diff --git a/ggml-phi-knc-dot_q5_K_q8_K.c b/ggml-phi-knc-dot_q5_K_q8_K.c index 6a8559a08..d20960c5e 100644 --- a/ggml-phi-knc-dot_q5_K_q8_K.c +++ b/ggml-phi-knc-dot_q5_K_q8_K.c @@ -31,7 +31,7 @@ void GGML_F32x16_VEC_ZERO(float32x16_t *target) "vbroadcastss\t%[Z]%{uint8%},\t%%zmm0\n\t" // use an upscaling operator to clear our register. "vmovaps\t\t%%zmm0,\t%[RES]\n\t" : [RES] "+m" (*target) - : [Z] "m" (zero) + : [Z] "m" (zero) : "zmm0", "memory"); } @@ -104,23 +104,23 @@ void GGML_8X_2xI8x16_2xI8x16_MUL_2xI16x16_S_FMA_I32x16_Unaligned (const int8x16_ "jl\t20f\n\t" "cmp\t$48,%%r10\n\t" "jl\t21f\n\t" - "add\t$64,%%r12\n\t" // Greater than 48. + "add\t$64,%%r12\n\t" // Greater than 47. "jmp\t18f\n\t" "21:\n\t" - "add\t$64,%%r13\n\t" // Between 49 and 32. + "add\t$64,%%r13\n\t" // Between 48 and 31. "jmp\t18f\n\t" "20:\n\t" // Less than 32... "cmp\t$16,%%r10\n\t" "jz\t18f\n\t" // Zero. "jl\t23f\n\t" - "add\t$64,%%r14\n\t" // Between 32 and 16. + "add\t$64,%%r14\n\t" // Between 32 and 15. "jmp\t18f\n\t" "23:\n\t" "add\t$64,%%r15\n\t" // Between 16 and zero. "18:\n\t" "vbroadcastss\t%[SCALEY],\t%%zmm3\n\t" // Load the scale factors coresponding to the two input vectors. "vbroadcastss\t%[SCALEX]%{float16%},\t%%zmm4\n\t" - "vmulps\t%%zmm3,\t%%zmm4,\t%%zmm5\n\t" // Brepare the factor we're going to multiply the result by.. + "vmulps\t%%zmm3,\t%%zmm4,\t%%zmm5\n\t" // Prepare the factor we're going to multiply the result by.. "vmovaps\t\t(%[RES]),\t%%zmm6\n\t" // Load our inital state from sum.. "vpbroadcastd\t%[Z]%{uint8%},\t%%zmm7\n\t" // Empty our result. "1:\n\t" @@ -196,8 +196,8 @@ void GGML_5bit_Unpack_Unaligned (const uint8x16_t * q4, const uint8_t * q1, uint "vpbroadcastd\t%[MASK]%{uint8%},\t%%zmm0\n\t" // Load our mask. "vpbroadcastd\t%[BIT5]%{uint8},\t%%zmm1\n\t" // Load the bit we want to add (conditionally). "vpbroadcastd\t%[M]%{uint8%},\t%%zmm2\n\t" // Select which bit we want to test for. Start with bit 1. - "vmovdqa32\t(%[SRC1])%{uint8%},\t%%zmm3\n\t" // Load 16 sets of 8 bit packed single bits. - "vmovdqa32\t16(%[SRC1])%{uint8%},\t%%zmm4\n\t" // Load the next 16 sets of 8 bit packed single bits. + "vmovdqa32\t(%[SRC1])%{uint8%},\t%%zmm3\n\t" // Load 16 sets of 8 packed single bits. + "vmovdqa32\t16(%[SRC1])%{uint8%},\t%%zmm4\n\t" // Load the next 16 sets of 8 packed single bits. "1:\n\t" "inc\t%%ecx\n\t" // We are in the loop. increment the counter. @@ -207,21 +207,21 @@ void GGML_5bit_Unpack_Unaligned (const uint8x16_t * q4, const uint8_t * q1, uint "vloadunpackld\t\t(%%r9)%{uint8%},\t%%zmm5\n\t" // Load our odd 4 bit sequences. note that it loads two 4 bit sequences into each zmm value. "vloadunpackhd\t\t16(%%r9)%{uint8%},\t%%zmm5\n\t" // Load our odd 4 bit sequences. note that it loads two 4 bit sequences into each zmm value. - "vpandd\t%%zmm0,\t%%zmm5,\t%%zmm6\n\t" // Apply a mask, storing the low four bits of vector zmm5 into zmm6. + "vpandd\t%%zmm0,\t%%zmm5,\t%%zmm6\n\t" // Apply a mask, storing the first set of four bits into a vector. "vpord\t%%zmm1,%%zmm6,%%zmm6%{%%k1%}\n\t" // Turn on bit 5 for all values that passed the prior test. "vmovdqa32\t\t%%zmm6%{uint8%},\t(%%r8)\n\t" // Save our result. "vloadunpackld\t\t16(%%r9)%{uint8%},\t%%zmm7\n\t" // Load our odd 4 bit sequences. note that it loads two 4 bit sequences into each zmm value. "vloadunpackhd\t\t32(%%r9)%{uint8%},\t%%zmm7\n\t" // Load our odd 4 bit sequences. note that it loads two 4 bit sequences into each zmm value. "vprefetch1\t32(%%r9)\n\t" // Pull the next set of 4 bit sequences into the L2 cache. - "vpandd\t%%zmm0,\t%%zmm7,\t%%zmm8\n\t" // Apply a mask, storing the next low four bits of vector zmm1 into zmm5. + "vpandd\t%%zmm0,\t%%zmm7,\t%%zmm8\n\t" // Apply a mask, storing the next sets of four bits into a vector. "vpord\t%%zmm1,%%zmm8,%%zmm8%{%%k2%}\n\t" // Turn on bit 5 for all values that passed the prior test. "vmovdqa32\t\t%%zmm8%{uint8%},\t16(%%r8)\n\t" // Save our result. "add\t$32,\t%%r8\n\t" "cmp\t$4,\t%%ecx\n\t" - "vpslld\t$1,\t%%zmm2,\t%%zmm2\n\t" // Select which bit we want to test for. + "vpslld\t$1,\t%%zmm2,\t%%zmm2\n\t" // Select the next bit to test for. "vptestmd\t%%zmm3,\t%%zmm2,\t%%k1\n\t" // Perform our test. "vptestmd\t%%zmm4,\t%%zmm2,\t%%k2\n\t" // Perform our test. @@ -237,7 +237,7 @@ void GGML_5bit_Unpack_Unaligned (const uint8x16_t * q4, const uint8_t * q1, uint "vprefetch0\t32(%%r9)\n\t" "vprefetch1\t96(%%r9)\n\t" - "vpslld\t$1,\t%%zmm2,\t%%zmm2\n\t" // Select which bit we want to test for. + "vpslld\t$1,\t%%zmm2,\t%%zmm2\n\t" // Select the next bit to test for. "add\t$32,\t%%r9\n\t" "add\t$32,\t%%r8\n\t" "jmp\t1b\n\t" @@ -248,19 +248,18 @@ void GGML_5bit_Unpack_Unaligned (const uint8x16_t * q4, const uint8_t * q1, uint [MASK] "m" (lowmask), [M] "m" (m), [BIT5] "m" (bit5) - : "zmm0", "zmm1", "zmm2", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "cc", "ecx", "k1", "k2", "r12", "r8", "memory" - ); + : "zmm0", "zmm1", "zmm2", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "cc", "ecx", "k1", "k2", "r8", "r9", "memory"); } // A function for getting the dot product of two vectors, one of 5 bit resolution, and one of 8. // Used during inference, if your model prints "llama_model_loader: - type q5_K: XXX tensors", and XXX is not zero. :) void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { - /* interpret X and Y as vectors. */ + /* Interpret X and Y as vectors. */ const block_q5_K * restrict x = vx; const block_q8_K * restrict y = vy; - /* the number of blocks we will process this in. */ + /* The number of blocks we will process this in. */ const int nb = n / QK_K; static const uint32_t kmask1 = 0x3f3f3f3f; @@ -274,18 +273,19 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r float32x16_t sums; - // clear sums. + // Clear sums. GGML_F32x16_VEC_ZERO(&sums); float sumf = 0; + for (int i = 0; i < nb; ++i) { uint8x16_t q5 [QK_K/16]; - // combine our 4 and 1 bit vector sets into a 5 bit vector (in 8 bits). + // Combine our 4 and 1 bit vector sets into a 5 bit vector (in 8 bits). GGML_5bit_Unpack_Unaligned((const uint8x16_t *)x[i].qs, x[i].qh, q5); - // extract scales and mins.. + // Extract scales and mins.. memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1;