convert-new.py : output gguf (#2635)

* convert-new.py : output gguf (WIP)

* convert-new.py : add gguf key-value pairs

* llama : add hparams.ctx_train + no longer print ftype

* convert-new.py : minor fixes

* convert-new.py : vocab-only option should work now

* llama : fix tokenizer to use llama_char_to_byte

* tests : add new ggml-vocab-llama.gguf

* convert-new.py : tensor name mapping

* convert-new.py : add map for skipping tensor serialization

* convert-new.py : convert script now works

* gguf.py : pick some of the refactoring from #2644

* convert-new.py : minor fixes
This commit is contained in:
Georgi Gerganov 2023-08-17 17:19:52 +03:00 committed by GitHub
parent d6fd53afd6
commit e0429d38e4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 526 additions and 327 deletions

301
gguf.py
View file

@ -8,7 +8,7 @@ import sys
import struct
import numpy as np
from enum import IntEnum
from enum import IntEnum, auto
from typing import Any, IO, List
#
@ -33,24 +33,24 @@ KEY_GENERAL_SOURCE_URL = "general.source.url"
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
# LLM
KEY_LLM_CONTEXT_LENGTH = "{llm}.context_length"
KEY_LLM_EMBEDDING_LENGTH = "{llm}.embedding_length"
KEY_LLM_BLOCK_COUNT = "{llm}.block_count"
KEY_LLM_FEED_FORWARD_LENGTH = "{llm}.feed_forward_length"
KEY_LLM_USE_PARALLEL_RESIDUAL = "{llm}.use_parallel_residual"
KEY_LLM_TENSOR_DATA_LAYOUT = "{llm}.tensor_data_layout"
KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length"
KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length"
KEY_LLM_BLOCK_COUNT = "{arch}.block_count"
KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
# attention
KEY_ATTENTION_HEAD_COUNT = "{llm}.attention.head_count"
KEY_ATTENTION_HEAD_COUNT_KV = "{llm}.attention.head_count_kv"
KEY_ATTENTION_MAX_ALIBI_BIAS = "{llm}.attention.max_alibi_bias"
KEY_ATTENTION_CLAMP_KQV = "{llm}.attention.clamp_kqv"
KEY_ATTENTION_LAYERNORM_EPS = "{llm}.attention.layer_norm_epsilon"
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{llm}.attention.layer_norm_rms_epsilon"
KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
# RoPE
KEY_ROPE_DIMENSION_COUNT = "{llm}.rope.dimension_count"
KEY_ROPE_SCALE = "{llm}.rope.scale"
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
KEY_ROPE_SCALE = "{arch}.rope.scale"
# tokenization
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
@ -70,34 +70,137 @@ KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
# recommended mapping of model tensor names for storage in gguf
#
def get_tensor_name_map(n_blocks : int):
class MODEL_ARCH(IntEnum):
LLAMA = auto()
FALCON = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto()
POS_EMBD = auto()
OUTPUT = auto()
OUTPUT_NORM = auto()
ROPE_FREQS = auto()
ATTN_Q = auto()
ATTN_K = auto()
ATTN_V = auto()
ATTN_QKV = auto()
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE = auto()
FFN_DOWN = auto()
FFN_UP = auto()
FFN_NORM = auto()
MODEL_ARCH_NAMES = {
MODEL_ARCH.LLAMA : "llama",
MODEL_ARCH.FALCON : "falcon",
MODEL_ARCH.GPT2 : "gpt2",
MODEL_ARCH.GPTJ : "gptj",
MODEL_ARCH.GPTNEOX : "gptneox",
MODEL_ARCH.MPT : "mpt",
}
MODEL_TENSOR_NAMES = {
MODEL_ARCH.LLAMA : {
MODEL_TENSOR.TOKEN_EMBD : "token_embd",
MODEL_TENSOR.OUTPUT_NORM : "output_norm",
MODEL_TENSOR.OUTPUT : "output",
MODEL_TENSOR.ROPE_FREQS : "rope_freqs",
MODEL_TENSOR.ATTN_NORM : "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q : "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K : "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V : "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT : "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD : "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM : "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE : "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN : "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP : "blk.{bid}.ffn_up",
},
MODEL_ARCH.FALCON : {
MODEL_TENSOR.TOKEN_EMBD : "token_embd",
MODEL_TENSOR.OUTPUT_NORM : "output_norm",
MODEL_TENSOR.OUTPUT : "output",
MODEL_TENSOR.ATTN_NORM : "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2 : "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV : "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT : "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_DOWN : "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP : "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPT2 : {
# TODO
},
# TODO
}
# tensors that will not be serialized
MODEL_TENSOR_SKIP = {
MODEL_ARCH.LLAMA : [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
}
def should_skip_tensor(arch : MODEL_ARCH, n_blocks : int, name : str) -> bool:
for skip in MODEL_TENSOR_SKIP.get(arch, []):
for i in range(n_blocks):
if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
return True
return False
def get_tensor_name_map(arch : MODEL_ARCH, n_blocks : int) -> dict:
tensor_map = {}
# Token embeddings
mapped_to = "token_embd"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
tensor_map["transformer.word_embeddings"] = mapped_to # falcon
tensor_map["model.embed_tokens"] = mapped_to # llama-hf
tensor_map["tok_embeddings"] = mapped_to # llama-pth
# Position embeddings
mapped_to = "pos_embd"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
tensor_map["transformer.wpe"] = mapped_to # gpt2
# Output
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
tensor_map["embed_out"] = mapped_to # gptneox
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth
# Output norm
mapped_to = "output_norm"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
tensor_map["transformer.norm_f"] = mapped_to # mpt
tensor_map["model.norm"] = mapped_to # llama-hf
tensor_map["norm"] = mapped_to # llama-pth
# Output
mapped_to = "output"
tensor_map["embed_out"] = mapped_to # gptneox
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth
# Attention and fee-forward layer blocks
# Rope frequencies
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
tensor_map["rope.freqs"] = mapped_to # llama-pth
# Attention and feed-forward blocks
for i in range(0,n_blocks):
# Attention norm
mapped_to = "blk."+str(i)+".attn_norm"
# TODO: is there are simpler way to write these 2 lines in Python?
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to else None
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
@ -105,56 +208,93 @@ def get_tensor_name_map(n_blocks : int):
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
# Attention norm 2
mapped_to = "blk."+str(i)+".attn_norm_2"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
# Attention query-key-value
mapped_to = "blk."+str(i)+".attn_qkv"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
# Attention query
mapped_to = "blk."+str(i)+".attn_q"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
# Attention key
mapped_to = "blk."+str(i)+".attn_k"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
# Attention value
mapped_to = "blk."+str(i)+".attn_v"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
# Attention output
mapped_to = "blk."+str(i)+".attn_output"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
# Rotary embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
# Feed-forward norm
mapped_to = "blk."+str(i)+".ffn_norm"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
# Feed-forward up
mapped_to = "blk."+str(i)+".ffn_up"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
# Feed-forward gate
mapped_to = "blk."+str(i)+".ffn_gate"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
# Feed-forward down
mapped_to = "blk."+str(i)+".ffn_down"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
@ -203,14 +343,16 @@ class GGUFValueType(IntEnum):
class GGUFWriter:
def __init__(self, fout: IO):
self.fout = fout
def __init__(self, path: str, arch: str):
self.fout = open(path, "wb")
self.arch = arch
self.offset_tensor = 0
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
self.kv_data = b""
self.kv_data_count = 0
self.ti_data = b""
self.ti_data_count = 0
self.add_architecture()
def write_header_to_file(self):
self.fout.write(struct.pack("<I", GGUF_MAGIC))
@ -228,11 +370,6 @@ class GGUFWriter:
self.fout.write(self.ti_data)
self.flush()
@classmethod
def open(cls, path: str) -> "GGUFWriter":
f = open(path, "wb")
return cls(f)
def add_key(self, key: str):
self.add_val(key, GGUFValueType.STRING, add_vtype=False)
@ -269,7 +406,8 @@ class GGUFWriter:
self.add_val(val, GGUFValueType.BOOL)
def add_string(self, key: str, val: str):
if len(val) == 0: return
if len(val) == 0:
return
self.add_key(key)
self.add_val(val, GGUFValueType.STRING)
@ -323,6 +461,8 @@ class GGUFWriter:
return ((x + n - 1) // n) * n
def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int):
assert tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
encoded_name = name.encode("utf8")
self.ti_data += struct.pack("<I", len(encoded_name))
self.ti_data += encoded_name
@ -331,14 +471,13 @@ class GGUFWriter:
for i in range(n_dims):
self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i])
assert tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
self.ti_data += struct.pack("<I", dtype)
self.ti_data += struct.pack("<Q", self.offset_tensor)
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
self.ti_data_count += 1
def write_tensor_to_file(self, tensor: np.ndarray):
def write_tensor_data(self, tensor: np.ndarray):
pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
if pad != 0:
self.fout.write(bytes([0] * pad))
@ -355,15 +494,14 @@ class GGUFWriter:
def close(self):
self.fout.close()
def add_architecture(self, architecture: str):
self.add_string(KEY_GENERAL_ARCHITECTURE,
architecture)
def add_architecture(self):
self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
def add_author(self, author: str):
self.add_string(KEY_GENERAL_AUTHOR, author)
def add_tensor_data_layout(self, layout: str):
self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT , layout)
self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_url(self, url: str):
self.add_string(KEY_GENERAL_URL, url)
@ -391,60 +529,60 @@ class GGUFWriter:
self.data_alignment = alignment
self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
def add_context_length(self, llm: str, length: int):
def add_context_length(self, length: int):
self.add_uint32(
KEY_LLM_CONTEXT_LENGTH.format(llm=llm), length)
KEY_LLM_CONTEXT_LENGTH.format(arch=self.arch), length)
def add_embedding_length(self, llm: str, length: int):
def add_embedding_length(self, length: int):
self.add_uint32(
KEY_LLM_EMBEDDING_LENGTH.format(llm=llm), length)
KEY_LLM_EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_block_count(self, llm: str, length: int):
def add_block_count(self, length: int):
self.add_uint32(
KEY_LLM_BLOCK_COUNT.format(llm=llm), length)
KEY_LLM_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, llm: str, length: int):
def add_feed_forward_length(self, length: int):
self.add_uint32(
KEY_LLM_FEED_FORWARD_LENGTH.format(llm=llm), length)
KEY_LLM_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, llm: str, use: bool):
def add_parallel_residual(self, use: bool):
self.add_bool(
KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=llm), use)
KEY_LLM_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
def add_tensor_data_layout(self, llm: str, layout: str):
def add_tensor_data_layout(self, layout: str):
self.add_string(
KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=llm), layout)
KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_head_count(self, llm: str, count: int):
def add_head_count(self, count: int):
self.add_uint32(
KEY_ATTENTION_HEAD_COUNT.format(llm=llm), count)
KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
def add_head_count_kv(self, llm: str, count: int):
def add_head_count_kv(self, count: int):
self.add_uint32(
KEY_ATTENTION_HEAD_COUNT_KV.format(llm=llm), count)
KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
def add_max_alibi_bias(self, llm: str, bias: float):
def add_max_alibi_bias(self, bias: float):
self.add_float32(
KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=llm), bias)
KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
def add_clamp_kqv(self, llm: str, value: float):
def add_clamp_kqv(self, value: float):
self.add_float32(
KEY_ATTENTION_CLAMP_KQV.format(llm=llm), value)
KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
def add_layer_norm_eps(self, llm: str, value: float):
def add_layer_norm_eps(self, value: float):
self.add_float32(
KEY_ATTENTION_LAYERNORM_EPS.format(llm=llm), value)
KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
def add_layer_norm_rms_eps(self, llm: str, value: float):
def add_layer_norm_rms_eps(self, value: float):
self.add_float32(
KEY_ATTENTION_LAYERNORM_RMS_EPS.format(llm=llm), value)
KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
def add_rope_dimension_count(self, llm: str, count: int):
def add_rope_dimension_count(self, count: int):
self.add_uint32(
KEY_ROPE_DIMENSION_COUNT.format(llm=llm), count)
KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
def add_rope_scale(self, llm: str, value: float):
self.add_float32(KEY_ROPE_SCALE.format(llm=llm), value)
def add_rope_scale(self, value: float):
self.add_float32(KEY_ROPE_SCALE.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str):
self.add_string(KEY_TOKENIZER_MODEL, model)
@ -479,9 +617,8 @@ class GGUFWriter:
# Example usage:
if __name__ == "__main__":
# Example usage with a file
gguf_writer = GGUFWriter.open("example.gguf")
gguf_writer = GGUFWriter("example.gguf", "llama")
gguf_writer.add_architecture("llama")
gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
gguf_writer.add_custom_alignment(64)
@ -493,7 +630,7 @@ if __name__ == "__main__":
gguf_writer.write_header_to_file()
gguf_writer.write_kv_data_to_file()
gguf_writer.write_ti_data_to_file()
gguf_writer.write_tensor_to_file(tensor1)
gguf_writer.write_tensor_to_file(tensor2)
gguf_writer.write_tensor_data(tensor1)
gguf_writer.write_tensor_data(tensor2)
gguf_writer.close()