modularize

This commit is contained in:
qunash 2023-03-14 22:52:22 +03:00
parent c2af31149f
commit e1b1e12a41

View file

@ -16,7 +16,6 @@
# At the start of the ggml file we write the model parameters
# and vocabulary.
#
import argparse
import sys
import json
@ -25,129 +24,134 @@ import numpy as np
import torch
from sentencepiece import SentencePieceProcessor
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
parser.add_argument('dir_model', help='directory containing the model checkpoint')
parser.add_argument('ftype', type=int, choices=[0, 1], default=1, help='file type (0: float32, 1: float16)')
args = parser.parse_args()
def parse_args():
# output in the same directory as the model
dir_model = args.dir_model
ftype = args.ftype
fname_hparams = f"{dir_model}/params.json"
fname_tokenizer = f"{dir_model}/../tokenizer.model"
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
parser.add_argument('dir_model', help='directory containing the model checkpoint')
parser.add_argument('ftype', type=int, choices=[0, 1], default=1, help='file type (0: float32, 1: float16)')
return parser.parse_args()
def get_n_parts(dim):
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
n_parts = mappings.get(dim)
if n_parts is None:
print(f"Invalid dim: {dim}")
sys.exit(1)
print(f"n_parts = {n_parts}\n")
return n_parts
# map from ftype to string
ftype_str = ["f32", "f16"]
def load_hparams_and_tokenizer(dir_model):
fname_hparams = f"{dir_model}/params.json"
fname_tokenizer = f"{dir_model}/../tokenizer.model"
with open(fname_hparams, "r") as f:
hparams = json.load(f)
with open(fname_hparams, "r") as f:
hparams = json.load(f)
print(hparams)
tokenizer = SentencePieceProcessor(fname_tokenizer)
tokenizer = SentencePieceProcessor(fname_tokenizer)
hparams.update({"vocab_size": tokenizer.vocab_size()})
hparams.update({"vocab_size": tokenizer.vocab_size()})
return hparams, tokenizer
n_parts = get_n_parts(hparams["dim"])
def write_header(fout, hparams, ftype):
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
values = [
0x67676d6c, # magic: ggml in hex
*[hparams[key] for key in keys],
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
ftype
]
fout.write(struct.pack("i" * len(values), *values))
print(hparams)
print(f"n_parts = {n_parts}\n")
def write_tokens(fout, tokenizer):
for p in range(n_parts):
print(f"Processing part {p}\n")
for i in range(32000):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
sys.exit(1)
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
#fname_model = args[1] + "/consolidated.00.pth"
fname_model = f"{dir_model}/consolidated.0{p}.pth"
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
def process_and_write_variables(fout, model, ftype):
model = torch.load(fname_model, map_location="cpu")
for name, data in model.items():
if name.endswith("freqs"):
continue
shape = data.shape
print(f"Processing variable: {name} with shape: {shape} and type: {data.dtype}\n")
data = np.squeeze(data)
n_dims = len(shape)
with open(fname_out, "wb") as fout:
# for efficiency - transpose some matrices
# "model/h.*/attn/c_attn/w"
# "model/h.*/attn/c_proj/w"
# "model/h.*/mlp/c_fc/w"
# "model/h.*/mlp/c_proj/w"
#if name.endswith(("/attn/c_attn/w", "/attn/c_proj/w", "/mlp/c_fc/w", "/mlp/c_proj/w")):
# print("Transposing")
# data = data.transpose()
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["dim"]))
fout.write(struct.pack("i", hparams["multiple_of"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
fout.write(struct.pack("i", ftype))
# default type is fp16
ftype_cur = 1
if ftype == 0 or n_dims == 1:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# Is this correct??
for i in range(32000):
if tokenizer.is_unknown(i):
# "<unk>" token (translated as ??)
text = " \u2047 ".encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
elif tokenizer.is_control(i):
# "<s>"/"</s>" tokens
fout.write(struct.pack("i", 0))
elif tokenizer.is_byte(i):
# "<U+XX>" tokens (which may be invalid UTF-8)
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
sys.exit(1)
byte_value = int(piece[3:-1], 16)
fout.write(struct.pack("i", 1))
fout.write(struct.pack("B", byte_value))
else:
# normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
# header
sname = name.encode('utf-8')
fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
for dim in reversed(data.shape):
fout.write(struct.pack("i", dim))
fout.write(sname)
# data
data.tofile(fout)
for name, data in model.items():
shape = data.shape
def main():
# skip layers.X.attention.inner_attention.rope.freqs
if name.endswith("freqs"):
continue
args = parse_args()
dir_model = args.dir_model
ftype = args.ftype
ftype_str = ["f32", "f16"]
print(f"Processing variable: {name} with shape: {shape} and type: {data.dtype}\n")
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
n_parts = get_n_parts(hparams["dim"])
#data = tf.train.load_variable(dir_model, name).squeeze()
data = np.squeeze(data)
n_dims = len(data.shape)
for p in range(n_parts):
# for efficiency - transpose some matrices
# "model/h.*/attn/c_attn/w"
# "model/h.*/attn/c_proj/w"
# "model/h.*/mlp/c_fc/w"
# "model/h.*/mlp/c_proj/w"
#if name[-14:] == "/attn/c_attn/w" or \
# name[-14:] == "/attn/c_proj/w" or \
# name[-11:] == "/mlp/c_fc/w" or \
# name[-13:] == "/mlp/c_proj/w":
# print(" Transposing")
# data = data.transpose()
print(f"Processing part {p}\n")
fname_model = f"{dir_model}/consolidated.0{p}.pth"
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
# default type is fp16
ftype_cur = 1
if ftype == 0 or n_dims == 1:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
model = torch.load(fname_model, map_location="cpu")
# header
sname = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
for dim in reversed(data.shape):
fout.write(struct.pack("i", dim))
fout.write(sname)
# data
data.tofile(fout)
with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)
process_and_write_variables(fout, model, ftype)
del model
print(f"Done. Output file: {fname_out}, (part {p})\n")
print(f"Done. Output file: {fname_out}, (part {p})\n")
if __name__ == "__main__":
main()