
||||||
|
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||||
|
GGML_ASSERT(size2 == size);
|
||||||
|
va_end(ap2);
|
||||||
|
va_end(ap);
|
||||||
|
return std::string(buf.data(), size);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct llama_file {
|
||||||
|
// use FILE * so we don't have to re-open the file to mmap
|
||||||
|
FILE * fp;
|
||||||
|
size_t size;
|
||||||
|
|
||||||
|
llama_file(const char * fname, const char * mode) {
|
||||||
|
fp = std::fopen(fname, mode);
|
||||||
|
if (fp == NULL) {
|
||||||
|
size = 0;
|
||||||
|
} else {
|
||||||
|
seek(0, SEEK_END);
|
||||||
|
size = tell();
|
||||||
|
seek(0, SEEK_SET);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t tell() const {
|
||||||
|
#ifdef _WIN32
|
||||||
|
__int64 ret = _ftelli64(fp);
|
||||||
|
#else
|
||||||
|
long ret = std::ftell(fp);
|
||||||
|
#endif
|
||||||
|
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||||
|
return (size_t) ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
void seek(size_t offset, int whence) {
|
||||||
|
#ifdef _WIN32
|
||||||
|
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||||
|
#else
|
||||||
|
int ret = std::fseek(fp, (long) offset, whence);
|
||||||
|
#endif
|
||||||
|
GGML_ASSERT(ret == 0); // same
|
||||||
|
}
|
||||||
|
|
||||||
|
void read_raw(void * ptr, size_t size) {
|
||||||
|
if (size == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
errno = 0;
|
||||||
|
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||||
|
if (ferror(fp)) {
|
||||||
|
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||||
|
}
|
||||||
|
if (ret != 1) {
|
||||||
|
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::uint32_t read_u32() {
|
||||||
|
std::uint32_t ret;
|
||||||
|
read_raw(&ret, sizeof(ret));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
std::float_t read_f32() {
|
||||||
|
std::float_t ret;
|
||||||
|
read_raw(&ret, sizeof(ret));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string read_string(std::uint32_t len) {
|
||||||
|
std::vector<char> chars(len);
|
||||||
|
read_raw(chars.data(), len);
|
||||||
|
return std::string(chars.data(), len);
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_raw(const void * ptr, size_t size) {
|
||||||
|
if (size == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
errno = 0;
|
||||||
|
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||||
|
if (ret != 1) {
|
||||||
|
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_u32(std::uint32_t val) {
|
||||||
|
write_raw(&val, sizeof(val));
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_file() {
|
||||||
|
if (fp) {
|
||||||
|
std::fclose(fp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
|
||||||
|
if (tensor == NULL) {
|
||||||
|
file->write_u32(0);
|
||||||
|
file->write_u32(0);
|
||||||
|
file->write_u32(GGML_TYPE_F32);
|
||||||
|
file->seek((0-file->tell()) & 31, SEEK_CUR);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
const char * name = ggml_get_name(tensor);
|
||||||
|
uint32_t name_len = strlen(name);
|
||||||
|
uint32_t nd = tensor->n_dims;
|
||||||
|
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
|
||||||
|
(uint32_t)tensor->ne[1],
|
||||||
|
(uint32_t)tensor->ne[2],
|
||||||
|
(uint32_t)tensor->ne[3] };
|
||||||
|
file->write_u32(nd);
|
||||||
|
file->write_u32(name_len);
|
||||||
|
file->write_u32(tensor->type);
|
||||||
|
file->write_raw(ne, sizeof(ne[0]) * nd);
|
||||||
|
file->write_raw(name, name_len);
|
||||||
|
file->seek((0-file->tell()) & 31, SEEK_CUR);
|
||||||
|
file->write_raw(tensor->data, ggml_nbytes(tensor));
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_ggml_file(const char *filename) {
|
||||||
|
llama_file file(filename, "rb");
|
||||||
|
if (file.size < 4) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
uint32_t magic = file.read_u32();
|
||||||
|
return magic == LLAMA_FILE_MAGIC;
|
||||||
|
}
|
||||||
|
|
||||||
|
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||||
|
// heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
|
||||||
|
if (is_ggml_file(filename)) {
|
||||||
|
|
||||||
|
struct llama_context_params llama_params = llama_context_default_params();
|
||||||
|
llama_params.vocab_only = true;
|
||||||
|
|
||||||
|
struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
|
||||||
|
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
|
||||||
|
|
||||||
|
std::vector<const char *> strings;
|
||||||
|
std::vector<float> scores;
|
||||||
|
int n_vocab = llama_n_vocab(lctx);
|
||||||
|
strings.resize(n_vocab, NULL);
|
||||||
|
scores.resize(n_vocab, 0);
|
||||||
|
n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
|
||||||
|
GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
|
||||||
|
vocab->id_to_token.resize(n_vocab);
|
||||||
|
for (int i=0; i<n_vocab; ++i) {
|
||||||
|
std::string tok = std::string(strings[i]);
|
||||||
|
float score = scores[i];
|
||||||
|
vocab->id_to_token[i].tok = tok;
|
||||||
|
vocab->id_to_token[i].score = score;
|
||||||
|
vocab->token_to_id.emplace(tok, i);
|
||||||
|
}
|
||||||
|
llama_free(lctx);
|
||||||
|
llama_free_model(lmodel);
|
||||||
|
} else { // assume llama2.c vocabulary
|
||||||
|
printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
|
||||||
|
llama_file file(filename, "rb");
|
||||||
|
uint32_t n_vocab = config->vocab_size;
|
||||||
|
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
||||||
|
vocab->id_to_token.resize(n_vocab);
|
||||||
|
for (uint32_t i=0; i<n_vocab; ++i) {
|
||||||
|
float_t score = file.read_f32();
|
||||||
|
uint32_t len = file.read_u32();
|
||||||
|
std::string tok = file.read_string(len);
|
||||||
|
vocab->id_to_token[i].tok = tok;
|
||||||
|
vocab->id_to_token[i].score = score;
|
||||||
|
vocab->token_to_id.emplace(tok, i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
|
||||||
|
int ct;
|
||||||
|
switch (gg_weights->n_dims){
|
||||||
|
case 1:
|
||||||
|
ct = 0;
|
||||||
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
||||||
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
||||||
|
*ptr = karpathy_weights[ct];
|
||||||
|
ct++;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
ct = 0;
|
||||||
|
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||||
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||||
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
||||||
|
*ptr = karpathy_weights[ct];
|
||||||
|
ct++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
ct = 0;
|
||||||
|
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
||||||
|
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||||
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||||
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
||||||
|
*ptr = karpathy_weights[ct];
|
||||||
|
ct++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
|
||||||
|
struct llama_file file(filename, "wb");
|
||||||
|
if (file.fp == NULL) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
// write_magic
|
||||||
|
file.write_u32(LLAMA_FILE_MAGIC); // magic
|
||||||
|
file.write_u32(LLAMA_FILE_VERSION); // version
|
||||||
|
// write_hparams
|
||||||
|
file.write_u32(model->hparams.n_vocab);
|
||||||
|
file.write_u32(model->hparams.n_embd);
|
||||||
|
file.write_u32(model->hparams.n_mult);
|
||||||
|
file.write_u32(model->hparams.n_head);
|
||||||
|
file.write_u32(model->hparams.n_layer);
|
||||||
|
file.write_u32(model->hparams.n_rot);
|
||||||
|
file.write_u32(LLAMA_FTYPE_ALL_F32);
|
||||||
|
|
||||||
|
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
|
||||||
|
uint32_t n_vocab = model->hparams.n_vocab;
|
||||||
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
||||||
|
const auto & token_score = vocab->id_to_token.at(i);
|
||||||
|
file.write_u32((uint32_t) token_score.tok.size());
|
||||||
|
file.write_raw(token_score.tok.data(), token_score.tok.size());
|
||||||
|
file.write_raw(&token_score.score, sizeof(token_score.score));
|
||||||
|
}
|
||||||
|
|
||||||
|
// stuff AK weights into GG weights one by one.
|
||||||
|
// w->token_embedding_table -> model->tok_embeddings
|
||||||
|
// float* -> struct ggml_tensor
|
||||||
|
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
||||||
|
stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
|
||||||
|
|
||||||
|
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
||||||
|
//print_row(model->norm, 0);
|
||||||
|
|
||||||
|
// for rms-att-weight
|
||||||
|
int row_length = model->hparams.n_embd;
|
||||||
|
const auto & hparams = model->hparams;
|
||||||
|
//int n_ff = model->hparams.n_embd;
|
||||||
|
int n_ff = get_n_ff(&hparams);
|
||||||
|
|
||||||
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||||
|
auto & layer = model->layers[i];
|
||||||
|
// 1d
|
||||||
|
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||||
|
|
||||||
|
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||||
|
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||||
|
|
||||||
|
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||||
|
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||||
|
}
|
||||||
|
// write tensors
|
||||||
|
write_tensor(&file, model->tok_embeddings);
|
||||||
|
write_tensor(&file, model->norm);
|
||||||
|
write_tensor(&file, model->output); // ?
|
||||||
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||||
|
auto & layer = model->layers[i];
|
||||||
|
|
||||||
|
write_tensor(&file, layer.attention_norm);
|
||||||
|
write_tensor(&file, layer.wq);
|
||||||
|
write_tensor(&file, layer.wk);
|
||||||
|
write_tensor(&file, layer.wv);
|
||||||
|
write_tensor(&file, layer.wo);
|
||||||
|
write_tensor(&file, layer.ffn_norm);
|
||||||
|
write_tensor(&file, layer.w1);
|
||||||
|
write_tensor(&file, layer.w2);
|
||||||
|
write_tensor(&file, layer.w3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct train_params get_default_train_params() {
|
||||||
|
struct train_params params;
|
||||||
|
params.fn_vocab_model = "models/ggml-vocab.bin";
|
||||||
|
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||||
|
params.fn_train_data = "shakespeare.txt";
|
||||||
|
params.fn_checkpoint_in = "checkpoint.bin";
|
||||||
|
params.fn_checkpoint_out = "checkpoint.bin";
|
||||||
|
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||||
|
|
||||||
|
params.seed = -1;
|
||||||
|
|
||||||
|
params.n_ctx = 128;
|
||||||
|
params.n_embd = 256;
|
||||||
|
params.n_mult = 256;
|
||||||
|
params.n_head = 8;
|
||||||
|
params.n_layer = 16;
|
||||||
|
params.n_rotmax = 64;
|
||||||
|
|
||||||
|
params.n_threads = 6;
|
||||||
|
params.n_batch = 8;
|
||||||
|
params.n_examples = 8;
|
||||||
|
params.n_predict = 1024;
|
||||||
|
|
||||||
|
params.print_info_interval = 1;
|
||||||
|
params.print_details_interval = 2;
|
||||||
|
|
||||||
|
params.samples_start_after_nl = false;
|
||||||
|
params.use_adam = true;
|
||||||
|
params.use_flash = true;
|
||||||
|
params.use_scratch = true;
|
||||||
|
|
||||||
|
// only adam
|
||||||
|
params.warmup = 100;
|
||||||
|
params.cos_decay_steps = 1000;
|
||||||
|
params.cos_decay_restart = 1.1f;
|
||||||
|
params.cos_decay_alpha = 0.0f;
|
||||||
|
|
||||||
|
params.lbfgs_n_iter = 16;
|
||||||
|
params.adam_n_iter = 16;
|
||||||
|
params.adam_alpha = 1e-3f;
|
||||||
|
params.adam_decay = 1e-3f;
|
||||||
|
|
||||||
|
params.mem_model_gb = 2;
|
||||||
|
params.mem_compute_gb = 24;
|
||||||
|
params.mem_compute0_gb = 8;
|
||||||
|
params.mem_compute1_gb = 2;
|
||||||
|
|
||||||
|
return params;
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
|
||||||
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "options:\n");
|
||||||
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||||
|
fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggml model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
||||||
|
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
||||||
|
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
bool params_parse(int argc, char ** argv, struct train_params * params) {
|
||||||
|
bool invalid_param = false;
|
||||||
|
bool reqd_param_found = false;
|
||||||
|
std::string arg;
|
||||||
|
struct train_params default_params = get_default_train_params();
|
||||||
|
const std::string arg_prefix = "--";
|
||||||
|
|
||||||
|
for (int i = 1; i < argc; i++) {
|
||||||
|
arg = argv[i];
|
||||||
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||||
|
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||||
|
}
|
||||||
|
|
||||||
|
if (arg == "--copy-vocab-from-model") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params->fn_vocab_model = argv[i];
|
||||||
|
} else if (arg == "--llama2c-model") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
reqd_param_found = true;
|
||||||
|
params->fn_llama2c_model = argv[i];
|
||||||
|
} else if (arg == "--llama2c-output-model") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params->fn_llama2c_output_model = argv[i];
|
||||||
|
} else if (arg == "-h" || arg == "--help") {
|
||||||
|
print_usage(argc, argv, &default_params);
|
||||||
|
exit(0);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||||
|
print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (invalid_param) {
|
||||||
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||||
|
print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
if (!reqd_param_found){
|
||||||
|
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
|
||||||
|
print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
struct train_params params = get_default_train_params();
|
||||||
|
if (!params_parse(argc, argv, ¶ms)) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
Config config;
|
||||||
|
TransformerWeights weights;
|
||||||
|
{
|
||||||
|
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
||||||
|
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||||
|
// read in the config header
|
||||||
|
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
||||||
|
// read in the Transformer weights
|
||||||
|
malloc_weights(&weights, &config);
|
||||||
|
if(checkpoint_init_weights(&weights, &config, file)) { return 1; }
|
||||||
|
fclose(file);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct llama_vocab vocab;
|
||||||
|
load_vocab(params.fn_vocab_model, &config, &vocab);
|
||||||
|
|
||||||
|
struct my_llama_model model;
|
||||||
|
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||||
|
model.hparams.n_ctx = params.n_ctx;
|
||||||
|
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||||
|
model.hparams.n_mult = 32;//params.n_mult;
|
||||||
|
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||||
|
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||||
|
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||||
|
print_params(&model.hparams);
|
||||||
|
struct ggml_init_params lcparams;
|
||||||
|
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
||||||
|
lcparams.mem_buffer = NULL;
|
||||||
|
lcparams.no_alloc = false;
|
||||||
|
|
||||||
|
model.ctx = ggml_init(lcparams);
|
||||||
|
|
||||||
|
init_model(&model);
|
||||||
|
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||||
|
|
||||||
|
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||||
|
|
||||||
|
ggml_free(model.ctx);
|
||||||
|
free_weights(&weights);
|
||||||
|
return 0;
|
||||||
|
}
|
|
@ -160,9 +160,13 @@ The following options allow you to control the text generation process and fine-
|
||||||
|
|
||||||
### Number of Tokens to Predict
|
### Number of Tokens to Predict
|
||||||
|
|
||||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity).
|
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity, -2 = until context filled)
|
||||||
|
|
||||||
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. A value of -1 will cause text to be generated without limit.
|
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
|
||||||
|
|
||||||
|
A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--n-keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in significant pause in output.
|
||||||
|
|
||||||
|
If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
|
||||||
|
|
||||||
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
|
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
|
||||||
|
|
||||||
|
|
|
@ -431,8 +431,12 @@ int main(int argc, char ** argv) {
|
||||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||||
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
||||||
const int n_left = n_past - params.n_keep;
|
if (params.n_predict == -2) {
|
||||||
|
fprintf(stderr, "\n\n%s: context full, stopping generation\n", __func__);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_left = n_past - params.n_keep;
|
||||||
// always keep the first token - BOS
|
// always keep the first token - BOS
|
||||||
n_past = std::max(1, params.n_keep);
|
n_past = std::max(1, params.n_keep);
|
||||||
n_past_guidance = std::max(1, params.n_keep + guidance_offset);
|
n_past_guidance = std::max(1, params.n_keep + guidance_offset);
|
||||||
|
|
|
@ -16,6 +16,7 @@ Command line options:
|
||||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||||
|
- `--numa`: Attempt optimizations that help on some NUMA systems.
|
||||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||||
|
@ -151,6 +152,8 @@ node .
|
||||||
|
|
||||||
`mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1).
|
`mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1).
|
||||||
|
|
||||||
|
`grammar`: Set grammar for grammar-based sampling (default: no grammar)
|
||||||
|
|
||||||
`seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
|
`seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
|
||||||
|
|
||||||
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
|
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
|
||||||
|
|
|
@ -1,5 +1,34 @@
|
||||||
import * as readline from 'node:readline'
|
import * as readline from 'node:readline'
|
||||||
import { stdin, stdout } from 'node:process'
|
import { stdin, stdout } from 'node:process'
|
||||||
|
import { readFileSync } from 'node:fs'
|
||||||
|
import { SchemaConverter } from './public/json-schema-to-grammar.mjs'
|
||||||
|
|
||||||
|
const args = process.argv.slice(2);
|
||||||
|
const grammarJsonSchemaFile = args.find(
|
||||||
|
(_, index) => args[index - 1] === "--grammar-json-schema"
|
||||||
|
);
|
||||||
|
const grammarFile = args.find((_, index) => args[index - 1] === "--grammar");
|
||||||
|
|
||||||
|
// Example usage: function,arguments
|
||||||
|
const grammarJsonSchemaPropOrder = args.find(
|
||||||
|
(_, index) => args[index - 1] === "--grammar-json-schema-prop-order"
|
||||||
|
);
|
||||||
|
const propOrder = grammarJsonSchemaPropOrder
|
||||||
|
? grammarJsonSchemaPropOrder
|
||||||
|
.split(",")
|
||||||
|
.reduce((acc, cur, index) => ({ ...acc, [cur]: index }), {})
|
||||||
|
: {};
|
||||||
|
|
||||||
|
let grammar = null
|
||||||
|
if (grammarJsonSchemaFile) {
|
||||||
|
const schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
|
||||||
|
const converter = new SchemaConverter(propOrder)
|
||||||
|
converter.visit(schema, '')
|
||||||
|
grammar = converter.formatGrammar()
|
||||||
|
}
|
||||||
|
if (grammarFile) {
|
||||||
|
grammar = readFileSync(grammarFile, 'utf-8')
|
||||||
|
}
|
||||||
|
|
||||||
const API_URL = 'http://127.0.0.1:8080'
|
const API_URL = 'http://127.0.0.1:8080'
|
||||||
|
|
||||||
|
@ -48,6 +77,7 @@ async function chat_completion(question) {
|
||||||
n_keep: n_keep,
|
n_keep: n_keep,
|
||||||
n_predict: 256,
|
n_predict: 256,
|
||||||
stop: ["\n### Human:"], // stop completion after generating this
|
stop: ["\n### Human:"], // stop completion after generating this
|
||||||
|
grammar,
|
||||||
stream: true,
|
stream: true,
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
|
|
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
311
examples/server/json-schema-to-grammar.mjs.hpp
Normal file
311
examples/server/json-schema-to-grammar.mjs.hpp
Normal file
|
@ -0,0 +1,311 @@
|
||||||
|
unsigned char json_schema_to_grammar_mjs[] = {
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x53, 0x50, 0x41, 0x43, 0x45, 0x5f,
|
||||||
|
0x52, 0x55, 0x4c, 0x45, 0x20, 0x3d, 0x20, 0x27, 0x22, 0x20, 0x22, 0x3f,
|
||||||
|
0x27, 0x3b, 0x0a, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x50, 0x52,
|
||||||
|
0x49, 0x4d, 0x49, 0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||||
|
0x53, 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x62, 0x6f, 0x6f, 0x6c,
|
||||||
|
0x65, 0x61, 0x6e, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x74, 0x72, 0x75, 0x65,
|
||||||
|
0x22, 0x20, 0x7c, 0x20, 0x22, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x22, 0x29,
|
||||||
|
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x6e,
|
||||||
|
0x75, 0x6d, 0x62, 0x65, 0x72, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x2d, 0x22,
|
||||||
|
0x3f, 0x20, 0x28, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x20, 0x7c, 0x20, 0x5b,
|
||||||
|
0x31, 0x2d, 0x39, 0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2a, 0x29,
|
||||||
|
0x29, 0x20, 0x28, 0x22, 0x2e, 0x22, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d,
|
||||||
|
0x2b, 0x29, 0x3f, 0x20, 0x28, 0x5b, 0x65, 0x45, 0x5d, 0x20, 0x5b, 0x2d,
|
||||||
|
0x2b, 0x5d, 0x3f, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2b, 0x29, 0x3f,
|
||||||
|
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x69,
|
||||||
|
0x6e, 0x74, 0x65, 0x67, 0x65, 0x72, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x2d,
|
||||||
|
0x22, 0x3f, 0x20, 0x28, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x20, 0x7c, 0x20,
|
||||||
|
0x5b, 0x31, 0x2d, 0x39, 0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2a,
|
||||||
|
0x29, 0x29, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20,
|
||||||
|
0x20, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x60, 0x20, 0x22,
|
||||||
|
0x5c, 0x5c, 0x22, 0x22, 0x20, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x5b, 0x5e, 0x22, 0x5c, 0x5c, 0x5c, 0x5c, 0x5d, 0x20,
|
||||||
|
0x7c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x22, 0x5c,
|
||||||
|
0x5c, 0x5c, 0x5c, 0x22, 0x20, 0x28, 0x5b, 0x22, 0x5c, 0x5c, 0x5c, 0x5c,
|
||||||
|
0x2f, 0x62, 0x66, 0x6e, 0x72, 0x74, 0x5d, 0x20, 0x7c, 0x20, 0x22, 0x75,
|
||||||
|
0x22, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||||
|
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||||
|
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||||
|
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||||
|
0x5d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x2a, 0x20,
|
||||||
|
0x22, 0x5c, 0x5c, 0x22, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x60,
|
||||||
|
0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3a, 0x20, 0x27, 0x22,
|
||||||
|
0x6e, 0x75, 0x6c, 0x6c, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||||
|
0x2c, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||||
|
0x49, 0x4e, 0x56, 0x41, 0x4c, 0x49, 0x44, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||||
|
0x5f, 0x43, 0x48, 0x41, 0x52, 0x53, 0x5f, 0x52, 0x45, 0x20, 0x3d, 0x20,
|
||||||
|
0x2f, 0x5b, 0x5e, 0x5c, 0x64, 0x41, 0x2d, 0x5a, 0x61, 0x2d, 0x7a, 0x2d,
|
||||||
|
0x5d, 0x2b, 0x2f, 0x67, 0x3b, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||||
|
0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54, 0x45,
|
||||||
|
0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x5f, 0x52,
|
||||||
|
0x45, 0x20, 0x3d, 0x20, 0x2f, 0x5b, 0x5c, 0x6e, 0x5c, 0x72, 0x22, 0x5d,
|
||||||
|
0x2f, 0x67, 0x3b, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x47, 0x52,
|
||||||
|
0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54, 0x45, 0x52, 0x41,
|
||||||
|
0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x53, 0x20, 0x3d, 0x20,
|
||||||
|
0x7b, 0x27, 0x5c, 0x72, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x72, 0x27,
|
||||||
|
0x2c, 0x20, 0x27, 0x5c, 0x6e, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x6e,
|
||||||
|
0x27, 0x2c, 0x20, 0x27, 0x22, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x22,
|
||||||
|
0x27, 0x7d, 0x3b, 0x0a, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20,
|
||||||
|
0x63, 0x6c, 0x61, 0x73, 0x73, 0x20, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61,
|
||||||
|
0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a,
|
||||||
|
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f,
|
||||||
|
0x72, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x29,
|
||||||
|
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||||
|
0x5f, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x3d,
|
||||||
|
0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x7c,
|
||||||
|
0x7c, 0x20, 0x7b, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68,
|
||||||
|
0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x20, 0x3d, 0x20,
|
||||||
|
0x6e, 0x65, 0x77, 0x20, 0x4d, 0x61, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c,
|
||||||
|
0x65, 0x73, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x27, 0x73, 0x70, 0x61, 0x63,
|
||||||
|
0x65, 0x27, 0x2c, 0x20, 0x53, 0x50, 0x41, 0x43, 0x45, 0x5f, 0x52, 0x55,
|
||||||
|
0x4c, 0x45, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||||
|
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||||
|
0x61, 0x6c, 0x28, 0x6c, 0x69, 0x74, 0x65, 0x72, 0x61, 0x6c, 0x29, 0x20,
|
||||||
|
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||||
|
0x65, 0x73, 0x63, 0x61, 0x70, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x4a, 0x53,
|
||||||
|
0x4f, 0x4e, 0x2e, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79,
|
||||||
|
0x28, 0x6c, 0x69, 0x74, 0x65, 0x72, 0x61, 0x6c, 0x29, 0x2e, 0x72, 0x65,
|
||||||
|
0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54,
|
||||||
|
0x45, 0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x5f,
|
||||||
|
0x52, 0x45, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x20,
|
||||||
|
0x3d, 0x3e, 0x20, 0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c,
|
||||||
|
0x49, 0x54, 0x45, 0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50,
|
||||||
|
0x45, 0x53, 0x5b, 0x6d, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||||
|
0x60, 0x22, 0x24, 0x7b, 0x65, 0x73, 0x63, 0x61, 0x70, 0x65, 0x64, 0x7d,
|
||||||
|
0x22, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x5f,
|
||||||
|
0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x6e, 0x61, 0x6d, 0x65,
|
||||||
|
0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d,
|
||||||
|
0x65, 0x20, 0x3d, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2e, 0x72, 0x65, 0x70,
|
||||||
|
0x6c, 0x61, 0x63, 0x65, 0x28, 0x49, 0x4e, 0x56, 0x41, 0x4c, 0x49, 0x44,
|
||||||
|
0x5f, 0x52, 0x55, 0x4c, 0x45, 0x5f, 0x43, 0x48, 0x41, 0x52, 0x53, 0x5f,
|
||||||
|
0x52, 0x45, 0x2c, 0x20, 0x27, 0x2d, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6b, 0x65, 0x79, 0x20, 0x3d, 0x20,
|
||||||
|
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x3b, 0x0a, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f,
|
||||||
|
0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x68, 0x61, 0x73, 0x28, 0x65, 0x73,
|
||||||
|
0x63, 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73,
|
||||||
|
0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x67, 0x65, 0x74, 0x28,
|
||||||
|
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x20, 0x3d, 0x3d, 0x3d,
|
||||||
|
0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||||
|
0x6b, 0x65, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||||
|
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||||
|
0x69, 0x20, 0x3d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73,
|
||||||
|
0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x68, 0x61, 0x73, 0x28,
|
||||||
|
0x60, 0x24, 0x7b, 0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||||
|
0x7b, 0x69, 0x7d, 0x60, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x20, 0x2b, 0x3d, 0x20, 0x31, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x6b, 0x65, 0x79, 0x20, 0x3d, 0x20, 0x60, 0x24, 0x7b,
|
||||||
|
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x24, 0x7b, 0x69, 0x7d,
|
||||||
|
0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65,
|
||||||
|
0x73, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x6b, 0x65, 0x79, 0x2c, 0x20, 0x72,
|
||||||
|
0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||||
|
0x74, 0x75, 0x72, 0x6e, 0x20, 0x6b, 0x65, 0x79, 0x3b, 0x0a, 0x20, 0x20,
|
||||||
|
0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x76, 0x69, 0x73, 0x69, 0x74, 0x28, 0x73,
|
||||||
|
0x63, 0x68, 0x65, 0x6d, 0x61, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x29,
|
||||||
|
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||||
|
0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x20,
|
||||||
|
0x3d, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x74, 0x79, 0x70,
|
||||||
|
0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||||
|
0x20, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20,
|
||||||
|
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x7c, 0x7c, 0x20, 0x27, 0x72, 0x6f, 0x6f,
|
||||||
|
0x74, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||||
|
0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x6f, 0x6e, 0x65, 0x4f,
|
||||||
|
0x66, 0x20, 0x7c, 0x7c, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e,
|
||||||
|
0x61, 0x6e, 0x79, 0x4f, 0x66, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c,
|
||||||
|
0x65, 0x20, 0x3d, 0x20, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e,
|
||||||
|
0x6f, 0x6e, 0x65, 0x4f, 0x66, 0x20, 0x7c, 0x7c, 0x20, 0x73, 0x63, 0x68,
|
||||||
|
0x65, 0x6d, 0x61, 0x2e, 0x61, 0x6e, 0x79, 0x4f, 0x66, 0x29, 0x2e, 0x6d,
|
||||||
|
0x61, 0x70, 0x28, 0x28, 0x61, 0x6c, 0x74, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||||
|
0x61, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x69,
|
||||||
|
0x73, 0x69, 0x74, 0x28, 0x61, 0x6c, 0x74, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||||
|
0x61, 0x2c, 0x20, 0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||||
|
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20,
|
||||||
|
0x3a, 0x20, 0x22, 0x22, 0x7d, 0x24, 0x7b, 0x69, 0x7d, 0x60, 0x29, 0x0a,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e,
|
||||||
|
0x28, 0x27, 0x20, 0x7c, 0x20, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74,
|
||||||
|
0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65,
|
||||||
|
0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x72,
|
||||||
|
0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20,
|
||||||
|
0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x27, 0x63, 0x6f,
|
||||||
|
0x6e, 0x73, 0x74, 0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65,
|
||||||
|
0x6d, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||||
|
0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c,
|
||||||
|
0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||||
|
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||||
|
0x61, 0x6c, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x63, 0x6f,
|
||||||
|
0x6e, 0x73, 0x74, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||||
|
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x27, 0x65,
|
||||||
|
0x6e, 0x75, 0x6d, 0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65,
|
||||||
|
0x6d, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x3d,
|
||||||
|
0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x65, 0x6e, 0x75, 0x6d,
|
||||||
|
0x2e, 0x6d, 0x61, 0x70, 0x28, 0x76, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x68,
|
||||||
|
0x69, 0x73, 0x2e, 0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69,
|
||||||
|
0x74, 0x65, 0x72, 0x61, 0x6c, 0x28, 0x76, 0x29, 0x29, 0x2e, 0x6a, 0x6f,
|
||||||
|
0x69, 0x6e, 0x28, 0x27, 0x20, 0x7c, 0x20, 0x27, 0x29, 0x3b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||||
|
0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c,
|
||||||
|
0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20,
|
||||||
|
0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||||
|
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x73, 0x63,
|
||||||
|
0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x20, 0x3d, 0x3d, 0x3d,
|
||||||
|
0x20, 0x27, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x27, 0x20, 0x26, 0x26,
|
||||||
|
0x20, 0x27, 0x70, 0x72, 0x6f, 0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73,
|
||||||
|
0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x29,
|
||||||
|
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||||
|
0x54, 0x4f, 0x44, 0x4f, 0x3a, 0x20, 0x60, 0x72, 0x65, 0x71, 0x75, 0x69,
|
||||||
|
0x72, 0x65, 0x64, 0x60, 0x20, 0x6b, 0x65, 0x79, 0x77, 0x6f, 0x72, 0x64,
|
||||||
|
0x20, 0x28, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x70, 0x79, 0x74, 0x68, 0x6f,
|
||||||
|
0x6e, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x61,
|
||||||
|
0x74, 0x69, 0x6f, 0x6e, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72,
|
||||||
|
0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f,
|
||||||
|
0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x3b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70,
|
||||||
|
0x72, 0x6f, 0x70, 0x50, 0x61, 0x69, 0x72, 0x73, 0x20, 0x3d, 0x20, 0x4f,
|
||||||
|
0x62, 0x6a, 0x65, 0x63, 0x74, 0x2e, 0x65, 0x6e, 0x74, 0x72, 0x69, 0x65,
|
||||||
|
0x73, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x70, 0x72, 0x6f,
|
||||||
|
0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73, 0x29, 0x2e, 0x73, 0x6f, 0x72,
|
||||||
|
0x74, 0x28, 0x28, 0x61, 0x2c, 0x20, 0x62, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||||
|
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||||
|
0x20, 0x73, 0x6f, 0x72, 0x74, 0x20, 0x62, 0x79, 0x20, 0x70, 0x6f, 0x73,
|
||||||
|
0x69, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x70, 0x72, 0x6f,
|
||||||
|
0x70, 0x5f, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x28, 0x69, 0x66, 0x20,
|
||||||
|
0x73, 0x70, 0x65, 0x63, 0x69, 0x66, 0x69, 0x65, 0x64, 0x29, 0x20, 0x74,
|
||||||
|
0x68, 0x65, 0x6e, 0x20, 0x62, 0x79, 0x20, 0x6b, 0x65, 0x79, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||||
|
0x20, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x41, 0x20, 0x3d, 0x20, 0x74, 0x79,
|
||||||
|
0x70, 0x65, 0x6f, 0x66, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64,
|
||||||
|
0x65, 0x72, 0x5b, 0x61, 0x5b, 0x30, 0x5d, 0x5d, 0x20, 0x3d, 0x3d, 0x3d,
|
||||||
|
0x20, 0x27, 0x6e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x27, 0x20, 0x3f, 0x20,
|
||||||
|
0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x5b, 0x61, 0x5b,
|
||||||
|
0x30, 0x5d, 0x5d, 0x20, 0x3a, 0x20, 0x49, 0x6e, 0x66, 0x69, 0x6e, 0x69,
|
||||||
|
0x74, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x42,
|
||||||
|
0x20, 0x3d, 0x20, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x70, 0x72,
|
||||||
|
0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x5b, 0x62, 0x5b, 0x30, 0x5d,
|
||||||
|
0x5d, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x6e, 0x75, 0x6d, 0x62, 0x65,
|
||||||
|
0x72, 0x27, 0x20, 0x3f, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64,
|
||||||
|
0x65, 0x72, 0x5b, 0x62, 0x5b, 0x30, 0x5d, 0x5d, 0x20, 0x3a, 0x20, 0x49,
|
||||||
|
0x6e, 0x66, 0x69, 0x6e, 0x69, 0x74, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||||
|
0x6f, 0x72, 0x64, 0x65, 0x72, 0x41, 0x20, 0x2d, 0x20, 0x6f, 0x72, 0x64,
|
||||||
|
0x65, 0x72, 0x42, 0x20, 0x7c, 0x7c, 0x20, 0x61, 0x5b, 0x30, 0x5d, 0x2e,
|
||||||
|
0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x65, 0x43, 0x6f, 0x6d, 0x70, 0x61, 0x72,
|
||||||
|
0x65, 0x28, 0x62, 0x5b, 0x30, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x3d,
|
||||||
|
0x20, 0x27, 0x22, 0x7b, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||||
|
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, 0x6f, 0x70,
|
||||||
|
0x50, 0x61, 0x69, 0x72, 0x73, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63,
|
||||||
|
0x68, 0x28, 0x28, 0x5b, 0x70, 0x72, 0x6f, 0x70, 0x4e, 0x61, 0x6d, 0x65,
|
||||||
|
0x2c, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61,
|
||||||
|
0x5d, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||||
|
0x20, 0x70, 0x72, 0x6f, 0x70, 0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d,
|
||||||
|
0x65, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x69, 0x73,
|
||||||
|
0x69, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||||
|
0x61, 0x2c, 0x20, 0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||||
|
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20,
|
||||||
|
0x3a, 0x20, 0x22, 0x22, 0x7d, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70, 0x4e,
|
||||||
|
0x61, 0x6d, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x69, 0x20, 0x3e, 0x20,
|
||||||
|
0x30, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x2b, 0x3d, 0x20, 0x27,
|
||||||
|
0x20, 0x22, 0x2c, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20,
|
||||||
|
0x2b, 0x3d, 0x20, 0x60, 0x20, 0x24, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||||
|
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||||
|
0x61, 0x6c, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x4e, 0x61, 0x6d, 0x65, 0x29,
|
||||||
|
0x7d, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x22, 0x3a, 0x22, 0x20,
|
||||||
|
0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70,
|
||||||
|
0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x60, 0x3b, 0x0a,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x2b, 0x3d, 0x20,
|
||||||
|
0x27, 0x20, 0x22, 0x7d, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||||
|
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74,
|
||||||
|
0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64,
|
||||||
|
0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61,
|
||||||
|
0x6d, 0x65, 0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66,
|
||||||
|
0x20, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65,
|
||||||
|
0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x61, 0x72, 0x72, 0x61, 0x79, 0x27,
|
||||||
|
0x20, 0x26, 0x26, 0x20, 0x27, 0x69, 0x74, 0x65, 0x6d, 0x73, 0x27, 0x20,
|
||||||
|
0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x29, 0x20, 0x7b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x4f,
|
||||||
|
0x44, 0x4f, 0x20, 0x60, 0x70, 0x72, 0x65, 0x66, 0x69, 0x78, 0x49, 0x74,
|
||||||
|
0x65, 0x6d, 0x73, 0x60, 0x20, 0x6b, 0x65, 0x79, 0x77, 0x6f, 0x72, 0x64,
|
||||||
|
0x20, 0x28, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x70, 0x79, 0x74, 0x68, 0x6f,
|
||||||
|
0x6e, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x61,
|
||||||
|
0x74, 0x69, 0x6f, 0x6e, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x69, 0x74, 0x65, 0x6d, 0x52, 0x75,
|
||||||
|
0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69,
|
||||||
|
0x73, 0x2e, 0x76, 0x69, 0x73, 0x69, 0x74, 0x28, 0x73, 0x63, 0x68, 0x65,
|
||||||
|
0x6d, 0x61, 0x2e, 0x69, 0x74, 0x65, 0x6d, 0x73, 0x2c, 0x20, 0x60, 0x24,
|
||||||
|
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65,
|
||||||
|
0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20, 0x3a, 0x20, 0x22, 0x22, 0x7d,
|
||||||
|
0x69, 0x74, 0x65, 0x6d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65,
|
||||||
|
0x20, 0x3d, 0x20, 0x60, 0x22, 0x5b, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63,
|
||||||
|
0x65, 0x20, 0x28, 0x24, 0x7b, 0x69, 0x74, 0x65, 0x6d, 0x52, 0x75, 0x6c,
|
||||||
|
0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x20, 0x28, 0x22, 0x2c, 0x22, 0x20,
|
||||||
|
0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x24, 0x7b, 0x69, 0x74, 0x65, 0x6d,
|
||||||
|
0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x29, 0x2a, 0x29,
|
||||||
|
0x3f, 0x20, 0x22, 0x5d, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x60,
|
||||||
|
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
|
||||||
|
0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64,
|
||||||
|
0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d,
|
||||||
|
0x65, 0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x50, 0x52,
|
||||||
|
0x49, 0x4d, 0x49, 0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||||
|
0x53, 0x5b, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65,
|
||||||
|
0x5d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45,
|
||||||
|
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x55, 0x6e, 0x72, 0x65, 0x63, 0x6f,
|
||||||
|
0x67, 0x6e, 0x69, 0x7a, 0x65, 0x64, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d,
|
||||||
|
0x61, 0x3a, 0x20, 0x24, 0x7b, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74,
|
||||||
|
0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x73, 0x63, 0x68, 0x65,
|
||||||
|
0x6d, 0x61, 0x29, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||||
|
0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61,
|
||||||
|
0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65,
|
||||||
|
0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x72, 0x6f, 0x6f, 0x74, 0x27, 0x20,
|
||||||
|
0x3f, 0x20, 0x27, 0x72, 0x6f, 0x6f, 0x74, 0x27, 0x20, 0x3a, 0x20, 0x73,
|
||||||
|
0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x2c, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x50, 0x52, 0x49, 0x4d, 0x49,
|
||||||
|
0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45, 0x53, 0x5b, 0x73,
|
||||||
|
0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x5d, 0x0a, 0x20,
|
||||||
|
0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72,
|
||||||
|
0x6d, 0x61, 0x74, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x28, 0x29,
|
||||||
|
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x67,
|
||||||
|
0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x3d, 0x20, 0x27, 0x27, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72,
|
||||||
|
0x75, 0x6c, 0x65, 0x73, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68,
|
||||||
|
0x28, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65,
|
||||||
|
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x2b, 0x3d, 0x20,
|
||||||
|
0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x20, 0x3a, 0x3a, 0x3d,
|
||||||
|
0x20, 0x24, 0x7b, 0x72, 0x75, 0x6c, 0x65, 0x7d, 0x5c, 0x6e, 0x60, 0x3b,
|
||||||
|
0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||||
|
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x72, 0x61, 0x6d,
|
||||||
|
0x6d, 0x61, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a
|
||||||
|
};
|
||||||
|
unsigned int json_schema_to_grammar_mjs_len = 3695;
|
|
@ -141,6 +141,7 @@
|
||||||
} from '/index.js';
|
} from '/index.js';
|
||||||
|
|
||||||
import { llama } from '/completion.js';
|
import { llama } from '/completion.js';
|
||||||
|
import { SchemaConverter } from '/json-schema-to-grammar.mjs';
|
||||||
|
|
||||||
const session = signal({
|
const session = signal({
|
||||||
prompt: "This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.",
|
prompt: "This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.",
|
||||||
|
@ -166,6 +167,7 @@
|
||||||
mirostat: 0, // 0/1/2
|
mirostat: 0, // 0/1/2
|
||||||
mirostat_tau: 5, // target entropy
|
mirostat_tau: 5, // target entropy
|
||||||
mirostat_eta: 0.1, // learning rate
|
mirostat_eta: 0.1, // learning rate
|
||||||
|
grammar: '',
|
||||||
})
|
})
|
||||||
|
|
||||||
const llamaStats = signal(null)
|
const llamaStats = signal(null)
|
||||||
|
@ -304,6 +306,26 @@
|
||||||
const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
|
const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
|
||||||
const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
|
const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
|
||||||
|
|
||||||
|
const grammarJsonSchemaPropOrder = signal('')
|
||||||
|
const updateGrammarJsonSchemaPropOrder = (el) => grammarJsonSchemaPropOrder.value = el.target.value
|
||||||
|
const convertJSONSchemaGrammar = () => {
|
||||||
|
try {
|
||||||
|
const schema = JSON.parse(params.value.grammar)
|
||||||
|
const converter = new SchemaConverter(
|
||||||
|
grammarJsonSchemaPropOrder.value
|
||||||
|
.split(',')
|
||||||
|
.reduce((acc, cur, i) => ({...acc, [cur.trim()]: i}), {})
|
||||||
|
)
|
||||||
|
converter.visit(schema, '')
|
||||||
|
params.value = {
|
||||||
|
...params.value,
|
||||||
|
grammar: converter.formatGrammar(),
|
||||||
|
}
|
||||||
|
} catch (e) {
|
||||||
|
alert(`Convert failed: ${e.message}`)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
const FloatField = ({label, max, min, name, step, value}) => {
|
const FloatField = ({label, max, min, name, step, value}) => {
|
||||||
return html`
|
return html`
|
||||||
<div>
|
<div>
|
||||||
|
@ -355,6 +377,13 @@
|
||||||
<label for="template">Chat history template</label>
|
<label for="template">Chat history template</label>
|
||||||
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
|
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div>
|
||||||
|
<label for="template">Grammar</label>
|
||||||
|
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||||
|
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
|
||||||
|
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
|
||||||
|
</div>
|
||||||
</fieldset>
|
</fieldset>
|
||||||
|
|
||||||
<fieldset class="two">
|
<fieldset class="two">
|
||||||
|
|
File diff suppressed because one or more lines are too long
112
examples/server/public/json-schema-to-grammar.mjs
Normal file
112
examples/server/public/json-schema-to-grammar.mjs
Normal file
|
@ -0,0 +1,112 @@
|
||||||
|
const SPACE_RULE = '" "?';
|
||||||
|
|
||||||
|
const PRIMITIVE_RULES = {
|
||||||
|
boolean: '("true" | "false") space',
|
||||||
|
number: '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
|
||||||
|
integer: '("-"? ([0-9] | [1-9] [0-9]*)) space',
|
||||||
|
string: ` "\\"" (
|
||||||
|
[^"\\\\] |
|
||||||
|
"\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
||||||
|
)* "\\"" space`,
|
||||||
|
null: '"null" space',
|
||||||
|
};
|
||||||
|
|
||||||
|
const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g;
|
||||||
|
const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g;
|
||||||
|
const GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'};
|
||||||
|
|
||||||
|
export class SchemaConverter {
|
||||||
|
constructor(propOrder) {
|
||||||
|
this._propOrder = propOrder || {};
|
||||||
|
this._rules = new Map();
|
||||||
|
this._rules.set('space', SPACE_RULE);
|
||||||
|
}
|
||||||
|
|
||||||
|
_formatLiteral(literal) {
|
||||||
|
const escaped = JSON.stringify(literal).replace(
|
||||||
|
GRAMMAR_LITERAL_ESCAPE_RE,
|
||||||
|
m => GRAMMAR_LITERAL_ESCAPES[m]
|
||||||
|
);
|
||||||
|
return `"${escaped}"`;
|
||||||
|
}
|
||||||
|
|
||||||
|
_addRule(name, rule) {
|
||||||
|
let escName = name.replace(INVALID_RULE_CHARS_RE, '-');
|
||||||
|
let key = escName;
|
||||||
|
|
||||||
|
if (this._rules.has(escName)) {
|
||||||
|
if (this._rules.get(escName) === rule) {
|
||||||
|
return key;
|
||||||
|
}
|
||||||
|
|
||||||
|
let i = 0;
|
||||||
|
while (this._rules.has(`${escName}${i}`)) {
|
||||||
|
i += 1;
|
||||||
|
}
|
||||||
|
key = `${escName}${i}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
this._rules.set(key, rule);
|
||||||
|
return key;
|
||||||
|
}
|
||||||
|
|
||||||
|
visit(schema, name) {
|
||||||
|
const schemaType = schema.type;
|
||||||
|
const ruleName = name || 'root';
|
||||||
|
|
||||||
|
if (schema.oneOf || schema.anyOf) {
|
||||||
|
const rule = (schema.oneOf || schema.anyOf).map((altSchema, i) =>
|
||||||
|
this.visit(altSchema, `${name}${name ? "-" : ""}${i}`)
|
||||||
|
).join(' | ');
|
||||||
|
|
||||||
|
return this._addRule(ruleName, rule);
|
||||||
|
} else if ('const' in schema) {
|
||||||
|
return this._addRule(ruleName, this._formatLiteral(schema.const));
|
||||||
|
} else if ('enum' in schema) {
|
||||||
|
const rule = schema.enum.map(v => this._formatLiteral(v)).join(' | ');
|
||||||
|
return this._addRule(ruleName, rule);
|
||||||
|
} else if (schemaType === 'object' && 'properties' in schema) {
|
||||||
|
// TODO: `required` keyword (from python implementation)
|
||||||
|
const propOrder = this._propOrder;
|
||||||
|
const propPairs = Object.entries(schema.properties).sort((a, b) => {
|
||||||
|
// sort by position in prop_order (if specified) then by key
|
||||||
|
const orderA = typeof propOrder[a[0]] === 'number' ? propOrder[a[0]] : Infinity;
|
||||||
|
const orderB = typeof propOrder[b[0]] === 'number' ? propOrder[b[0]] : Infinity;
|
||||||
|
return orderA - orderB || a[0].localeCompare(b[0]);
|
||||||
|
});
|
||||||
|
|
||||||
|
let rule = '"{" space';
|
||||||
|
propPairs.forEach(([propName, propSchema], i) => {
|
||||||
|
const propRuleName = this.visit(propSchema, `${name}${name ? "-" : ""}${propName}`);
|
||||||
|
if (i > 0) {
|
||||||
|
rule += ' "," space';
|
||||||
|
}
|
||||||
|
rule += ` ${this._formatLiteral(propName)} space ":" space ${propRuleName}`;
|
||||||
|
});
|
||||||
|
rule += ' "}" space';
|
||||||
|
|
||||||
|
return this._addRule(ruleName, rule);
|
||||||
|
} else if (schemaType === 'array' && 'items' in schema) {
|
||||||
|
// TODO `prefixItems` keyword (from python implementation)
|
||||||
|
const itemRuleName = this.visit(schema.items, `${name}${name ? "-" : ""}item`);
|
||||||
|
const rule = `"[" space (${itemRuleName} ("," space ${itemRuleName})*)? "]" space`;
|
||||||
|
return this._addRule(ruleName, rule);
|
||||||
|
} else {
|
||||||
|
if (!PRIMITIVE_RULES[schemaType]) {
|
||||||
|
throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`);
|
||||||
|
}
|
||||||
|
return this._addRule(
|
||||||
|
ruleName === 'root' ? 'root' : schemaType,
|
||||||
|
PRIMITIVE_RULES[schemaType]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
formatGrammar() {
|
||||||
|
let grammar = '';
|
||||||
|
this._rules.forEach((rule, name) => {
|
||||||
|
grammar += `${name} ::= ${rule}\n`;
|
||||||
|
});
|
||||||
|
return grammar;
|
||||||
|
}
|
||||||
|
}
|
|
@ -1,6 +1,7 @@
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
|
#include "grammar-parser.h"
|
||||||
|
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
// crash the server in debug mode, otherwise send an http 500 error
|
// crash the server in debug mode, otherwise send an http 500 error
|
||||||
|
@ -14,6 +15,7 @@
|
||||||
#include "index.html.hpp"
|
#include "index.html.hpp"
|
||||||
#include "index.js.hpp"
|
#include "index.js.hpp"
|
||||||
#include "completion.js.hpp"
|
#include "completion.js.hpp"
|
||||||
|
#include "json-schema-to-grammar.mjs.hpp"
|
||||||
|
|
||||||
#ifndef SERVER_VERBOSE
|
#ifndef SERVER_VERBOSE
|
||||||
#define SERVER_VERBOSE 1
|
#define SERVER_VERBOSE 1
|
||||||
|
@ -195,6 +197,9 @@ struct llama_server_context
|
||||||
llama_context *ctx = nullptr;
|
llama_context *ctx = nullptr;
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
llama_grammar *grammar = nullptr;
|
||||||
|
|
||||||
bool truncated = false;
|
bool truncated = false;
|
||||||
bool stopped_eos = false;
|
bool stopped_eos = false;
|
||||||
bool stopped_word = false;
|
bool stopped_word = false;
|
||||||
|
@ -226,6 +231,7 @@ struct llama_server_context
|
||||||
void rewind()
|
void rewind()
|
||||||
{
|
{
|
||||||
params.antiprompt.clear();
|
params.antiprompt.clear();
|
||||||
|
params.grammar.clear();
|
||||||
num_prompt_tokens = 0;
|
num_prompt_tokens = 0;
|
||||||
num_tokens_predicted = 0;
|
num_tokens_predicted = 0;
|
||||||
generated_text = "";
|
generated_text = "";
|
||||||
|
@ -237,9 +243,13 @@ struct llama_server_context
|
||||||
stopped_limit = false;
|
stopped_limit = false;
|
||||||
stopping_word = "";
|
stopping_word = "";
|
||||||
multibyte_pending = 0;
|
multibyte_pending = 0;
|
||||||
|
|
||||||
n_remain = 0;
|
n_remain = 0;
|
||||||
n_past = 0;
|
n_past = 0;
|
||||||
|
|
||||||
|
if (grammar != nullptr) {
|
||||||
|
llama_grammar_free(grammar);
|
||||||
|
grammar = nullptr;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool loadModel(const gpt_params ¶ms_)
|
bool loadModel(const gpt_params ¶ms_)
|
||||||
|
@ -257,6 +267,31 @@ struct llama_server_context
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool loadGrammar()
|
||||||
|
{
|
||||||
|
if (!params.grammar.empty()) {
|
||||||
|
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||||
|
// will be empty (default) if there are parse errors
|
||||||
|
if (parsed_grammar.rules.empty()) {
|
||||||
|
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||||
|
|
||||||
|
{
|
||||||
|
auto it = params.logit_bias.find(llama_token_eos());
|
||||||
|
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||||
|
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
void loadPrompt()
|
void loadPrompt()
|
||||||
{
|
{
|
||||||
params.prompt.insert(0, 1, ' '); // always add a first space
|
params.prompt.insert(0, 1, ' '); // always add a first space
|
||||||
|
@ -420,6 +455,10 @@ struct llama_server_context
|
||||||
logits[llama_token_nl()] = nl_logit;
|
logits[llama_token_nl()] = nl_logit;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (grammar != nullptr) {
|
||||||
|
llama_sample_grammar(ctx, &candidates_p, grammar);
|
||||||
|
}
|
||||||
|
|
||||||
if (temp <= 0)
|
if (temp <= 0)
|
||||||
{
|
{
|
||||||
// Greedy sampling
|
// Greedy sampling
|
||||||
|
@ -457,10 +496,15 @@ struct llama_server_context
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (grammar != nullptr) {
|
||||||
|
llama_grammar_accept_token(ctx, grammar, result.tok);
|
||||||
|
}
|
||||||
|
|
||||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||||
{
|
{
|
||||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||||
}
|
}
|
||||||
|
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
last_n_tokens.erase(last_n_tokens.begin());
|
||||||
last_n_tokens.push_back(result.tok);
|
last_n_tokens.push_back(result.tok);
|
||||||
num_tokens_predicted++;
|
num_tokens_predicted++;
|
||||||
|
@ -623,6 +667,7 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||||
{
|
{
|
||||||
fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||||
}
|
}
|
||||||
|
fprintf(stdout, " --numa attempt optimizations that help on some NUMA systems\n");
|
||||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||||
fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
|
fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
|
||||||
fprintf(stdout, " number of layers to store in VRAM\n");
|
fprintf(stdout, " number of layers to store in VRAM\n");
|
||||||
|
@ -897,6 +942,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||||
{
|
{
|
||||||
params.use_mmap = false;
|
params.use_mmap = false;
|
||||||
}
|
}
|
||||||
|
else if (arg == "--numa")
|
||||||
|
{
|
||||||
|
params.numa = true;
|
||||||
|
}
|
||||||
else if (arg == "--embedding")
|
else if (arg == "--embedding")
|
||||||
{
|
{
|
||||||
params.embedding = true;
|
params.embedding = true;
|
||||||
|
@ -947,6 +996,7 @@ static json format_generation_settings(llama_server_context &llama)
|
||||||
{"stream", llama.stream},
|
{"stream", llama.stream},
|
||||||
{"logit_bias", llama.params.logit_bias},
|
{"logit_bias", llama.params.logit_bias},
|
||||||
{"n_probs", llama.params.n_probs},
|
{"n_probs", llama.params.n_probs},
|
||||||
|
{"grammar", llama.params.grammar},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -964,7 +1014,7 @@ static json format_timings(llama_server_context &llama)
|
||||||
assert(timings.n_eval == llama.num_tokens_predicted);
|
assert(timings.n_eval == llama.num_tokens_predicted);
|
||||||
|
|
||||||
return json{
|
return json{
|
||||||
{"prompt_n", timings.n_eval},
|
{"prompt_n", timings.n_p_eval},
|
||||||
{"prompt_ms", timings.t_p_eval_ms},
|
{"prompt_ms", timings.t_p_eval_ms},
|
||||||
{"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
|
{"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
|
||||||
{"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
|
{"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
|
||||||
|
@ -993,7 +1043,6 @@ static json format_final_response(llama_server_context &llama, const std::string
|
||||||
{"stopped_limit", llama.stopped_limit},
|
{"stopped_limit", llama.stopped_limit},
|
||||||
{"stopping_word", llama.stopping_word},
|
{"stopping_word", llama.stopping_word},
|
||||||
{"tokens_cached", llama.n_past},
|
{"tokens_cached", llama.n_past},
|
||||||
{"tokens_predicted", llama.num_tokens_predicted},
|
|
||||||
{"timings", format_timings(llama)},
|
{"timings", format_timings(llama)},
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -1048,6 +1097,7 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
||||||
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
|
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
|
||||||
llama.params.seed = body.value("seed", default_params.seed);
|
llama.params.seed = body.value("seed", default_params.seed);
|
||||||
llama.params.prompt = body.value("prompt", default_params.prompt);
|
llama.params.prompt = body.value("prompt", default_params.prompt);
|
||||||
|
llama.params.grammar = body.value("grammar", default_params.grammar);
|
||||||
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
|
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
|
||||||
|
|
||||||
llama.params.logit_bias.clear();
|
llama.params.logit_bias.clear();
|
||||||
|
@ -1169,6 +1219,12 @@ int main(int argc, char **argv)
|
||||||
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
|
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
|
||||||
return false; });
|
return false; });
|
||||||
|
|
||||||
|
// this is only called if no index.html is found in the public --path
|
||||||
|
svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res)
|
||||||
|
{
|
||||||
|
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
|
||||||
|
return false; });
|
||||||
|
|
||||||
svr.Post("/completion", [&llama](const Request &req, Response &res)
|
svr.Post("/completion", [&llama](const Request &req, Response &res)
|
||||||
{
|
{
|
||||||
auto lock = llama.lock();
|
auto lock = llama.lock();
|
||||||
|
@ -1179,6 +1235,12 @@ int main(int argc, char **argv)
|
||||||
|
|
||||||
parse_options_completion(json::parse(req.body), llama);
|
parse_options_completion(json::parse(req.body), llama);
|
||||||
|
|
||||||
|
if (!llama.loadGrammar())
|
||||||
|
{
|
||||||
|
res.status = 400;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
llama.loadPrompt();
|
llama.loadPrompt();
|
||||||
llama.beginCompletion();
|
llama.beginCompletion();
|
||||||
|
|
||||||
|
@ -1334,8 +1396,12 @@ int main(int argc, char **argv)
|
||||||
|
|
||||||
svr.set_error_handler([](const Request &, Response &res)
|
svr.set_error_handler([](const Request &, Response &res)
|
||||||
{
|
{
|
||||||
res.set_content("File Not Found", "text/plain");
|
if (res.status == 400) {
|
||||||
res.status = 404; });
|
res.set_content("Invalid request", "text/plain");
|
||||||
|
} else {
|
||||||
|
res.set_content("File Not Found", "text/plain");
|
||||||
|
res.status = 404;
|
||||||
|
} });
|
||||||
|
|
||||||
// set timeouts and change hostname and port
|
// set timeouts and change hostname and port
|
||||||
svr.set_read_timeout(sparams.read_timeout);
|
svr.set_read_timeout(sparams.read_timeout);
|
||||||
|
@ -1363,6 +1429,9 @@ int main(int argc, char **argv)
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (llama.grammar != nullptr) {
|
||||||
|
llama_grammar_free(llama.grammar);
|
||||||
|
}
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|
|
@ -14,8 +14,6 @@
|
||||||
with pkgs.darwin.apple_sdk_11_0.frameworks; [
|
with pkgs.darwin.apple_sdk_11_0.frameworks; [
|
||||||
Accelerate
|
Accelerate
|
||||||
MetalKit
|
MetalKit
|
||||||
MetalPerformanceShaders
|
|
||||||
MetalPerformanceShadersGraph
|
|
||||||
]
|
]
|
||||||
else if isAarch32 && isDarwin then
|
else if isAarch32 && isDarwin then
|
||||||
with pkgs.darwin.apple_sdk.frameworks; [
|
with pkgs.darwin.apple_sdk.frameworks; [
|
||||||
|
|
50
ggml-alloc.c
50
ggml-alloc.c
|
@ -67,6 +67,8 @@ struct ggml_allocr {
|
||||||
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||||
size_t max_size;
|
size_t max_size;
|
||||||
bool measure;
|
bool measure;
|
||||||
|
int parse_seq[GGML_MAX_NODES];
|
||||||
|
bool has_parse_seq;
|
||||||
|
|
||||||
#ifdef GGML_ALLOCATOR_DEBUG
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
struct ggml_tensor * allocated_tensors[1024];
|
struct ggml_tensor * allocated_tensors[1024];
|
||||||
|
@ -111,10 +113,10 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
||||||
|
|
||||||
size_t max_avail = 0;
|
size_t max_avail = 0;
|
||||||
|
|
||||||
// find the best fitting free block
|
// find the best fitting free block besides the last block
|
||||||
int best_fit_block = -1;
|
int best_fit_block = -1;
|
||||||
size_t best_fit_size = SIZE_MAX;
|
size_t best_fit_size = SIZE_MAX;
|
||||||
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
|
||||||
struct free_block * block = &alloc->free_blocks[i];
|
struct free_block * block = &alloc->free_blocks[i];
|
||||||
max_avail = MAX(max_avail, block->size);
|
max_avail = MAX(max_avail, block->size);
|
||||||
if (block->size >= size && block->size <= best_fit_size) {
|
if (block->size >= size && block->size <= best_fit_size) {
|
||||||
|
@ -126,10 +128,17 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
||||||
AT_PRINTF("block %d\n", best_fit_block);
|
AT_PRINTF("block %d\n", best_fit_block);
|
||||||
|
|
||||||
if (best_fit_block == -1) {
|
if (best_fit_block == -1) {
|
||||||
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
// the last block is our last resort
|
||||||
__func__, size, max_avail);
|
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
||||||
GGML_ASSERT(!"not enough space in the buffer");
|
if (block->size >= size) {
|
||||||
|
best_fit_block = alloc->n_free_blocks - 1;
|
||||||
|
max_avail = MAX(max_avail, block->size);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
||||||
|
__func__, size, max_avail);
|
||||||
|
GGML_ASSERT(!"not enough space in the buffer");
|
||||||
return;
|
return;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||||
void * addr = block->addr;
|
void * addr = block->addr;
|
||||||
|
@ -229,6 +238,17 @@ static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_t
|
||||||
alloc->n_free_blocks++;
|
alloc->n_free_blocks++;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n) {
|
||||||
|
int pos = 0;
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
if (list[i] != -1) {
|
||||||
|
alloc->parse_seq[pos] = list[i];
|
||||||
|
pos++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
alloc->has_parse_seq = true;
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
||||||
alloc->n_free_blocks = 1;
|
alloc->n_free_blocks = 1;
|
||||||
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
||||||
|
@ -248,6 +268,8 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
|
||||||
/*.hash_table = */ {{0}},
|
/*.hash_table = */ {{0}},
|
||||||
/*.max_size = */ 0,
|
/*.max_size = */ 0,
|
||||||
/*.measure = */ false,
|
/*.measure = */ false,
|
||||||
|
/*.parse_seq = */ {0},
|
||||||
|
/*.has_parse_seq = */ false,
|
||||||
#ifdef GGML_ALLOCATOR_DEBUG
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
/*.allocated_tensors = */ = {0},
|
/*.allocated_tensors = */ = {0},
|
||||||
#endif
|
#endif
|
||||||
|
@ -275,6 +297,8 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||||
/*.hash_table = */ {{0}},
|
/*.hash_table = */ {{0}},
|
||||||
/*.max_size = */ 0,
|
/*.max_size = */ 0,
|
||||||
/*.measure = */ true,
|
/*.measure = */ true,
|
||||||
|
/*.parse_seq = */ {0},
|
||||||
|
/*.has_parse_seq = */ false,
|
||||||
#ifdef GGML_ALLOCATOR_DEBUG
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
/*.allocated_tensors = */ = {0},
|
/*.allocated_tensors = */ = {0},
|
||||||
#endif
|
#endif
|
||||||
|
@ -394,6 +418,14 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||||
if (parent == NULL) {
|
if (parent == NULL) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// if the node's data is external, then we cannot re-use it
|
||||||
|
if ((char *) parent->data < (char *) alloc->data ||
|
||||||
|
(char *) parent->data >= ((char *) alloc->data + alloc->size)) {
|
||||||
|
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
struct hash_node * p_hn = hash_get(ht, parent);
|
struct hash_node * p_hn = hash_get(ht, parent);
|
||||||
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
||||||
if (ggml_is_view(parent)) {
|
if (ggml_is_view(parent)) {
|
||||||
|
@ -465,7 +497,13 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||||
allocate_node(alloc, input);
|
allocate_node(alloc, input);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (int i = 0; i < gf->n_nodes; i++) {
|
for (int ind = 0; ind < gf->n_nodes; ind++) {
|
||||||
|
int i;
|
||||||
|
if (alloc->has_parse_seq) {
|
||||||
|
i = alloc->parse_seq[ind];
|
||||||
|
} else {
|
||||||
|
i = ind;
|
||||||
|
}
|
||||||
struct ggml_tensor * node = gf->nodes[i];
|
struct ggml_tensor * node = gf->nodes[i];
|
||||||
|
|
||||||
// allocate parents (leafs)
|
// allocate parents (leafs)
|
||||||
|
|
|
@ -10,6 +10,10 @@ extern "C" {
|
||||||
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||||
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
||||||
|
|
||||||
|
// tell the allocator to parse nodes following the order described in the list
|
||||||
|
// you should call this if your graph are optimized to execute out-of-order
|
||||||
|
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n);
|
||||||
|
|
||||||
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
|
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
|
||||||
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
||||||
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
|
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
|
||||||
|
|
1348
ggml-cuda.cu
1348
ggml-cuda.cu
File diff suppressed because it is too large
Load diff
|
@ -63,10 +63,13 @@ void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
|
||||||
|
|
||||||
// try to find operations that can be run concurrently in the graph
|
// try to find operations that can be run concurrently in the graph
|
||||||
// you should run it again if the topology of your graph changes
|
// you should run it again if the topology of your graph changes
|
||||||
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
|
||||||
|
|
||||||
// if the graph has been optimized for concurrently dispatch
|
// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
|
||||||
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
||||||
|
|
||||||
|
// output the concur_list for ggml_alloc
|
||||||
|
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
|
||||||
|
|
||||||
// same as ggml_graph_compute but uses Metal
|
// same as ggml_graph_compute but uses Metal
|
||||||
// creates gf->n_threads command buffers in parallel
|
// creates gf->n_threads command buffers in parallel
|
||||||
|
|
201
ggml-metal.m
201
ggml-metal.m
|
@ -5,7 +5,6 @@
|
||||||
#import <Foundation/Foundation.h>
|
#import <Foundation/Foundation.h>
|
||||||
|
|
||||||
#import <Metal/Metal.h>
|
#import <Metal/Metal.h>
|
||||||
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
|
|
||||||
|
|
||||||
#undef MIN
|
#undef MIN
|
||||||
#undef MAX
|
#undef MAX
|
||||||
|
@ -79,6 +78,14 @@ struct ggml_metal_context {
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(rope);
|
GGML_METAL_DECL_KERNEL(rope);
|
||||||
GGML_METAL_DECL_KERNEL(alibi_f32);
|
GGML_METAL_DECL_KERNEL(alibi_f32);
|
||||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||||
|
@ -110,13 +117,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
ctx->n_buffers = 0;
|
ctx->n_buffers = 0;
|
||||||
ctx->concur_list_len = 0;
|
ctx->concur_list_len = 0;
|
||||||
|
|
||||||
// determine if we can use MPS
|
|
||||||
if (MPSSupportsMTLDevice(ctx->device)) {
|
|
||||||
fprintf(stderr, "%s: using MPS\n", __func__);
|
|
||||||
} else {
|
|
||||||
fprintf(stderr, "%s: not using MPS\n", __func__);
|
|
||||||
GGML_ASSERT(false && "MPS not supported");
|
|
||||||
}
|
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
// compile from source string and show compile log
|
// compile from source string and show compile log
|
||||||
|
@ -126,7 +126,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
|
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
|
||||||
if (error) {
|
if (error) {
|
||||||
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||||
exit(1);
|
return NULL;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
@ -144,7 +144,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
||||||
if (error) {
|
if (error) {
|
||||||
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||||
exit(1);
|
return NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GGML_QKK_64
|
#ifdef GGML_QKK_64
|
||||||
|
@ -156,17 +156,22 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
#endif
|
#endif
|
||||||
if (error) {
|
if (error) {
|
||||||
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||||
exit(1);
|
return NULL;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// load kernels
|
// load kernels
|
||||||
{
|
{
|
||||||
|
NSError * error = nil;
|
||||||
#define GGML_METAL_ADD_KERNEL(name) \
|
#define GGML_METAL_ADD_KERNEL(name) \
|
||||||
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
|
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
|
||||||
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
|
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
|
||||||
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
|
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name); \
|
||||||
|
if (error) { \
|
||||||
|
fprintf(stderr, "%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
|
||||||
|
return NULL; \
|
||||||
|
}
|
||||||
|
|
||||||
GGML_METAL_ADD_KERNEL(add);
|
GGML_METAL_ADD_KERNEL(add);
|
||||||
GGML_METAL_ADD_KERNEL(add_row);
|
GGML_METAL_ADD_KERNEL(add_row);
|
||||||
|
@ -196,6 +201,14 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(rope);
|
GGML_METAL_ADD_KERNEL(rope);
|
||||||
GGML_METAL_ADD_KERNEL(alibi_f32);
|
GGML_METAL_ADD_KERNEL(alibi_f32);
|
||||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||||
|
@ -228,11 +241,12 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
|
||||||
ctx->n_cb = n_cb;
|
ctx->n_cb = n_cb;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
|
int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
|
||||||
if (ctx->concur_list_len) {
|
return ctx->concur_list_len;
|
||||||
return true;
|
}
|
||||||
}
|
|
||||||
return false;
|
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
|
||||||
|
return ctx->concur_list;
|
||||||
}
|
}
|
||||||
|
|
||||||
// finds the Metal buffer that contains the tensor data on the GPU device
|
// finds the Metal buffer that contains the tensor data on the GPU device
|
||||||
|
@ -375,7 +389,7 @@ void ggml_metal_get_tensor(
|
||||||
|
|
||||||
void ggml_metal_graph_find_concurrency(
|
void ggml_metal_graph_find_concurrency(
|
||||||
struct ggml_metal_context * ctx,
|
struct ggml_metal_context * ctx,
|
||||||
struct ggml_cgraph * gf) {
|
struct ggml_cgraph * gf, bool check_mem) {
|
||||||
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
|
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
|
||||||
int nodes_unused[GGML_MAX_CONCUR];
|
int nodes_unused[GGML_MAX_CONCUR];
|
||||||
|
|
||||||
|
@ -422,7 +436,7 @@ void ggml_metal_graph_find_concurrency(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (exe_flag) {
|
if (exe_flag && check_mem) {
|
||||||
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
|
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
|
||||||
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
|
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
|
||||||
int64_t data_start = (int64_t) gf->nodes[i]->data;
|
int64_t data_start = (int64_t) gf->nodes[i]->data;
|
||||||
|
@ -506,7 +520,7 @@ void ggml_metal_graph_compute(
|
||||||
|
|
||||||
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
|
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
|
||||||
|
|
||||||
id<MTLComputeCommandEncoder> encoder = nil;
|
id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||||
|
|
||||||
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
||||||
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
|
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
|
||||||
|
@ -515,10 +529,6 @@ void ggml_metal_graph_compute(
|
||||||
const int i = has_concur ? ctx->concur_list[ind] : ind;
|
const int i = has_concur ? ctx->concur_list[ind] : ind;
|
||||||
|
|
||||||
if (i == -1) {
|
if (i == -1) {
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
|
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
@ -592,10 +602,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_ADD:
|
case GGML_OP_ADD:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
if (ggml_nelements(src1) == ne10) {
|
if (ggml_nelements(src1) == ne10) {
|
||||||
// src1 is a row
|
// src1 is a row
|
||||||
[encoder setComputePipelineState:ctx->pipeline_add_row];
|
[encoder setComputePipelineState:ctx->pipeline_add_row];
|
||||||
|
@ -613,10 +619,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_MUL:
|
case GGML_OP_MUL:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
if (ggml_nelements(src1) == ne10) {
|
if (ggml_nelements(src1) == ne10) {
|
||||||
// src1 is a row
|
// src1 is a row
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_row];
|
[encoder setComputePipelineState:ctx->pipeline_mul_row];
|
||||||
|
@ -634,10 +636,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_SCALE:
|
case GGML_OP_SCALE:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
const float scale = *(const float *) src1->data;
|
const float scale = *(const float *) src1->data;
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_scale];
|
[encoder setComputePipelineState:ctx->pipeline_scale];
|
||||||
|
@ -653,10 +651,6 @@ void ggml_metal_graph_compute(
|
||||||
switch (ggml_get_unary_op(gf->nodes[i])) {
|
switch (ggml_get_unary_op(gf->nodes[i])) {
|
||||||
case GGML_UNARY_OP_SILU:
|
case GGML_UNARY_OP_SILU:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_silu];
|
[encoder setComputePipelineState:ctx->pipeline_silu];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
@ -667,10 +661,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_UNARY_OP_RELU:
|
case GGML_UNARY_OP_RELU:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_relu];
|
[encoder setComputePipelineState:ctx->pipeline_relu];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
@ -681,10 +671,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_UNARY_OP_GELU:
|
case GGML_UNARY_OP_GELU:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
@ -701,10 +687,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
const int nth = 32;
|
const int nth = 32;
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
||||||
|
@ -719,10 +701,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_DIAG_MASK_INF:
|
case GGML_OP_DIAG_MASK_INF:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
const int n_past = ((int32_t *)(dst->op_params))[0];
|
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
||||||
|
@ -740,53 +718,43 @@ void ggml_metal_graph_compute(
|
||||||
|
|
||||||
GGML_ASSERT(ne00 == ne10);
|
GGML_ASSERT(ne00 == ne10);
|
||||||
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
|
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
|
||||||
|
uint gqa = ne12/ne02;
|
||||||
GGML_ASSERT(ne03 == ne13);
|
GGML_ASSERT(ne03 == ne13);
|
||||||
|
|
||||||
|
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||||
|
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||||
if (ggml_is_contiguous(src0) &&
|
if (ggml_is_contiguous(src0) &&
|
||||||
ggml_is_contiguous(src1) &&
|
ggml_is_contiguous(src1) &&
|
||||||
(src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
|
src1t == GGML_TYPE_F32 &&
|
||||||
|
[ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||||
if (encoder != nil) {
|
ne00%32 == 0 &&
|
||||||
[encoder endEncoding];
|
ne11 > 1) {
|
||||||
encoder = nil;
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
||||||
|
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
||||||
|
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
||||||
|
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
|
||||||
|
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
|
||||||
|
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
|
||||||
|
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
|
||||||
|
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
|
||||||
|
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||||
|
}
|
||||||
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||||
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||||
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||||
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||||
|
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
|
||||||
|
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
|
||||||
|
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
||||||
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
|
||||||
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
|
||||||
|
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
|
||||||
|
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||||
}
|
}
|
||||||
|
else {
|
||||||
MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
|
|
||||||
MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
|
|
||||||
|
|
||||||
// for F32 x F32 we use MPS
|
|
||||||
MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
|
|
||||||
matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
|
|
||||||
|
|
||||||
MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
|
|
||||||
matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
|
|
||||||
|
|
||||||
MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
|
|
||||||
matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
|
|
||||||
|
|
||||||
MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
|
|
||||||
initWithDevice:ctx->device transposeLeft:false transposeRight:true
|
|
||||||
resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
|
|
||||||
|
|
||||||
// we need to do ne12 multiplications
|
|
||||||
// TODO: is there a way to do this in parallel - currently very slow ..
|
|
||||||
// TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
|
|
||||||
for (int64_t i02 = 0; i02 < ne12; ++i02) {
|
|
||||||
size_t offs_src0_cur = offs_src0 + i02/(ne12/ne02)*nb02; // gqa not used for now
|
|
||||||
size_t offs_src1_cur = offs_src1 + i02*nb12;
|
|
||||||
size_t offs_dst_cur = offs_dst + i02*nb2;
|
|
||||||
|
|
||||||
MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
|
|
||||||
MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
|
|
||||||
MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
|
|
||||||
|
|
||||||
[mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
int nth0 = 32;
|
int nth0 = 32;
|
||||||
int nth1 = 1;
|
int nth1 = 1;
|
||||||
|
|
||||||
|
@ -885,23 +853,24 @@ void ggml_metal_graph_compute(
|
||||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
|
||||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
|
||||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
||||||
|
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
||||||
|
|
||||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
|
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q3_K) {
|
else if (src0t == GGML_TYPE_Q3_K) {
|
||||||
#ifdef GGML_QKK_64
|
#ifdef GGML_QKK_64
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
#else
|
#else
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q5_K) {
|
else if (src0t == GGML_TYPE_Q5_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q6_K) {
|
else if (src0t == GGML_TYPE_Q6_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
} else {
|
} else {
|
||||||
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
@ -910,10 +879,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_GET_ROWS:
|
case GGML_OP_GET_ROWS:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
||||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
||||||
|
@ -939,10 +904,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_RMS_NORM:
|
case GGML_OP_RMS_NORM:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
float eps;
|
float eps;
|
||||||
memcpy(&eps, dst->op_params, sizeof(float));
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
|
@ -962,10 +923,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_NORM:
|
case GGML_OP_NORM:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
const float eps = 1e-5f;
|
const float eps = 1e-5f;
|
||||||
|
|
||||||
const int nth = 256;
|
const int nth = 256;
|
||||||
|
@ -984,10 +941,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_ALIBI:
|
case GGML_OP_ALIBI:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
||||||
|
|
||||||
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
|
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
|
||||||
|
@ -1027,10 +980,6 @@ void ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||||
const int mode = ((int32_t *) dst->op_params)[2];
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
|
@ -1071,10 +1020,6 @@ void ggml_metal_graph_compute(
|
||||||
case GGML_OP_CPY:
|
case GGML_OP_CPY:
|
||||||
case GGML_OP_CONT:
|
case GGML_OP_CONT:
|
||||||
{
|
{
|
||||||
if (encoder == nil) {
|
|
||||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
|
||||||
}
|
|
||||||
|
|
||||||
const int nth = 32;
|
const int nth = 32;
|
||||||
|
|
||||||
switch (src0t) {
|
switch (src0t) {
|
||||||
|
|
969
ggml-metal.metal
969
ggml-metal.metal
File diff suppressed because it is too large
Load diff
31
llama-util.h
31
llama-util.h
|
@ -271,20 +271,29 @@ struct llama_mmap {
|
||||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||||
}
|
}
|
||||||
|
|
||||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
|
||||||
if (prefetch) {
|
if (prefetch) {
|
||||||
// Advise the kernel to preload the mapped memory
|
// The PrefetchVirtualMemory API is only present on Windows 8 and above, so we
|
||||||
WIN32_MEMORY_RANGE_ENTRY range;
|
// will dynamically load it using GetProcAddress.
|
||||||
range.VirtualAddress = addr;
|
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
|
||||||
range.NumberOfBytes = (SIZE_T)size;
|
HMODULE hKernel32;
|
||||||
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
|
||||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
// This call is guaranteed to succeed.
|
||||||
llama_format_win_err(GetLastError()).c_str());
|
hKernel32 = GetModuleHandleW(L"kernel32.dll");
|
||||||
|
|
||||||
|
// This call may fail if on a pre-Win8 system.
|
||||||
|
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
|
||||||
|
|
||||||
|
if (pPrefetchVirtualMemory) {
|
||||||
|
// Advise the kernel to preload the mapped memory.
|
||||||
|
WIN32_MEMORY_RANGE_ENTRY range;
|
||||||
|
range.VirtualAddress = addr;
|
||||||
|
range.NumberOfBytes = (SIZE_T)size;
|
||||||
|
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||||
|
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||||
|
llama_format_win_err(GetLastError()).c_str());
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
|
|
||||||
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
|
||||||
}
|
}
|
||||||
|
|
||||||
~llama_mmap() {
|
~llama_mmap() {
|
||||||
|
|
325
llama.cpp
325
llama.cpp
|
@ -56,7 +56,14 @@
|
||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL)
|
static void llama_log_internal(llama_log_level level, const char* format, ...);
|
||||||
|
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
|
||||||
|
#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
|
||||||
|
#define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__)
|
||||||
|
#define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||||
|
|
||||||
|
|
||||||
|
#if !defined(GGML_USE_CUBLAS)
|
||||||
#include "ggml-alloc.h"
|
#include "ggml-alloc.h"
|
||||||
#define LLAMA_USE_ALLOCATOR
|
#define LLAMA_USE_ALLOCATOR
|
||||||
#else
|
#else
|
||||||
|
@ -438,6 +445,14 @@ struct llama_context {
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct llama_state {
|
||||||
|
// We save the log callback globally
|
||||||
|
llama_log_callback log_callback = llama_log_callback_default;
|
||||||
|
void * log_callback_user_data = nullptr;
|
||||||
|
};
|
||||||
|
// global state
|
||||||
|
static llama_state g_state;
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
static T checked_mul(T a, T b) {
|
static T checked_mul(T a, T b) {
|
||||||
T ret = a * b;
|
T ret = a * b;
|
||||||
|
@ -504,7 +519,7 @@ struct llama_file_loader {
|
||||||
|
|
||||||
llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
|
llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
|
||||||
: file(fname, "rb") {
|
: file(fname, "rb") {
|
||||||
fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
|
LLAMA_LOG_INFO("llama.cpp: loading model from %s\n", fname);
|
||||||
read_magic();
|
read_magic();
|
||||||
read_hparams();
|
read_hparams();
|
||||||
read_vocab();
|
read_vocab();
|
||||||
|
@ -619,7 +634,7 @@ struct llama_file_saver {
|
||||||
llama_file_loader * any_file_loader;
|
llama_file_loader * any_file_loader;
|
||||||
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
|
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
|
||||||
: file(fname, "wb"), any_file_loader(any_file_loader) {
|
: file(fname, "wb"), any_file_loader(any_file_loader) {
|
||||||
fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
|
LLAMA_LOG_INFO("llama.cpp: saving model to %s\n", fname);
|
||||||
write_magic();
|
write_magic();
|
||||||
write_hparams(new_ftype);
|
write_hparams(new_ftype);
|
||||||
write_vocab();
|
write_vocab();
|
||||||
|
@ -640,7 +655,7 @@ struct llama_file_saver {
|
||||||
}
|
}
|
||||||
void write_vocab() {
|
void write_vocab() {
|
||||||
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
|
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
|
||||||
fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
|
LLAMA_LOG_WARN("llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
|
||||||
}
|
}
|
||||||
uint32_t n_vocab = any_file_loader->hparams.n_vocab;
|
uint32_t n_vocab = any_file_loader->hparams.n_vocab;
|
||||||
for (uint32_t i = 0; i < n_vocab; i++) {
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
||||||
|
@ -831,7 +846,7 @@ struct llama_model_loader {
|
||||||
uint8_t byte = lt.data[i];
|
uint8_t byte = lt.data[i];
|
||||||
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
|
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
|
||||||
}
|
}
|
||||||
fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
|
LLAMA_LOG_INFO("%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
|
||||||
llama_format_tensor_shape(lt.ne).c_str(), lt.size);
|
llama_format_tensor_shape(lt.ne).c_str(), lt.size);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -864,7 +879,7 @@ static bool kv_cache_init(
|
||||||
cache.ctx = ggml_init(params);
|
cache.ctx = ggml_init(params);
|
||||||
|
|
||||||
if (!cache.ctx) {
|
if (!cache.ctx) {
|
||||||
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
|
LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1076,7 +1091,7 @@ static void llama_model_load_internal(
|
||||||
LLAMA_ASSERT(hparams.n_head % n_gqa == 0);
|
LLAMA_ASSERT(hparams.n_head % n_gqa == 0);
|
||||||
hparams.n_head_kv = hparams.n_head / n_gqa;
|
hparams.n_head_kv = hparams.n_head / n_gqa;
|
||||||
if (model.type == e_model::MODEL_65B && n_gqa == 8) {
|
if (model.type == e_model::MODEL_65B && n_gqa == 8) {
|
||||||
fprintf(stderr, "%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
|
LLAMA_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
|
||||||
model.type = e_model::MODEL_70B;
|
model.type = e_model::MODEL_70B;
|
||||||
hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
|
hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
|
||||||
}
|
}
|
||||||
|
@ -1092,22 +1107,22 @@ static void llama_model_load_internal(
|
||||||
//const uint32_t n_ff = 28672;
|
//const uint32_t n_ff = 28672;
|
||||||
|
|
||||||
{
|
{
|
||||||
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
|
LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(file_version));
|
||||||
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
||||||
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
|
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx);
|
||||||
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
|
LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
|
||||||
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
|
LLAMA_LOG_INFO("%s: n_mult = %u\n", __func__, hparams.n_mult);
|
||||||
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
|
||||||
fprintf(stderr, "%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
|
LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
|
||||||
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||||
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
|
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
|
||||||
fprintf(stderr, "%s: n_gqa = %u\n", __func__, hparams.n_gqa());
|
LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
|
||||||
fprintf(stderr, "%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps);
|
LLAMA_LOG_INFO("%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps);
|
||||||
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, n_ff);
|
||||||
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
|
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
|
||||||
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
|
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
|
||||||
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
LLAMA_LOG_INFO("%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
||||||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
LLAMA_LOG_INFO("%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||||
}
|
}
|
||||||
|
|
||||||
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
|
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
|
||||||
|
@ -1135,7 +1150,7 @@ static void llama_model_load_internal(
|
||||||
size_t ctx_size;
|
size_t ctx_size;
|
||||||
size_t mmapped_size;
|
size_t mmapped_size;
|
||||||
ml->calc_sizes(&ctx_size, &mmapped_size);
|
ml->calc_sizes(&ctx_size, &mmapped_size);
|
||||||
fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
||||||
|
|
||||||
// create the ggml context
|
// create the ggml context
|
||||||
{
|
{
|
||||||
|
@ -1160,13 +1175,13 @@ static void llama_model_load_internal(
|
||||||
(void) main_gpu;
|
(void) main_gpu;
|
||||||
(void) mul_mat_q;
|
(void) mul_mat_q;
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CUBLAS)
|
||||||
fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
|
LLAMA_LOG_INFO("%s: using CUDA for GPU acceleration\n", __func__);
|
||||||
ggml_cuda_set_main_device(main_gpu);
|
ggml_cuda_set_main_device(main_gpu);
|
||||||
ggml_cuda_set_mul_mat_q(mul_mat_q);
|
ggml_cuda_set_mul_mat_q(mul_mat_q);
|
||||||
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
|
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
|
||||||
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
|
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
|
LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
|
||||||
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
|
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
|
||||||
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
|
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
|
||||||
#else
|
#else
|
||||||
|
@ -1271,14 +1286,14 @@ static void llama_model_load_internal(
|
||||||
const size_t mem_required_state =
|
const size_t mem_required_state =
|
||||||
scale*hparams.kv_size();
|
scale*hparams.kv_size();
|
||||||
|
|
||||||
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
||||||
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
||||||
|
|
||||||
(void) vram_scratch;
|
(void) vram_scratch;
|
||||||
(void) n_batch;
|
(void) n_batch;
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
if (low_vram) {
|
if (low_vram) {
|
||||||
fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
|
LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
|
||||||
ggml_cuda_set_scratch_size(0); // disable scratch
|
ggml_cuda_set_scratch_size(0); // disable scratch
|
||||||
} else {
|
} else {
|
||||||
const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
|
const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
|
||||||
|
@ -1286,7 +1301,7 @@ static void llama_model_load_internal(
|
||||||
vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
|
vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
|
||||||
ggml_cuda_set_scratch_size(vram_scratch);
|
ggml_cuda_set_scratch_size(vram_scratch);
|
||||||
if (n_gpu_layers > 0) {
|
if (n_gpu_layers > 0) {
|
||||||
fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
|
LLAMA_LOG_INFO("%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
|
||||||
__func__, vram_scratch_base / kB, vram_scratch_per_context,
|
__func__, vram_scratch_base / kB, vram_scratch_per_context,
|
||||||
(vram_scratch + MB - 1) / MB); // round up
|
(vram_scratch + MB - 1) / MB); // round up
|
||||||
}
|
}
|
||||||
|
@ -1296,9 +1311,9 @@ static void llama_model_load_internal(
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||||
|
|
||||||
fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
|
LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
|
||||||
if (n_gpu_layers > (int) hparams.n_layer) {
|
if (n_gpu_layers > (int) hparams.n_layer) {
|
||||||
fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
|
LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
|
||||||
}
|
}
|
||||||
size_t vram_kv_cache = 0;
|
size_t vram_kv_cache = 0;
|
||||||
|
|
||||||
|
@ -1307,17 +1322,17 @@ static void llama_model_load_internal(
|
||||||
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
|
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
|
||||||
if (n_gpu_layers > (int) hparams.n_layer + 1) {
|
if (n_gpu_layers > (int) hparams.n_layer + 1) {
|
||||||
if (low_vram) {
|
if (low_vram) {
|
||||||
fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
|
LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
|
||||||
} else {
|
} else {
|
||||||
fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
|
LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
|
||||||
vram_kv_cache += hparams.kv_size() / 2;
|
vram_kv_cache += hparams.kv_size() / 2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (n_gpu_layers > (int) hparams.n_layer + 2) {
|
if (n_gpu_layers > (int) hparams.n_layer + 2) {
|
||||||
if (low_vram) {
|
if (low_vram) {
|
||||||
fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
|
LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
|
||||||
} else {
|
} else {
|
||||||
fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
|
LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
|
||||||
vram_kv_cache += hparams.kv_size() / 2;
|
vram_kv_cache += hparams.kv_size() / 2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1326,9 +1341,9 @@ static void llama_model_load_internal(
|
||||||
const int max_offloadable_layers = hparams.n_layer + 1;
|
const int max_offloadable_layers = hparams.n_layer + 1;
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
|
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n",
|
||||||
__func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
__func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
||||||
fprintf(stderr, "%s: total VRAM used: %zu MB\n",
|
LLAMA_LOG_INFO("%s: total VRAM used: %zu MB\n",
|
||||||
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
|
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
|
||||||
#else
|
#else
|
||||||
(void) n_gpu_layers;
|
(void) n_gpu_layers;
|
||||||
|
@ -1387,7 +1402,7 @@ static bool llama_model_load(
|
||||||
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
||||||
return true;
|
return true;
|
||||||
} catch (const std::exception & err) {
|
} catch (const std::exception & err) {
|
||||||
fprintf(stderr, "error loading model: %s\n", err.what());
|
LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1594,11 +1609,11 @@ static struct ggml_cgraph * llama_build_graph(
|
||||||
ggml_set_name(Q, "Q");
|
ggml_set_name(Q, "Q");
|
||||||
|
|
||||||
struct ggml_tensor * K =
|
struct ggml_tensor * K =
|
||||||
ggml_permute(ctx0,
|
ggml_view_3d(ctx0, kv_self.k,
|
||||||
ggml_reshape_3d(ctx0,
|
n_embd_head, n_past + N, n_head_kv,
|
||||||
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd_gqa, il*n_ctx*ggml_element_size(kv_self.k)*n_embd_gqa),
|
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||||
n_embd_head, n_head_kv, n_past + N),
|
ggml_element_size(kv_self.k)*n_embd_head,
|
||||||
0, 2, 1, 3);
|
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
|
||||||
offload_func_kq(K);
|
offload_func_kq(K);
|
||||||
ggml_set_name(K, "K");
|
ggml_set_name(K, "K");
|
||||||
|
|
||||||
|
@ -1627,9 +1642,9 @@ static struct ggml_cgraph * llama_build_graph(
|
||||||
struct ggml_tensor * V =
|
struct ggml_tensor * V =
|
||||||
ggml_view_3d(ctx0, kv_self.v,
|
ggml_view_3d(ctx0, kv_self.v,
|
||||||
n_past + N, n_embd_head, n_head_kv,
|
n_past + N, n_embd_head, n_head_kv,
|
||||||
n_ctx*ggml_element_size(kv_self.v),
|
ggml_element_size(kv_self.v)*n_ctx,
|
||||||
n_ctx*ggml_element_size(kv_self.v)*n_embd_head,
|
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
|
||||||
n_ctx*ggml_element_size(kv_self.v)*n_embd_gqa*il);
|
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
|
||||||
offload_func_v(V);
|
offload_func_v(V);
|
||||||
ggml_set_name(V, "V");
|
ggml_set_name(V, "V");
|
||||||
|
|
||||||
|
@ -1751,7 +1766,7 @@ static struct ggml_cgraph * llama_build_graph(
|
||||||
}
|
}
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
|
LLAMA_LOG_INFO("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
|
||||||
ggml_used_mem(ctx0)/1024.0/1024.0,
|
ggml_used_mem(ctx0)/1024.0/1024.0,
|
||||||
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
||||||
lctx.get_buf_max_mem(1)/1024.0/1024.0,
|
lctx.get_buf_max_mem(1)/1024.0/1024.0,
|
||||||
|
@ -1812,7 +1827,7 @@ static bool llama_eval_internal(
|
||||||
ggml_allocr_alloc_graph(lctx.alloc, gf);
|
ggml_allocr_alloc_graph(lctx.alloc, gf);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||||
|
|
||||||
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
||||||
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
||||||
|
@ -1830,11 +1845,7 @@ static bool llama_eval_internal(
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
if (lctx.ctx_metal && N == 1) {
|
if (lctx.ctx_metal) {
|
||||||
// TODO: disabled until #2413 is resolved
|
|
||||||
//if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
|
|
||||||
// ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
|
|
||||||
//}
|
|
||||||
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
|
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
|
||||||
ggml_metal_graph_compute(lctx.ctx_metal, gf);
|
ggml_metal_graph_compute(lctx.ctx_metal, gf);
|
||||||
ggml_metal_get_tensor (lctx.ctx_metal, res);
|
ggml_metal_get_tensor (lctx.ctx_metal, res);
|
||||||
|
@ -1842,22 +1853,6 @@ static bool llama_eval_internal(
|
||||||
ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
|
ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// IMPORTANT:
|
|
||||||
// Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
|
|
||||||
// ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
|
|
||||||
// coprocessor.
|
|
||||||
//
|
|
||||||
// When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
|
|
||||||
// But for now, we have focused only on Matrix x Vector Metal multiplication.
|
|
||||||
//
|
|
||||||
// TODO: avoid these syncs via shared memory (ref #1696)
|
|
||||||
//
|
|
||||||
if (lctx.ctx_metal) {
|
|
||||||
// We need to sync the GPU KV cache with the CPU KV cache
|
|
||||||
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
|
|
||||||
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
|
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
@ -1999,7 +1994,7 @@ struct llama_tokenizer {
|
||||||
left_sym.n += right_sym.n;
|
left_sym.n += right_sym.n;
|
||||||
right_sym.n = 0;
|
right_sym.n = 0;
|
||||||
|
|
||||||
//printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
|
//LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
|
||||||
|
|
||||||
// remove the right sym from the chain
|
// remove the right sym from the chain
|
||||||
left_sym.next = right_sym.next;
|
left_sym.next = right_sym.next;
|
||||||
|
@ -3114,7 +3109,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
tensor.data = read_data.addr;
|
tensor.data = read_data.addr;
|
||||||
model_loader->load_data_for(tensor);
|
model_loader->load_data_for(tensor);
|
||||||
|
|
||||||
printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
|
LLAMA_LOG_INFO("[%4zu/%4zu] %36s - %16s, type = %6s, ",
|
||||||
++idx, model_loader->tensors_map.tensors.size(),
|
++idx, model_loader->tensors_map.tensors.size(),
|
||||||
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
|
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
|
||||||
ggml_type_name(tensor.type));
|
ggml_type_name(tensor.type));
|
||||||
|
@ -3136,7 +3131,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
new_type = tensor.type;
|
new_type = tensor.type;
|
||||||
new_data = tensor.data;
|
new_data = tensor.data;
|
||||||
new_size = tensor.size;
|
new_size = tensor.size;
|
||||||
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
|
LLAMA_LOG_INFO("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
|
||||||
} else {
|
} else {
|
||||||
new_type = quantized_type;
|
new_type = quantized_type;
|
||||||
#ifdef GGML_USE_K_QUANTS
|
#ifdef GGML_USE_K_QUANTS
|
||||||
|
@ -3171,17 +3166,17 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
int nx = tensor.ne.at(0);
|
int nx = tensor.ne.at(0);
|
||||||
int ny = tensor.ne.at(1);
|
int ny = tensor.ne.at(1);
|
||||||
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
||||||
fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
|
LLAMA_LOG_INFO("\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
|
||||||
convert_incompatible_tensor = true;
|
convert_incompatible_tensor = true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (convert_incompatible_tensor) {
|
if (convert_incompatible_tensor) {
|
||||||
if (tensor.name == "output.weight") {
|
if (tensor.name == "output.weight") {
|
||||||
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
||||||
fprintf(stderr, "F16 will be used for this tensor instead.\n");
|
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
|
||||||
} else if (tensor.name == "tok_embeddings.weight") {
|
} else if (tensor.name == "tok_embeddings.weight") {
|
||||||
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
||||||
fprintf(stderr, "Q4_0 will be used for this tensor instead.\n");
|
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error("Unsupported tensor size encountered\n");
|
throw std::runtime_error("Unsupported tensor size encountered\n");
|
||||||
}
|
}
|
||||||
|
@ -3201,7 +3196,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
f32_data = (float *) f32_conv_buf.addr;
|
f32_data = (float *) f32_conv_buf.addr;
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("quantizing to %s .. ", ggml_type_name(new_type));
|
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
|
||||||
work.resize(nelements * 4); // upper bound on size
|
work.resize(nelements * 4); // upper bound on size
|
||||||
|
@ -3251,7 +3246,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
|
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||||
int64_t tot_count = 0;
|
int64_t tot_count = 0;
|
||||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||||
hist_all[i] += hist_cur[i];
|
hist_all[i] += hist_cur[i];
|
||||||
|
@ -3260,18 +3255,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
|
|
||||||
if (tot_count > 0) {
|
if (tot_count > 0) {
|
||||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||||
printf("%5.3f ", hist_cur[i] / float(nelements));
|
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
printf("\n");
|
LLAMA_LOG_INFO("\n");
|
||||||
}
|
}
|
||||||
total_size_org += tensor.size;
|
total_size_org += tensor.size;
|
||||||
total_size_new += new_size;
|
total_size_new += new_size;
|
||||||
file_saver.write_tensor(tensor, new_type, new_data, new_size);
|
file_saver.write_tensor(tensor, new_type, new_data, new_size);
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
||||||
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
||||||
|
|
||||||
{
|
{
|
||||||
int64_t sum_all = 0;
|
int64_t sum_all = 0;
|
||||||
|
@ -3280,11 +3275,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
}
|
}
|
||||||
|
|
||||||
if (sum_all > 0) {
|
if (sum_all > 0) {
|
||||||
printf("%s: hist: ", __func__);
|
LLAMA_LOG_INFO("%s: hist: ", __func__);
|
||||||
for (size_t i = 0; i < hist_all.size(); i++) {
|
for (size_t i = 0; i < hist_all.size(); i++) {
|
||||||
printf("%5.3f ", hist_all[i] / float(sum_all));
|
LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
|
||||||
}
|
}
|
||||||
printf("\n");
|
LLAMA_LOG_INFO("\n");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -3308,8 +3303,8 @@ struct llama_model * llama_load_model_from_file(
|
||||||
params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
|
params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
|
||||||
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
|
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
|
||||||
params.progress_callback_user_data)) {
|
params.progress_callback_user_data)) {
|
||||||
|
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
|
||||||
delete model;
|
delete model;
|
||||||
fprintf(stderr, "%s: failed to load model\n", __func__);
|
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -3342,10 +3337,9 @@ struct llama_context * llama_new_context_with_model(
|
||||||
unsigned percentage = (unsigned) (100 * progress);
|
unsigned percentage = (unsigned) (100 * progress);
|
||||||
while (percentage > *cur_percentage_p) {
|
while (percentage > *cur_percentage_p) {
|
||||||
*cur_percentage_p = percentage;
|
*cur_percentage_p = percentage;
|
||||||
fprintf(stderr, ".");
|
LLAMA_LOG_INFO(".");
|
||||||
fflush(stderr);
|
|
||||||
if (percentage >= 100) {
|
if (percentage >= 100) {
|
||||||
fprintf(stderr, "\n");
|
LLAMA_LOG_INFO("\n");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@ -3359,14 +3353,14 @@ struct llama_context * llama_new_context_with_model(
|
||||||
// reserve memory for context buffers
|
// reserve memory for context buffers
|
||||||
if (!params.vocab_only) {
|
if (!params.vocab_only) {
|
||||||
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
|
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
|
||||||
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
LLAMA_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||||
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto & hparams = ctx->model.hparams;
|
const auto & hparams = ctx->model.hparams;
|
||||||
|
@ -3396,24 +3390,40 @@ struct llama_context * llama_new_context_with_model(
|
||||||
int n_past = hparams.n_ctx - n_tokens;
|
int n_past = hparams.n_ctx - n_tokens;
|
||||||
llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||||
ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
|
ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
|
||||||
|
#ifdef GGML_USE_METAL
|
||||||
|
if (params.n_gpu_layers > 0) {
|
||||||
|
ctx->ctx_metal = ggml_metal_init(1);
|
||||||
|
if (!ctx->ctx_metal) {
|
||||||
|
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
|
||||||
|
llama_free(ctx);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
|
||||||
|
ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
|
||||||
|
}
|
||||||
|
#endif
|
||||||
// measure memory requirements for the graph
|
// measure memory requirements for the graph
|
||||||
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
||||||
|
|
||||||
fprintf(stderr, "%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
||||||
|
|
||||||
// debug - for comparison with scratch buffer
|
// debug - for comparison with scratch buffer
|
||||||
//size_t prev_req =
|
//size_t prev_req =
|
||||||
// MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) +
|
// MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) +
|
||||||
// MEM_REQ_SCRATCH1().at(ctx->model.type) +
|
// MEM_REQ_SCRATCH1().at(ctx->model.type) +
|
||||||
// MEM_REQ_EVAL().at(ctx->model.type);
|
// MEM_REQ_EVAL().at(ctx->model.type);
|
||||||
//fprintf(stderr, "%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0);
|
//LLAMA_LOG_INFO("%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0);
|
||||||
|
|
||||||
// recreate allocator with exact memory requirements
|
// recreate allocator with exact memory requirements
|
||||||
ggml_allocr_free(ctx->alloc);
|
ggml_allocr_free(ctx->alloc);
|
||||||
|
|
||||||
ctx->buf_alloc.resize(alloc_size);
|
ctx->buf_alloc.resize(alloc_size);
|
||||||
ctx->alloc = ggml_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment);
|
ctx->alloc = ggml_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment);
|
||||||
|
#ifdef GGML_USE_METAL
|
||||||
|
if (ctx->ctx_metal) {
|
||||||
|
ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
|
||||||
|
}
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
|
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
|
||||||
|
@ -3428,7 +3438,6 @@ struct llama_context * llama_new_context_with_model(
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
if (params.n_gpu_layers > 0) {
|
if (params.n_gpu_layers > 0) {
|
||||||
// this allocates all Metal resources and memory buffers
|
// this allocates all Metal resources and memory buffers
|
||||||
ctx->ctx_metal = ggml_metal_init(1);
|
|
||||||
|
|
||||||
void * data_ptr = NULL;
|
void * data_ptr = NULL;
|
||||||
size_t data_size = 0;
|
size_t data_size = 0;
|
||||||
|
@ -3443,13 +3452,13 @@ struct llama_context * llama_new_context_with_model(
|
||||||
|
|
||||||
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
||||||
|
|
||||||
fprintf(stderr, "%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
||||||
|
|
||||||
#define LLAMA_METAL_CHECK_BUF(result) \
|
#define LLAMA_METAL_CHECK_BUF(result) \
|
||||||
if (!(result)) { \
|
if (!(result)) { \
|
||||||
fprintf(stderr, "%s: failed to add buffer\n", __func__); \
|
LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
|
||||||
llama_free(ctx); \
|
llama_free(ctx); \
|
||||||
return NULL; \
|
return NULL; \
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
|
||||||
|
@ -3457,8 +3466,7 @@ struct llama_context * llama_new_context_with_model(
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
|
||||||
|
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.addr, ctx->buf_alloc.size, 0));
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
|
|
||||||
#undef LLAMA_METAL_CHECK_BUF
|
#undef LLAMA_METAL_CHECK_BUF
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -3503,19 +3511,19 @@ int llama_model_quantize(
|
||||||
llama_model_quantize_internal(fname_inp, fname_out, params);
|
llama_model_quantize_internal(fname_inp, fname_out, params);
|
||||||
return 0;
|
return 0;
|
||||||
} catch (const std::exception & err) {
|
} catch (const std::exception & err) {
|
||||||
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
|
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
|
int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
|
||||||
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
|
LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
|
||||||
|
|
||||||
const int64_t t_start_lora_us = ggml_time_us();
|
const int64_t t_start_lora_us = ggml_time_us();
|
||||||
|
|
||||||
auto fin = std::ifstream(path_lora, std::ios::binary);
|
auto fin = std::ifstream(path_lora, std::ios::binary);
|
||||||
if (!fin) {
|
if (!fin) {
|
||||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
|
LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -3524,14 +3532,14 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
uint32_t magic;
|
uint32_t magic;
|
||||||
fin.read((char *) &magic, sizeof(magic));
|
fin.read((char *) &magic, sizeof(magic));
|
||||||
if (magic != LLAMA_FILE_MAGIC_GGLA) {
|
if (magic != LLAMA_FILE_MAGIC_GGLA) {
|
||||||
fprintf(stderr, "%s: bad file magic\n", __func__);
|
LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
uint32_t format_version;
|
uint32_t format_version;
|
||||||
fin.read((char *) &format_version, sizeof(format_version));
|
fin.read((char *) &format_version, sizeof(format_version));
|
||||||
|
|
||||||
if (format_version != 1) {
|
if (format_version != 1) {
|
||||||
fprintf(stderr, "%s: unsupported file version\n", __func__ );
|
LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -3542,7 +3550,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
fin.read((char *) &lora_alpha, sizeof(lora_alpha));
|
fin.read((char *) &lora_alpha, sizeof(lora_alpha));
|
||||||
float scaling = (float)lora_alpha / (float)lora_r;
|
float scaling = (float)lora_alpha / (float)lora_r;
|
||||||
|
|
||||||
fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
|
LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
|
||||||
|
|
||||||
|
|
||||||
// create a temporary ggml context to store the lora tensors
|
// create a temporary ggml context to store the lora tensors
|
||||||
|
@ -3568,7 +3576,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
ggml_context * base_ctx = NULL;
|
ggml_context * base_ctx = NULL;
|
||||||
llama_buffer base_buf;
|
llama_buffer base_buf;
|
||||||
if (path_base_model) {
|
if (path_base_model) {
|
||||||
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
|
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
|
||||||
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
|
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
|
||||||
|
|
||||||
size_t ctx_size;
|
size_t ctx_size;
|
||||||
|
@ -3625,17 +3633,17 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
const std::string lora_suffix = ".lora";
|
const std::string lora_suffix = ".lora";
|
||||||
size_t pos = name.rfind(lora_suffix);
|
size_t pos = name.rfind(lora_suffix);
|
||||||
if (pos == std::string::npos) {
|
if (pos == std::string::npos) {
|
||||||
fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
|
LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string lora_type = name.substr(pos + lora_suffix.length());
|
std::string lora_type = name.substr(pos + lora_suffix.length());
|
||||||
std::string base_name = name;
|
std::string base_name = name;
|
||||||
base_name.erase(pos);
|
base_name.erase(pos);
|
||||||
// fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
|
// LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
|
||||||
|
|
||||||
if (model_tensors.find(base_name) == model_tensors.end()) {
|
if (model_tensors.find(base_name) == model_tensors.end()) {
|
||||||
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
|
LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -3646,7 +3654,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
case 1: wtype = GGML_TYPE_F16; break;
|
case 1: wtype = GGML_TYPE_F16; break;
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
fprintf(stderr, "%s: invalid tensor data type '%d'\n",
|
LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
|
||||||
__func__, ftype);
|
__func__, ftype);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -3656,7 +3664,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
|
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
|
LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
ggml_set_name(lora_tensor, "lora_tensor");
|
ggml_set_name(lora_tensor, "lora_tensor");
|
||||||
|
@ -3694,7 +3702,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
if (model_loader) {
|
if (model_loader) {
|
||||||
// load from base model
|
// load from base model
|
||||||
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
|
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
|
||||||
fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
|
LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
|
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
|
||||||
|
@ -3710,8 +3718,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
|
|
||||||
if (ggml_is_quantized(base_t->type)) {
|
if (ggml_is_quantized(base_t->type)) {
|
||||||
if (!warned) {
|
if (!warned) {
|
||||||
fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
|
LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
|
||||||
"use a f16 or f32 base model with --lora-base\n", __func__);
|
"use a f16 or f32 base model with --lora-base\n", __func__);
|
||||||
warned = true;
|
warned = true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -3725,8 +3733,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
ggml_set_name(loraB, "loraB");
|
ggml_set_name(loraB, "loraB");
|
||||||
|
|
||||||
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
|
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
|
||||||
fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
|
LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
|
||||||
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
|
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -3771,7 +3779,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
|
|
||||||
n_tensors++;
|
n_tensors++;
|
||||||
if (n_tensors % 4 == 0) {
|
if (n_tensors % 4 == 0) {
|
||||||
fprintf(stderr, ".");
|
LLAMA_LOG_INFO(".");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -3783,7 +3791,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||||
}
|
}
|
||||||
|
|
||||||
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
|
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
|
||||||
fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
|
LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
@ -3792,7 +3800,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
||||||
try {
|
try {
|
||||||
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
|
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
|
||||||
} catch (const std::exception & err) {
|
} catch (const std::exception & err) {
|
||||||
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -3801,7 +3809,7 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha
|
||||||
try {
|
try {
|
||||||
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
|
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
|
||||||
} catch (const std::exception & err) {
|
} catch (const std::exception & err) {
|
||||||
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -4083,7 +4091,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
|
||||||
const uint32_t version = file.read_u32();
|
const uint32_t version = file.read_u32();
|
||||||
|
|
||||||
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
|
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
|
||||||
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
|
LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4091,7 +4099,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
|
||||||
file.read_raw(&session_hparams, sizeof(llama_hparams));
|
file.read_raw(&session_hparams, sizeof(llama_hparams));
|
||||||
|
|
||||||
if (session_hparams != ctx->model.hparams) {
|
if (session_hparams != ctx->model.hparams) {
|
||||||
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
|
LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -4101,7 +4109,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
|
||||||
const uint32_t n_token_count = file.read_u32();
|
const uint32_t n_token_count = file.read_u32();
|
||||||
|
|
||||||
if (n_token_count > n_token_capacity) {
|
if (n_token_count > n_token_capacity) {
|
||||||
fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
|
LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4115,7 +4123,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
|
||||||
const size_t n_state_size_max = llama_get_state_size(ctx);
|
const size_t n_state_size_max = llama_get_state_size(ctx);
|
||||||
|
|
||||||
if (n_state_size_cur > n_state_size_max) {
|
if (n_state_size_cur > n_state_size_max) {
|
||||||
fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
|
LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4132,7 +4140,7 @@ bool llama_load_session_file(struct llama_context * ctx, const char * path_sessi
|
||||||
try {
|
try {
|
||||||
return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
|
return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
|
||||||
} catch (const std::exception & err) {
|
} catch (const std::exception & err) {
|
||||||
fprintf(stderr, "error loading session file: %s\n", err.what());
|
LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -4163,7 +4171,7 @@ int llama_eval(
|
||||||
int n_past,
|
int n_past,
|
||||||
int n_threads) {
|
int n_threads) {
|
||||||
if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
|
if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
|
||||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4185,7 +4193,7 @@ int llama_eval_embd(
|
||||||
int n_past,
|
int n_past,
|
||||||
int n_threads) {
|
int n_threads) {
|
||||||
if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
|
if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
|
||||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4206,7 +4214,7 @@ int llama_eval_export(struct llama_context * ctx, const char * fname) {
|
||||||
const std::vector<llama_token> tmp(n_batch, llama_token_bos());
|
const std::vector<llama_token> tmp(n_batch, llama_token_bos());
|
||||||
|
|
||||||
if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
|
if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
|
||||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4222,7 +4230,7 @@ int llama_tokenize_with_model(
|
||||||
auto res = llama_tokenize(model->vocab, text, add_bos);
|
auto res = llama_tokenize(model->vocab, text, add_bos);
|
||||||
|
|
||||||
if (n_max_tokens < (int) res.size()) {
|
if (n_max_tokens < (int) res.size()) {
|
||||||
fprintf(stderr, "%s: too many tokens\n", __func__);
|
LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
||||||
return -((int) res.size());
|
return -((int) res.size());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4339,15 +4347,15 @@ struct llama_timings llama_get_timings(struct llama_context * ctx) {
|
||||||
void llama_print_timings(struct llama_context * ctx) {
|
void llama_print_timings(struct llama_context * ctx) {
|
||||||
const llama_timings timings = llama_get_timings(ctx);
|
const llama_timings timings = llama_get_timings(ctx);
|
||||||
|
|
||||||
fprintf(stderr, "\n");
|
LLAMA_LOG_INFO("\n");
|
||||||
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
|
LLAMA_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
|
||||||
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
LLAMA_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||||
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
|
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
|
||||||
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||||
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
|
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
|
||||||
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
LLAMA_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||||
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
|
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
|
||||||
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
|
LLAMA_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_reset_timings(struct llama_context * ctx) {
|
void llama_reset_timings(struct llama_context * ctx) {
|
||||||
|
@ -4383,3 +4391,44 @@ const char * llama_print_system_info(void) {
|
||||||
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
||||||
return ctx->model.tensors_by_name;
|
return ctx->model.tensors_by_name;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void llama_log_set(llama_log_callback log_callback, void * user_data) {
|
||||||
|
g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
|
||||||
|
g_state.log_callback_user_data = user_data;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(_MSC_VER) && !defined(vsnprintf)
|
||||||
|
#define vsnprintf _vsnprintf
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) {
|
||||||
|
va_list args_copy;
|
||||||
|
va_copy(args_copy, args);
|
||||||
|
char buffer[128];
|
||||||
|
int len = vsnprintf(buffer, 128, format, args);
|
||||||
|
if (len < 128) {
|
||||||
|
g_state.log_callback(level, buffer, g_state.log_callback_user_data);
|
||||||
|
} else {
|
||||||
|
char* buffer2 = new char[len+1];
|
||||||
|
vsnprintf(buffer2, len+1, format, args_copy);
|
||||||
|
buffer2[len] = 0;
|
||||||
|
g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
|
||||||
|
delete[] buffer2;
|
||||||
|
}
|
||||||
|
va_end(args_copy);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void llama_log_internal(llama_log_level level, const char * format, ...) {
|
||||||
|
va_list args;
|
||||||
|
va_start(args, format);
|
||||||
|
llama_log_internal_v(level, format, args);
|
||||||
|
va_end(args);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) {
|
||||||
|
(void) level;
|
||||||
|
(void) user_data;
|
||||||
|
fputs(text, stderr);
|
||||||
|
fflush(stderr);
|
||||||
|
}
|
||||||
|
|
19
llama.h
19
llama.h
|
@ -86,7 +86,20 @@ extern "C" {
|
||||||
|
|
||||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||||
|
|
||||||
struct llama_context_params {
|
enum llama_log_level {
|
||||||
|
LLAMA_LOG_LEVEL_ERROR = 2,
|
||||||
|
LLAMA_LOG_LEVEL_WARN = 3,
|
||||||
|
LLAMA_LOG_LEVEL_INFO = 4
|
||||||
|
};
|
||||||
|
|
||||||
|
// Signature for logging events
|
||||||
|
// Note that text includes the new line character at the end for most events.
|
||||||
|
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
|
||||||
|
// if it exists.
|
||||||
|
// It might not exist for progress report where '.' is output repeatedly.
|
||||||
|
typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
|
||||||
|
|
||||||
|
struct llama_context_params {
|
||||||
uint32_t seed; // RNG seed, -1 for random
|
uint32_t seed; // RNG seed, -1 for random
|
||||||
int32_t n_ctx; // text context
|
int32_t n_ctx; // text context
|
||||||
int32_t n_batch; // prompt processing batch size
|
int32_t n_batch; // prompt processing batch size
|
||||||
|
@ -195,6 +208,10 @@ extern "C" {
|
||||||
int32_t n_eval;
|
int32_t n_eval;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// Set callback for all future logging events.
|
||||||
|
// If this is not called, or NULL is supplied, everything is output on stderr.
|
||||||
|
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
||||||
|
|
||||||
LLAMA_API int llama_max_devices();
|
LLAMA_API int llama_max_devices();
|
||||||
|
|
||||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||||
|
|
3
scripts/get-wikitext-2.sh
Normal file
3
scripts/get-wikitext-2.sh
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
|
|
@ -11,5 +11,7 @@ llama_add_test(test-quantize-fns.cpp)
|
||||||
llama_add_test(test-quantize-perf.cpp)
|
llama_add_test(test-quantize-perf.cpp)
|
||||||
llama_add_test(test-sampling.cpp)
|
llama_add_test(test-sampling.cpp)
|
||||||
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
|
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
|
||||||
|
llama_add_test(test-grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp)
|
||||||
|
llama_add_test(test-llama-grammar.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/common.cpp)
|
||||||
llama_add_test(test-grad0.cpp) # SLOW
|
llama_add_test(test-grad0.cpp) # SLOW
|
||||||
# llama_add_test(test-opt.cpp) # SLOW
|
# llama_add_test(test-opt.cpp) # SLOW
|
||||||
|
|
249
tests/test-grammar-parser.cpp
Normal file
249
tests/test-grammar-parser.cpp
Normal file
|
@ -0,0 +1,249 @@
|
||||||
|
#ifdef NDEBUG
|
||||||
|
#undef NDEBUG
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include "llama.h"
|
||||||
|
#include "examples/grammar-parser.cpp"
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
const char *grammar_bytes = R"""(root ::= (expr "=" term "\n")+
|
||||||
|
expr ::= term ([-+*/] term)*
|
||||||
|
term ::= [0-9]+)""";
|
||||||
|
|
||||||
|
parsed_grammar = grammar_parser::parse(grammar_bytes);
|
||||||
|
|
||||||
|
std::vector<std::pair<std::string, uint32_t>> expected = {
|
||||||
|
{"expr", 2},
|
||||||
|
{"expr_5", 5},
|
||||||
|
{"expr_6", 6},
|
||||||
|
{"root", 0},
|
||||||
|
{"root_1", 1},
|
||||||
|
{"root_4", 4},
|
||||||
|
{"term", 3},
|
||||||
|
{"term_7", 7},
|
||||||
|
};
|
||||||
|
|
||||||
|
uint32_t index = 0;
|
||||||
|
for (auto it = parsed_grammar.symbol_ids.begin(); it != parsed_grammar.symbol_ids.end(); ++it)
|
||||||
|
{
|
||||||
|
std::string key = it->first;
|
||||||
|
uint32_t value = it->second;
|
||||||
|
std::pair<std::string, uint32_t> expected_pair = expected[index];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_pair.first != key || expected_pair.second != value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "expected_pair: %s, %d\n", expected_pair.first.c_str(), expected_pair.second);
|
||||||
|
fprintf(stderr, "actual_pair: %s, %d\n", key.c_str(), value);
|
||||||
|
fprintf(stderr, "expected_pair != actual_pair\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_pair.first == key && expected_pair.second == value);
|
||||||
|
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
std::vector<llama_grammar_element> expected_rules = {
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 2},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 10},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 6},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 1},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 1},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 45},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 43},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 42},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 47},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 6},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
};
|
||||||
|
|
||||||
|
index = 0;
|
||||||
|
for (auto rule : parsed_grammar.rules)
|
||||||
|
{
|
||||||
|
// compare rule to expected rule
|
||||||
|
for (uint32_t i = 0; i < rule.size(); i++)
|
||||||
|
{
|
||||||
|
llama_grammar_element element = rule[i];
|
||||||
|
llama_grammar_element expected_element = expected_rules[index];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_element.type != element.type || expected_element.value != element.value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "index: %d\n", index);
|
||||||
|
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
|
||||||
|
fprintf(stderr, "actual_element: %d, %d\n", element.type, element.value);
|
||||||
|
fprintf(stderr, "expected_element != actual_element\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_element.type == element.type && expected_element.value == element.value);
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const char *longer_grammar_bytes = R"""(
|
||||||
|
root ::= (expr "=" ws term "\n")+
|
||||||
|
expr ::= term ([-+*/] term)*
|
||||||
|
term ::= ident | num | "(" ws expr ")" ws
|
||||||
|
ident ::= [a-z] [a-z0-9_]* ws
|
||||||
|
num ::= [0-9]+ ws
|
||||||
|
ws ::= [ \t\n]*
|
||||||
|
)""";
|
||||||
|
|
||||||
|
parsed_grammar = grammar_parser::parse(longer_grammar_bytes);
|
||||||
|
|
||||||
|
expected = {
|
||||||
|
{"expr", 2},
|
||||||
|
{"expr_6", 6},
|
||||||
|
{"expr_7", 7},
|
||||||
|
{"ident", 8},
|
||||||
|
{"ident_10", 10},
|
||||||
|
{"num", 9},
|
||||||
|
{"num_11", 11},
|
||||||
|
{"root", 0},
|
||||||
|
{"root_1", 1},
|
||||||
|
{"root_5", 5},
|
||||||
|
{"term", 4},
|
||||||
|
{"ws", 3},
|
||||||
|
{"ws_12", 12},
|
||||||
|
};
|
||||||
|
|
||||||
|
index = 0;
|
||||||
|
for (auto it = parsed_grammar.symbol_ids.begin(); it != parsed_grammar.symbol_ids.end(); ++it)
|
||||||
|
{
|
||||||
|
std::string key = it->first;
|
||||||
|
uint32_t value = it->second;
|
||||||
|
std::pair<std::string, uint32_t> expected_pair = expected[index];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_pair.first != key || expected_pair.second != value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "expected_pair: %s, %d\n", expected_pair.first.c_str(), expected_pair.second);
|
||||||
|
fprintf(stderr, "actual_pair: %s, %d\n", key.c_str(), value);
|
||||||
|
fprintf(stderr, "expected_pair != actual_pair\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_pair.first == key && expected_pair.second == value);
|
||||||
|
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
expected_rules = {
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 2},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 10},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 12},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 8},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 9},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 40},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 2},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 41},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 1},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 1},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 45},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 43},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 42},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 47},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 6},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 97},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 10},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 11},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 97},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 95},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 10},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 11},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 32},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 9},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 10},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 12},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
};
|
||||||
|
|
||||||
|
index = 0;
|
||||||
|
for (auto rule : parsed_grammar.rules)
|
||||||
|
{
|
||||||
|
// compare rule to expected rule
|
||||||
|
for (uint32_t i = 0; i < rule.size(); i++)
|
||||||
|
{
|
||||||
|
llama_grammar_element element = rule[i];
|
||||||
|
llama_grammar_element expected_element = expected_rules[index];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_element.type != element.type || expected_element.value != element.value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "index: %d\n", index);
|
||||||
|
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
|
||||||
|
fprintf(stderr, "actual_element: %d, %d\n", element.type, element.value);
|
||||||
|
fprintf(stderr, "expected_element != actual_element\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_element.type == element.type && expected_element.value == element.value);
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
403
tests/test-llama-grammar.cpp
Normal file
403
tests/test-llama-grammar.cpp
Normal file
|
@ -0,0 +1,403 @@
|
||||||
|
#ifdef NDEBUG
|
||||||
|
#undef NDEBUG
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include "llama.cpp"
|
||||||
|
#include "examples/common.cpp"
|
||||||
|
#include "examples/grammar-parser.cpp"
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
std::vector<std::pair<std::string, uint32_t>> expected = {
|
||||||
|
{"expr", 2},
|
||||||
|
{"expr_6", 6},
|
||||||
|
{"expr_7", 7},
|
||||||
|
{"ident", 8},
|
||||||
|
{"ident_10", 10},
|
||||||
|
{"num", 9},
|
||||||
|
{"num_11", 11},
|
||||||
|
{"root", 0},
|
||||||
|
{"root_1", 1},
|
||||||
|
{"root_5", 5},
|
||||||
|
{"term", 4},
|
||||||
|
{"ws", 3},
|
||||||
|
{"ws_12", 12},
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<std::vector<llama_grammar_element>> expected_rules = {
|
||||||
|
{{LLAMA_GRETYPE_RULE_REF, 5}, {LLAMA_GRETYPE_END, 0}},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 2},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 10},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
},
|
||||||
|
{{LLAMA_GRETYPE_RULE_REF, 4}, {LLAMA_GRETYPE_RULE_REF, 7}, {LLAMA_GRETYPE_END, 0}},
|
||||||
|
{{LLAMA_GRETYPE_RULE_REF, 12}, {LLAMA_GRETYPE_END, 0}},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 8},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 9},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 40},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 2},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 41},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
},
|
||||||
|
{{LLAMA_GRETYPE_RULE_REF, 1}, {LLAMA_GRETYPE_RULE_REF, 5}, {LLAMA_GRETYPE_ALT, 0}, {LLAMA_GRETYPE_RULE_REF, 1}, {LLAMA_GRETYPE_END, 0}},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 45},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 43},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 42},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 47},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 4},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
},
|
||||||
|
{{LLAMA_GRETYPE_RULE_REF, 6}, {LLAMA_GRETYPE_RULE_REF, 7}, {LLAMA_GRETYPE_ALT, 0}, {LLAMA_GRETYPE_END, 0}},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 97},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 10},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
},
|
||||||
|
{{LLAMA_GRETYPE_RULE_REF, 11}, {LLAMA_GRETYPE_RULE_REF, 3}, {LLAMA_GRETYPE_END, 0}},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 97},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 95},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 10},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 11},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 32},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 9},
|
||||||
|
{LLAMA_GRETYPE_CHAR_ALT, 10},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 12},
|
||||||
|
{LLAMA_GRETYPE_ALT, 0},
|
||||||
|
{LLAMA_GRETYPE_END, 0},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
for (auto pair : expected)
|
||||||
|
{
|
||||||
|
parsed_grammar.symbol_ids[pair.first] = pair.second;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (auto rule : expected_rules)
|
||||||
|
{
|
||||||
|
parsed_grammar.rules.push_back({});
|
||||||
|
for (auto element : rule)
|
||||||
|
{
|
||||||
|
parsed_grammar.rules.back().push_back(element);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_grammar *grammar = NULL;
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||||
|
|
||||||
|
std::vector<std::vector<llama_grammar_element>> expected_stacks = {
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 97},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 5},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 40},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 97},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 3},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 48},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{LLAMA_GRETYPE_CHAR, 61},
|
||||||
|
{LLAMA_GRETYPE_RULE_REF, 7},
|
||||||
|
{LLAMA_GRETYPE_CHAR, 40},
|
||||||
|
}};
|
||||||
|
|
||||||
|
auto index = 0;
|
||||||
|
for (auto stack : grammar->stacks)
|
||||||
|
{
|
||||||
|
// compare stack to expected_stack
|
||||||
|
for (uint32_t i = 0; i < stack.size(); i++)
|
||||||
|
{
|
||||||
|
auto element = stack[i];
|
||||||
|
auto expected_element = expected_stacks[index][i];
|
||||||
|
|
||||||
|
// pretty print error message before asserting
|
||||||
|
if (expected_element.type != element->type || expected_element.value != element->value)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "index: %d\n", index);
|
||||||
|
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
|
||||||
|
fprintf(stderr, "actual_element: %d, %d\n", element->type, element->value);
|
||||||
|
fprintf(stderr, "expected_element != actual_element\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
assert(expected_element.type == element->type && expected_element.value == element->value);
|
||||||
|
}
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<const llama_grammar_element *>> next_stacks;
|
||||||
|
std::vector<llama_grammar_candidate> next_candidates;
|
||||||
|
next_candidates.resize(24);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < 24; ++i)
|
||||||
|
{
|
||||||
|
uint32_t *cp = new uint32_t[2]; // dynamically allocate memory for code_point
|
||||||
|
cp[0] = 37 + i;
|
||||||
|
cp[1] = 0;
|
||||||
|
next_candidates[i] = {i, cp};
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::pair<uint32_t, uint16_t>>> expected_reject = {
|
||||||
|
{
|
||||||
|
{0, 37},
|
||||||
|
{1, 38},
|
||||||
|
{2, 39},
|
||||||
|
{3, 40},
|
||||||
|
{4, 41},
|
||||||
|
{5, 42},
|
||||||
|
{6, 43},
|
||||||
|
{7, 44},
|
||||||
|
{8, 45},
|
||||||
|
{9, 46},
|
||||||
|
{10, 47},
|
||||||
|
{11, 48},
|
||||||
|
{12, 49},
|
||||||
|
{13, 50},
|
||||||
|
{14, 51},
|
||||||
|
{15, 52},
|
||||||
|
{16, 53},
|
||||||
|
{17, 54},
|
||||||
|
{18, 55},
|
||||||
|
{19, 56},
|
||||||
|
{20, 57},
|
||||||
|
{21, 58},
|
||||||
|
{22, 59},
|
||||||
|
{23, 60},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{0, 37},
|
||||||
|
{1, 38},
|
||||||
|
{2, 39},
|
||||||
|
{3, 40},
|
||||||
|
{4, 41},
|
||||||
|
{5, 42},
|
||||||
|
{6, 43},
|
||||||
|
{7, 44},
|
||||||
|
{8, 45},
|
||||||
|
{9, 46},
|
||||||
|
{10, 47},
|
||||||
|
{21, 58},
|
||||||
|
{22, 59},
|
||||||
|
{23, 60},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{0, 37},
|
||||||
|
{1, 38},
|
||||||
|
{2, 39},
|
||||||
|
{3, 40},
|
||||||
|
{4, 41},
|
||||||
|
{5, 42},
|
||||||
|
{6, 43},
|
||||||
|
{7, 44},
|
||||||
|
{8, 45},
|
||||||
|
{9, 46},
|
||||||
|
{10, 47},
|
||||||
|
{21, 58},
|
||||||
|
{22, 59},
|
||||||
|
{23, 60},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{0, 37},
|
||||||
|
{1, 38},
|
||||||
|
{2, 39},
|
||||||
|
{4, 41},
|
||||||
|
{5, 42},
|
||||||
|
{6, 43},
|
||||||
|
{7, 44},
|
||||||
|
{8, 45},
|
||||||
|
{9, 46},
|
||||||
|
{10, 47},
|
||||||
|
{11, 48},
|
||||||
|
{12, 49},
|
||||||
|
{13, 50},
|
||||||
|
{14, 51},
|
||||||
|
{15, 52},
|
||||||
|
{16, 53},
|
||||||
|
{17, 54},
|
||||||
|
{18, 55},
|
||||||
|
{19, 56},
|
||||||
|
{20, 57},
|
||||||
|
{21, 58},
|
||||||
|
{22, 59},
|
||||||
|
{23, 60},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{0, 37},
|
||||||
|
{1, 38},
|
||||||
|
{2, 39},
|
||||||
|
{3, 40},
|
||||||
|
{4, 41},
|
||||||
|
{5, 42},
|
||||||
|
{6, 43},
|
||||||
|
{7, 44},
|
||||||
|
{8, 45},
|
||||||
|
{9, 46},
|
||||||
|
{10, 47},
|
||||||
|
{11, 48},
|
||||||
|
{12, 49},
|
||||||
|
{13, 50},
|
||||||
|
{14, 51},
|
||||||
|
{15, 52},
|
||||||
|
{16, 53},
|
||||||
|
{17, 54},
|
||||||
|
{18, 55},
|
||||||
|
{19, 56},
|
||||||
|
{20, 57},
|
||||||
|
{21, 58},
|
||||||
|
{22, 59},
|
||||||
|
{23, 60},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{0, 37},
|
||||||
|
{1, 38},
|
||||||
|
{2, 39},
|
||||||
|
{3, 40},
|
||||||
|
{4, 41},
|
||||||
|
{5, 42},
|
||||||
|
{6, 43},
|
||||||
|
{7, 44},
|
||||||
|
{8, 45},
|
||||||
|
{9, 46},
|
||||||
|
{10, 47},
|
||||||
|
{21, 58},
|
||||||
|
{22, 59},
|
||||||
|
{23, 60},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{0, 37},
|
||||||
|
{1, 38},
|
||||||
|
{2, 39},
|
||||||
|
{3, 40},
|
||||||
|
{4, 41},
|
||||||
|
{5, 42},
|
||||||
|
{6, 43},
|
||||||
|
{7, 44},
|
||||||
|
{8, 45},
|
||||||
|
{9, 46},
|
||||||
|
{10, 47},
|
||||||
|
{21, 58},
|
||||||
|
{22, 59},
|
||||||
|
{23, 60},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
{0, 37},
|
||||||
|
{1, 38},
|
||||||
|
{2, 39},
|
||||||
|
{4, 41},
|
||||||
|
{5, 42},
|
||||||
|
{6, 43},
|
||||||
|
{7, 44},
|
||||||
|
{8, 45},
|
||||||
|
{9, 46},
|
||||||
|
{10, 47},
|
||||||
|
{11, 48},
|
||||||
|
{12, 49},
|
||||||
|
{13, 50},
|
||||||
|
{14, 51},
|
||||||
|
{15, 52},
|
||||||
|
{16, 53},
|
||||||
|
{17, 54},
|
||||||
|
{18, 55},
|
||||||
|
{19, 56},
|
||||||
|
{20, 57},
|
||||||
|
{21, 58},
|
||||||
|
{22, 59},
|
||||||
|
{23, 60},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<llama_grammar_candidate> rejects = llama_grammar_reject_candidates_for_stack(grammar->rules, grammar->stacks[0], next_candidates);
|
||||||
|
|
||||||
|
std::vector<std::vector<llama_grammar_candidate>> all_rejects;
|
||||||
|
|
||||||
|
for (std::size_t count = 0; count < grammar->stacks.size(); ++count)
|
||||||
|
{
|
||||||
|
rejects = llama_grammar_reject_candidates_for_stack(grammar->rules, grammar->stacks[count], next_candidates);
|
||||||
|
all_rejects.push_back(rejects);
|
||||||
|
}
|
||||||
|
|
||||||
|
index = 0;
|
||||||
|
for (auto rej : all_rejects)
|
||||||
|
{
|
||||||
|
for (uint32_t i = 0; i < rej.size(); i++)
|
||||||
|
{
|
||||||
|
auto element = rej[i];
|
||||||
|
auto expected_element = expected_reject[index][i];
|
||||||
|
assert(element.index == expected_element.first && *element.code_points == expected_element.second);
|
||||||
|
}
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (auto &candidate : next_candidates)
|
||||||
|
{
|
||||||
|
delete[] candidate.code_points;
|
||||||
|
candidate.code_points = nullptr;
|
||||||
|
}
|
||||||
|
delete grammar;
|
||||||
|
return 0;
|
||||||
|
}
|
Loading…
Add table
Add a link
Reference in a new issue