feat(convert): Full pass at hparam conversion

Branch: BambaArchitecture

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
Gabe Goodhart 2024-12-02 16:27:19 -07:00
parent 246dfdba65
commit e3525e9e50
3 changed files with 131 additions and 19 deletions

View file

@ -3007,6 +3007,14 @@ class MambaModel(Model):
class Mamba2Model(Model):
model_arch = gguf.MODEL_ARCH.MAMBA2
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# n_groups and d_inner are used during reshaping
self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
self.d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
def set_vocab(self):
vocab_size = self.hparams["vocab_size"]
# Round vocab size to next multiple of 16
@ -3028,30 +3036,27 @@ class Mamba2Model(Model):
self._set_vocab_builtin("gpt-neox", vocab_size)
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
head_dim = self.find_hparam(["head_dim"], optional=True) or 64
n_group = self.find_hparam(["n_groups"], optional=True) or 1
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
head_dim = self.find_hparam(["head_dim"], optional=True) or 64
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
# Fail early for models which don't have a block expansion factor of 2
# TODO: does this really matter?
# assert d_inner == 2 * d_model
assert d_inner % head_dim == 0
assert self.d_inner == 2 * self.d_model
assert self.d_inner % head_dim == 0
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_embedding_length(self.d_model)
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_inner_size(self.d_inner)
self.gguf_writer.add_ssm_state_size(d_state)
self.gguf_writer.add_ssm_time_step_rank(d_inner // head_dim)
self.gguf_writer.add_ssm_group_count(n_group)
self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
self.gguf_writer.add_ssm_group_count(self.n_group)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_file_type(self.ftype)
@ -3083,10 +3088,7 @@ class Mamba2Model(Model):
return data_torch.reshape((*data_torch.shape, 1))
elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
n_group = self.hparams.get("n_groups", 1)
return data_torch.reshape((n_group, d_inner // n_group))
return data_torch.reshape((self.n_group, self.d_inner // self.n_group))
return data_torch.squeeze()
@ -3099,6 +3101,11 @@ class JambaModel(Model):
model_arch = gguf.MODEL_ARCH.JAMBA
def __init__(self, *args, **kwargs):
# Hybrid mamba models use a prefix for the mamba-specific params.
# TODO: Extend this if the prefix(es) need to be configurable
self.hparam_prefixes = ["mamba"]
super().__init__(*args, **kwargs)
# Determine if this is using Mamba or Mamba2
@ -3130,14 +3137,73 @@ class JambaModel(Model):
if i not in self._attn_layers
]
# n_group and d_inner are used during reshape_tensors for mamaba2
self.d_model = self.find_hparam(["hidden_size", "d_model"])
self.n_group = self.find_hparam(["n_groups"])
self.d_inner = self.find_hparam(["expand"]) * self.d_model
def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
prefixed = []
for pfx in self.hparam_prefixes:
prefixed.extend(
"_".join([pfx, k])
for k in keys
)
keys = list(keys) + prefixed
return super().find_hparam(keys, *args, **kwargs)
def set_vocab(self):
self._mamba_model_class.set_vocab(self)
def set_gguf_parameters(self):
# Set the mamba-type parameters
self._mamba_model_class.set_gguf_parameters(self)
# TODO: All the rest!
## General Params ##
self.gguf_writer.add_embedding_length(self.d_model)
self.gguf_writer.add_mamba_version(self._mamba_version)
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
## Mamba mixer params ##
self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
self.gguf_writer.add_ssm_group_count(self.n_group)
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["time_step_rank", "dt_rank"]))
self.gguf_writer.add_ssm_inner_size(self.d_inner)
self.gguf_writer.add_ssm_head_count(self.find_hparam(["n_heads"]))
self.gguf_writer.add_ssm_head_dim(d_head := self.find_hparam(["d_head"]))
self.gguf_writer.add_ssm_conv_bias(self.find_hparam(["conv_bias"], optional=True) or False)
self.gguf_writer.add_ssm_proj_bias(self.find_hparam(["proj_bias"], optional=True) or False)
self.gguf_writer.add_ssm_chunk_size(self.find_hparam(["chunk_size"]))
# TODO: I think this will always be true if available?
# "use_mamba_kernels": true,
## Attention params ##
self.gguf_writer.add_attn_layer_indices(self._attn_layers)
self.gguf_writer.add_rope_dimension_count(self.hparams["attn_rotary_emb"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(self.find_hparam(["num_key_value_heads", "n_head_kv"]))
## Feed Forward Params ##
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
## Validation ##
assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
# TODO: Support MoE FFN configurations
# "num_experts"
# "num_experts_per_tok"
# "expert_layer_offset"
# "expert_layer_period"
assert self.hparams.get("num_experts") in [None, 1], "MoE not currently supported"
## UNUSED?? ##
# "tie_word_embeddings" <-- Implied by presence of output weights
# "router_aux_loss_coef" <-- Only used if outputting router logits
# "num_logits_to_keep" <-- Always only keep final token logits
# "output_router_logits" <-- Never output router logits since only doing generate
# "use_cache" <-- KV Cache always enabled
# "sliding_window" <-- Used for flash attention in transformers
def modify_tensors(
self, data_torch: Tensor, name: str, bid: int | None
@ -3157,6 +3223,22 @@ class JambaModel(Model):
yield name, data_torch
def reshape_tensors(
self,
data_torch: Tensor,
new_name: str, bid: int | None,
) -> Tensor:
if bid in self._ssm_layers:
return self._mamba_model_class.reshape_tensors(
self, data_torch, new_name, bid
)
elif bid in self._attn_layers:
return self._transformer_model_class.reshape_tensors(
self, data_torch, new_name, bid
)
return data_torch
@Model.register("CohereForCausalLM")
class CommandR2Model(Model):
model_arch = gguf.MODEL_ARCH.COMMAND_R

View file

@ -151,6 +151,15 @@ class Keys:
TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
GROUP_COUNT = "{arch}.ssm.group_count"
DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
HEAD_COUNT = "{arch}.ssm.head_count"
HEAD_DIM = "{arch}.ssm.head_dim"
CHUNK_SIZE = "{arch}.ssm.chunk_size"
CONV_BIAS = "{arch}.ssm.conv_bias"
PROJ_BIAS = "{arch}.ssm.proj_bias"
class HybridMamba:
MAMBA_VERSION = "{arch}.mamba.version"
ATTN_LAYER_INDICES = "{arch}.attn.layers"
class WKV:
HEAD_SIZE = "{arch}.wkv.head_size"

View file

@ -790,6 +790,27 @@ class GGUFWriter:
def add_ssm_dt_b_c_rms(self, value: bool) -> None:
self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value)
def add_ssm_head_count(self, value: int) -> None:
self.add_uint32(Keys.SSM.HEAD_COUNT.format(arch=self.arch), value)
def add_ssm_head_dim(self, value: int) -> None:
self.add_uint32(Keys.SSM.HEAD_DIM.format(arch=self.arch), value)
def add_ssm_chunk_size(self, value: int) -> None:
self.add_uint32(Keys.SSM.CHUNK_SIZE.format(arch=self.arch), value)
def add_ssm_conv_bias(self, value: bool) -> None:
self.add_bool(Keys.SSM.CONV_BIAS.format(arch=self.arch), value)
def add_ssm_proj_bias(self, value: bool) -> None:
self.add_bool(Keys.SSM.PROJ_BIAS.format(arch=self.arch), value)
def add_mamba_version(self, value: str) -> None:
self.add_string(Keys.HybridMamba.MAMBA_VERSION.format(arch=self.arch), value)
def add_attn_layer_indices(self, values: list[int]) -> None:
self.add_array(Keys.HybridMamba.ATTN_LAYER_INDICES.format(arch=self.arch), values)
def add_tokenizer_model(self, model: str) -> None:
self.add_string(Keys.Tokenizer.MODEL, model)