py : switch to snake_case (#8305)

* py : switch to snake_case

ggml-ci

* cont

ggml-ci

* cont

ggml-ci

* cont : fix link

* gguf-py : use snake_case in scripts entrypoint export

* py : rename requirements for convert_legacy_llama.py

Needed for scripts/check-requirements.sh

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
This commit is contained in:
Georgi Gerganov 2024-07-05 07:53:33 +03:00 committed by GitHub
parent f09b7cb609
commit e235b267a2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
32 changed files with 69 additions and 104 deletions

View file

@ -38,22 +38,22 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
pip install -r examples/llava/requirements.txt
```
3. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
```
4. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown
python ./examples/convert_legacy_llama.py ../llava-v1.5-7b --skip-unknown
```
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
@ -70,9 +70,9 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
pip install -r examples/llava/requirements.txt
```
3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
@ -86,13 +86,13 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso
5) Create the visual gguf model:
```console
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
6) Then convert the model to gguf format:
```console
python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
```
7) And finally we can run the llava cli using the 1.6 model version: