revert format change

This commit is contained in:
luoyu-intel 2024-06-19 08:22:02 +00:00
parent 5de2122647
commit e1eabdc2e4

View file

@ -220,8 +220,7 @@ namespace dpct
// a. and b.
i++;
minor = std::stoi(&(ver[i]));
}
else {
} else {
// c.
minor = 0;
}
@ -232,7 +231,7 @@ namespace dpct
{
public:
generic_error_type() = default;
generic_error_type(T value) : value{ value } {}
generic_error_type(T value) : value{value} {}
operator T() const { return value; }
private:
@ -577,7 +576,7 @@ namespace dpct
prop.set_max_work_items_per_compute_unit(
dev.get_info<sycl::info::device::max_work_group_size>());
int max_nd_range_size[] = { 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF };
int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
prop.set_max_nd_range_size(max_nd_range_size);
// Estimates max register size per work group, feel free to update the value
@ -590,94 +589,75 @@ namespace dpct
}
/// dpct device extension
class device_ext : public sycl::device
{
class device_ext : public sycl::device {
typedef std::mutex mutex_type;
public:
device_ext() : sycl::device() {}
~device_ext()
{
~device_ext() {
std::lock_guard<mutex_type> lock(m_mutex);
clear_queues();
}
device_ext(const sycl::device &base) : sycl::device(base)
{
device_ext(const sycl::device &base) : sycl::device(base) {
std::lock_guard<mutex_type> lock(m_mutex);
init_queues();
}
int is_native_atomic_supported() { return 0; }
int get_major_version() const
{
return dpct::get_major_version(*this);
}
int get_major_version() const { return dpct::get_major_version(*this); }
int get_minor_version() const
{
return dpct::get_minor_version(*this);
}
int get_minor_version() const { return dpct::get_minor_version(*this); }
int get_max_compute_units() const
{
int get_max_compute_units() const {
return get_device_info().get_max_compute_units();
}
/// Return the maximum clock frequency of this device in KHz.
int get_max_clock_frequency() const
{
int get_max_clock_frequency() const {
return get_device_info().get_max_clock_frequency();
}
int get_integrated() const { return get_device_info().get_integrated(); }
int get_max_sub_group_size() const
{
int get_max_sub_group_size() const {
return get_device_info().get_max_sub_group_size();
}
int get_max_register_size_per_work_group() const
{
int get_max_register_size_per_work_group() const {
return get_device_info().get_max_register_size_per_work_group();
}
int get_max_work_group_size() const
{
int get_max_work_group_size() const {
return get_device_info().get_max_work_group_size();
}
int get_mem_base_addr_align() const
{
int get_mem_base_addr_align() const {
return get_info<sycl::info::device::mem_base_addr_align>();
}
size_t get_global_mem_size() const
{
size_t get_global_mem_size() const {
return get_device_info().get_global_mem_size();
}
size_t get_max_mem_alloc_size() const
{
size_t get_max_mem_alloc_size() const {
return get_device_info().get_max_mem_alloc_size();
}
/// Get the number of bytes of free and total memory on the SYCL device.
/// \param [out] free_memory The number of bytes of free memory on the SYCL device.
/// \param [out] total_memory The number of bytes of total memory on the SYCL device.
void get_memory_info(size_t &free_memory, size_t &total_memory)
{
/// \param [out] free_memory The number of bytes of free memory on the
/// SYCL device. \param [out] total_memory The number of bytes of total
/// memory on the SYCL device.
void get_memory_info(size_t &free_memory, size_t &total_memory) {
total_memory = get_device_info().get_global_mem_size();
const char *warning_info = "get_memory_info: [warning] ext_intel_free_memory is not "
const char *warning_info =
"get_memory_info: [warning] ext_intel_free_memory is not "
"supported (export/set ZES_ENABLE_SYSMAN=1 to support), "
"use total memory as free memory";
#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
if (!has(sycl::aspect::ext_intel_free_memory))
{
if (!has(sycl::aspect::ext_intel_free_memory)) {
std::cerr << warning_info << std::endl;
free_memory = total_memory;
}
else
{
} else {
free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
}
#else
@ -691,20 +671,17 @@ namespace dpct
#endif
}
void get_device_info(device_info &out) const
{
void get_device_info(device_info &out) const {
dpct::get_device_info(out, *this);
}
device_info get_device_info() const
{
device_info get_device_info() const {
device_info prop;
dpct::get_device_info(prop, *this);
return prop;
}
void reset()
{
void reset() {
std::lock_guard<mutex_type> lock(m_mutex);
clear_queues();
init_queues();
@ -714,25 +691,20 @@ namespace dpct
sycl::queue &out_of_order_queue() { return _q_out_of_order; }
sycl::queue &default_queue()
{
return in_order_queue();
}
sycl::queue &default_queue() { return in_order_queue(); }
void queues_wait_and_throw()
{
void queues_wait_and_throw() {
std::unique_lock<mutex_type> lock(m_mutex);
lock.unlock();
for (auto &q : _queues)
{
for (auto &q : _queues) {
q.wait_and_throw();
}
// Guard the destruct of current_queues to make sure the ref count is safe.
// Guard the destruct of current_queues to make sure the ref count is
// safe.
lock.lock();
}
sycl::queue create_queue(bool enable_exception_handler = false)
{
sycl::queue create_queue(bool enable_exception_handler = false) {
return create_in_order_queue(enable_exception_handler);
}
@ -754,52 +726,45 @@ namespace dpct
sycl::property::queue::in_order());
}
sycl::queue create_out_of_order_queue(bool enable_exception_handler = false) {
sycl::queue create_out_of_order_queue(
bool enable_exception_handler = false) {
std::lock_guard<mutex_type> lock(m_mutex);
return create_queue_impl(enable_exception_handler);
}
void destroy_queue(sycl::queue queue)
{
void destroy_queue(sycl::queue queue) {
std::lock_guard<mutex_type> lock(m_mutex);
_queues.clear();
}
void set_saved_queue(sycl::queue q)
{
void set_saved_queue(sycl::queue q) {
std::lock_guard<mutex_type> lock(m_mutex);
_saved_queue = q;
}
sycl::queue get_saved_queue() const
{
sycl::queue get_saved_queue() const {
std::lock_guard<mutex_type> lock(m_mutex);
return _saved_queue;
}
private:
void clear_queues()
{
_queues.clear();
}
void clear_queues() { _queues.clear(); }
void init_queues()
{
_q_in_order = create_queue_impl(true, sycl::property::queue::in_order());
void init_queues() {
_q_in_order =
create_queue_impl(true, sycl::property::queue::in_order());
_q_out_of_order = create_queue_impl(true);
_saved_queue = default_queue();
}
/// Caller should acquire resource \p m_mutex before calling this function.
/// Caller should acquire resource \p m_mutex before calling this
/// function.
template <class... Properties>
sycl::queue create_queue_impl(bool enable_exception_handler,
Properties... properties)
{
Properties... properties) {
sycl::async_handler eh = {};
if (enable_exception_handler)
{
if (enable_exception_handler) {
eh = exception_handler;
}
auto q = sycl::queue(
*this, eh,
auto q = sycl::queue(*this, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(),
@ -818,8 +783,8 @@ namespace dpct
if (enable_exception_handler) {
eh = exception_handler;
}
_queues.push_back(sycl::queue(
device, eh,
_queues.push_back(
sycl::queue(device, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(),
@ -829,8 +794,7 @@ namespace dpct
return _queues.back();
}
void get_version(int &major, int &minor) const
{
void get_version(int &major, int &minor) const {
detail::get_version(*this, major, minor);
}
sycl::queue _q_in_order, _q_out_of_order;
@ -929,15 +893,15 @@ namespace dpct
sycl::backend backend1 = device1.get_backend();
sycl::backend backend2 = device2.get_backend();
// levelzero backends always come first
if (backend1 == sycl::backend::ext_oneapi_level_zero && backend2 != sycl::backend::ext_oneapi_level_zero) return true;
if (backend1 != sycl::backend::ext_oneapi_level_zero && backend2 == sycl::backend::ext_oneapi_level_zero) return false;
if(backend1 == sycl::backend::ext_oneapi_level_zero && backend2 != sycl::backend::ext_oneapi_level_zero) return true;
if(backend1 != sycl::backend::ext_oneapi_level_zero && backend2 == sycl::backend::ext_oneapi_level_zero) return false;
dpct::device_info prop1;
dpct::get_device_info(prop1, device1);
dpct::device_info prop2;
dpct::get_device_info(prop2, device2);
return prop1.get_max_compute_units() > prop2.get_max_compute_units();
}
static int convert_backend_index(std::string &backend) {
static int convert_backend_index(std::string & backend) {
if (backend == "ext_oneapi_level_zero:gpu") return 0;
if (backend == "opencl:gpu") return 1;
if (backend == "ext_oneapi_cuda:gpu") return 2;
@ -977,7 +941,7 @@ namespace dpct
}
std::vector<std::string> keys;
for (auto it = backend_devices.begin(); it != backend_devices.end(); ++it) {
for(auto it = backend_devices.begin(); it != backend_devices.end(); ++it) {
keys.push_back(it->first);
}
std::sort(keys.begin(), keys.end(), compare_backend);
@ -1132,7 +1096,7 @@ namespace dpct
// Allocation
sycl::range<1> r(size);
buffer_t buf(r);
allocation A{ buf, next_free, size };
allocation A{buf, next_free, size};
// Map allocation to device pointer
void *result = next_free;
m_map.emplace(next_free + size, A);
@ -1324,7 +1288,7 @@ namespace dpct
static const memcpy_direction
direction_table[static_cast<unsigned>(pointer_access_attribute::end)]
[static_cast<unsigned>(pointer_access_attribute::end)] =
{ {memcpy_direction::host_to_host,
{{memcpy_direction::host_to_host,
memcpy_direction::device_to_host,
memcpy_direction::host_to_host},
{memcpy_direction::host_to_device,
@ -1332,7 +1296,7 @@ namespace dpct
memcpy_direction::device_to_device},
{memcpy_direction::host_to_host,
memcpy_direction::device_to_device,
memcpy_direction::device_to_device} };
memcpy_direction::device_to_device}};
return direction_table[static_cast<unsigned>(get_pointer_attribute(
q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))];
}
@ -1411,8 +1375,8 @@ namespace dpct
if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
{
return { dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
direction, dep_events) };
return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
direction, dep_events)};
}
direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
size_t size_slice = size.get(1) * size.get(0);
@ -1489,7 +1453,7 @@ namespace dpct
break;
}
case device_to_device:
event_list.push_back(q.submit([&](sycl::handler &cgh) {
event_list.push_back(q.submit([&](sycl::handler &cgh){
cgh.depends_on(dep_events);
cgh.parallel_for<class dpct_memcpy_3d_detail>(
size,
@ -1746,7 +1710,7 @@ namespace dpct
inline unsigned vectorized_binary(unsigned a, unsigned b,
const BinaryOperation binary_op)
{
sycl::vec<unsigned, 1> v0{ a }, v1{ b };
sycl::vec<unsigned, 1> v0{a}, v1{b};
auto v2 = v0.as<VecT>();
auto v3 = v1.as<VecT>();
auto v4 =
@ -1793,7 +1757,7 @@ namespace dpct
template <typename T1, typename T2>
using dot_product_acc_t =
std::conditional_t<std::is_unsigned_v<T1> &&std::is_unsigned_v<T2>,
std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
uint32_t, int32_t>;
template <typename T1, typename T2, typename T3>
@ -1821,7 +1785,7 @@ namespace dpct
template <typename S, typename T>
inline T vectorized_min(T a, T b)
{
sycl::vec<T, 1> v0{ a }, v1{ b };
sycl::vec<T, 1> v0{a}, v1{b};
auto v2 = v0.template as<S>();
auto v3 = v1.template as<S>();
auto v4 = sycl::min(v2, v3);
@ -2099,8 +2063,8 @@ namespace dpct
if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
{
return { dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
direction, dep_events) };
return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
direction, dep_events)};
}
direction = detail::deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
size_t size_slice = size.get(1) * size.get(0);
@ -2900,7 +2864,7 @@ namespace dpct
typename detail::memory_traits<Memory, T>::template accessor_t<0>;
/// Constructor with initial value.
device_memory(const value_t &val) : base(sycl::range<1>(1), { val }) {}
device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {}
/// Default constructor
device_memory() : base(1) {}