Add vectorized loading and zeropadding for matrix multiplication

This commit is contained in:
0cc4m 2023-07-19 10:13:51 +02:00
parent 8d351b8bd8
commit e4903957ec
5 changed files with 423 additions and 207 deletions

View file

@ -84,6 +84,7 @@ struct vk_pipeline {
uint32_t push_constant_size; uint32_t push_constant_size;
uint32_t parameter_count; uint32_t parameter_count;
std::array<uint32_t, 3> wg_denoms; std::array<uint32_t, 3> wg_denoms;
uint32_t align;
}; };
struct vk_queue { struct vk_queue {
@ -142,9 +143,9 @@ bool vk_fp16_support = false;
static std::vector<std::tuple<void*, size_t, vk_buffer>> vk_buf_list; static std::vector<std::tuple<void*, size_t, vk_buffer>> vk_buf_list;
static vk_pipeline ggml_vk_create_pipeline(const std::string& path, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_count, std::array<uint32_t, 3> wg_denoms, std::vector<int>&& specialization_constants) { static vk_pipeline ggml_vk_create_pipeline(const std::string& path, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<int>&& specialization_constants, uint32_t align) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_create_pipeline(" << path << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_count << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants)" << std::endl; std::cerr << "ggml_vk_create_pipeline(" << path << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl;
#endif #endif
GGML_ASSERT(parameter_count > 0); GGML_ASSERT(parameter_count > 0);
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0);
@ -153,8 +154,9 @@ static vk_pipeline ggml_vk_create_pipeline(const std::string& path, const std::s
pipeline.name = path; pipeline.name = path;
pipeline.parameter_count = parameter_count; pipeline.parameter_count = parameter_count;
pipeline.push_constant_size = push_constant_count * sizeof(int); pipeline.push_constant_size = push_constant_size;
pipeline.wg_denoms = wg_denoms; pipeline.wg_denoms = wg_denoms;
pipeline.align = align;
std::vector<char> matmul_shader_contents; std::vector<char> matmul_shader_contents;
if (std::ifstream shader_file{ path, std::ios::binary | std::ios::ate }) { if (std::ifstream shader_file{ path, std::ios::binary | std::ios::ate }) {
@ -446,7 +448,7 @@ static vk_buffer ggml_vk_create_buffer(size_t size, VmaAllocationCreateFlags all
return buf; return buf;
} }
static void ggml_vk_sync_buffers(vk::CommandBuffer& cmd_buffer, std::vector<vk_buffer>&& buffers, vk_queue& q, vk::AccessFlags&& src_mask, vk::AccessFlags&& dst_mask) { static void ggml_vk_sync_buffers(vk::CommandBuffer& cmd_buffer, std::vector<vk_buffer>&& buffers, vk_queue& q, vk::AccessFlags&& src_mask, vk::AccessFlags&& dst_mask, bool force_sync) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_sync_buffers()" << std::endl; std::cerr << "ggml_vk_sync_buffers()" << std::endl;
#endif #endif
@ -460,12 +462,13 @@ static void ggml_vk_sync_buffers(vk::CommandBuffer& cmd_buffer, std::vector<vk_b
sfi = buf.qf_owner; sfi = buf.qf_owner;
dfi = q.queue_family_index; dfi = q.queue_family_index;
buf.qf_owner = dfi; buf.qf_owner = dfi;
} else { bmem_barriers.push_back({ src_mask, dst_mask, sfi, dfi, buf.buffer, 0, VK_WHOLE_SIZE });
} else if (force_sync) {
sfi = vk::QueueFamilyIgnored; sfi = vk::QueueFamilyIgnored;
dfi = vk::QueueFamilyIgnored; dfi = vk::QueueFamilyIgnored;
}
bmem_barriers.push_back({ src_mask, dst_mask, sfi, dfi, buf.buffer, 0, VK_WHOLE_SIZE }); bmem_barriers.push_back({ src_mask, dst_mask, sfi, dfi, buf.buffer, 0, VK_WHOLE_SIZE });
} }
}
if (bmem_barriers.empty()) { if (bmem_barriers.empty()) {
return; return;
@ -506,6 +509,7 @@ static void ggml_vk_destroy_buffer(vk_buffer& buf) {
void ggml_vk_test_transfer(size_t ne); void ggml_vk_test_transfer(size_t ne);
void ggml_vk_test_matmul_f32(size_t m, size_t n, size_t k, size_t num_it, int split_k, int shader_size); void ggml_vk_test_matmul_f32(size_t m, size_t n, size_t k, size_t num_it, int split_k, int shader_size);
void ggml_vk_test_matmul_f16(size_t m, size_t n, size_t k, size_t num_it, int split_k, int shader_size); void ggml_vk_test_matmul_f16(size_t m, size_t n, size_t k, size_t num_it, int split_k, int shader_size);
void ggml_vk_test_buffer_write_zeropad(size_t m, size_t k, size_t align);
void ggml_vk_init(void) { void ggml_vk_init(void) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
@ -527,7 +531,7 @@ void ggml_vk_init(void) {
}; };
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions); vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions);
#ifdef VK_VALIDATE #ifdef VK_VALIDATE
const std::vector<vk::ValidationFeatureEnableEXT> features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices }; const std::vector<vk::ValidationFeatureEnableEXT> features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices, vk::ValidationFeatureEnableEXT::eSynchronizationValidation };
vk::ValidationFeaturesEXT validation_features = { vk::ValidationFeaturesEXT validation_features = {
features_enable, features_enable,
{}, {},
@ -637,18 +641,18 @@ void ggml_vk_init(void) {
auto warptile_s = { 32, 32, 32, 8, 32, 32, 2, 2, 2 }; auto warptile_s = { 32, 32, 32, 8, 32, 32, 2, 2, 2 };
// Shaders // Shaders
vk_pipeline_matmul_f32_l = ggml_vk_create_pipeline("vk_shaders/matmul_f32.spv", "main", 3, 7, {128, 128, 1}, warptile_l); vk_pipeline_matmul_f32_l = ggml_vk_create_pipeline("vk_shaders/matmul_f32.spv", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
vk_pipeline_matmul_f32_m = ggml_vk_create_pipeline("vk_shaders/matmul_f32.spv", "main", 3, 7, { 64, 64, 1}, warptile_m); vk_pipeline_matmul_f32_m = ggml_vk_create_pipeline("vk_shaders/matmul_f32.spv", "main", 3, 7 * sizeof(int), { 64, 64, 1}, warptile_m, 64);
vk_pipeline_matmul_f32_s = ggml_vk_create_pipeline("vk_shaders/matmul_f32.spv", "main", 3, 7, { 32, 32, 1}, warptile_s); vk_pipeline_matmul_f32_s = ggml_vk_create_pipeline("vk_shaders/matmul_f32.spv", "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
if (vk_fp16_support) { if (vk_fp16_support) {
vk_pipeline_matmul_f16_l = ggml_vk_create_pipeline("vk_shaders/matmul_f16.spv", "main", 3, 7, {128, 128, 1}, warptile_l); vk_pipeline_matmul_f16_l = ggml_vk_create_pipeline("vk_shaders/matmul_f16.spv", "main", 3, 7 * sizeof(int), {128, 128, 1}, warptile_l, 128);
vk_pipeline_matmul_f16_m = ggml_vk_create_pipeline("vk_shaders/matmul_f16.spv", "main", 3, 7, { 64, 64, 1}, warptile_m); vk_pipeline_matmul_f16_m = ggml_vk_create_pipeline("vk_shaders/matmul_f16.spv", "main", 3, 7 * sizeof(int), { 64, 64, 1}, warptile_m, 64);
vk_pipeline_matmul_f16_s = ggml_vk_create_pipeline("vk_shaders/matmul_f16.spv", "main", 3, 7, { 32, 32, 1}, warptile_s); vk_pipeline_matmul_f16_s = ggml_vk_create_pipeline("vk_shaders/matmul_f16.spv", "main", 3, 7 * sizeof(int), { 32, 32, 1}, warptile_s, 32);
} }
vk_pipeline_matmul_split_k_reduce = ggml_vk_create_pipeline("vk_shaders/matmul_split_k_reduce.spv", "main", 1, 3, {32, 32, 1}, {}); vk_pipeline_matmul_split_k_reduce = ggml_vk_create_pipeline("vk_shaders/matmul_split_k_reduce.spv", "main", 1, 3 * sizeof(int), {32, 32, 1}, {}, 1);
vk_pipeline_f16_to_f32 = ggml_vk_create_pipeline("vk_shaders/f16_to_f32.spv", "main", 2, 1, {64, 1, 1}, {}); vk_pipeline_f16_to_f32 = ggml_vk_create_pipeline("vk_shaders/f16_to_f32.spv", "main", 2, 4 * sizeof(int), {64, 1, 1}, {}, 1);
vk_pipeline_dequant_q4_0 = ggml_vk_create_pipeline("vk_shaders/dequant_q4_0.spv", "main", 2, 1, {256*32, 1, 1}, {}); // Group size * values per quant group vk_pipeline_dequant_q4_0 = ggml_vk_create_pipeline("vk_shaders/dequant_q4_0.spv", "main", 2, 4 * sizeof(int), {256*32, 1, 1}, {}, 1);
// Queues // Queues
vk_compute_queue = ggml_vk_create_queue(compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader }); vk_compute_queue = ggml_vk_create_queue(compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader });
@ -657,27 +661,31 @@ void ggml_vk_init(void) {
} }
#if defined(VK_CHK_KERNEL) #if defined(VK_CHK_KERNEL)
ggml_vk_test_buffer_write_zeropad(233, 97, 128);
ggml_vk_test_buffer_write_zeropad(233, 97, 1);
ggml_vk_test_buffer_write_zeropad(256, 128, 1);
int step = 16; int step = 16;
for (size_t m = step; m < 64; m += step) { for (size_t m = step; m < 64; m += step) {
ggml_vk_test_transfer(1024 * 1024 * m); ggml_vk_test_transfer(1024 * 1024 * m);
} }
const std::vector<size_t> vals { const std::vector<size_t> vals {
128, 110, 622,
511, 511, 127,
511, 511, 7,
511, 511, 17,
49, 49, 128, 49, 49, 128,
128, 49, 49, 128, 49, 49,
4096, 49, 4096, 4096, 49, 4096,
11008, 49, 4096, 11008, 49, 4096,
4096, 49, 11008, 4096, 49, 11008,
4096, 49, 4096,
32000, 49, 4096, 32000, 49, 4096,
512, 512, 128, 512, 512, 128,
128, 512, 512, 128, 512, 512,
4096, 512, 4096, 4096, 512, 4096,
11008, 512, 4096, 11008, 512, 4096,
4096, 512, 11008, 4096, 512, 11008,
4096, 512, 4096,
32000, 512, 4096, 32000, 512, 4096,
512, 512, 128,
128, 512, 512,
}; };
for (size_t i = 0; i < vals.size(); i += 3) { for (size_t i = 0; i < vals.size(); i += 3) {
ggml_vk_test_matmul_f32(vals[i], vals[i + 1], vals[i + 2], 1000, 1, 0); ggml_vk_test_matmul_f32(vals[i], vals[i + 1], vals[i + 2], 1000, 1, 0);
@ -832,11 +840,13 @@ void ggml_vk_host_free(void* ptr) {
std::cerr << "ggml_vk_host_free()" << std::endl; std::cerr << "ggml_vk_host_free()" << std::endl;
#endif #endif
vk_buffer* buf = nullptr; vk_buffer* buf = nullptr;
size_t index;
for (size_t i = 0; i < vk_buf_list.size(); i++) { for (size_t i = 0; i < vk_buf_list.size(); i++) {
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_buf_list[i]); const uint8_t* addr = (const uint8_t*) std::get<0>(vk_buf_list[i]);
const uint8_t* endr = addr + std::get<1>(vk_buf_list[i]); const uint8_t* endr = addr + std::get<1>(vk_buf_list[i]);
if (ptr >= addr && ptr < endr) { if (ptr >= addr && ptr < endr) {
buf = &std::get<2>(vk_buf_list[i]); buf = &std::get<2>(vk_buf_list[i]);
index = i;
break; break;
} }
} }
@ -846,6 +856,8 @@ void ggml_vk_host_free(void* ptr) {
} }
ggml_vk_destroy_buffer(*buf); ggml_vk_destroy_buffer(*buf);
vk_buf_list.erase(vk_buf_list.begin() + index);
} }
static vk_submission ggml_vk_begin_submission(vk_queue& q) { static vk_submission ggml_vk_begin_submission(vk_queue& q) {
@ -856,7 +868,7 @@ static vk_submission ggml_vk_begin_submission(vk_queue& q) {
return s; return s;
} }
static void ggml_vk_dispatch_pipeline(vk_submission& s, vk_pipeline& pipeline, std::vector<vk_buffer>&& buffers, const std::vector<int>&& push_constants, std::array<uint32_t, 3> elements, vk_queue& q) { static void ggml_vk_dispatch_pipeline(vk_submission& s, vk_pipeline& pipeline, std::vector<vk_buffer> buffers, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements, vk_queue& q) {
uint32_t wg0 = CEIL_DIV(elements[0], pipeline.wg_denoms[0]); uint32_t wg0 = CEIL_DIV(elements[0], pipeline.wg_denoms[0]);
uint32_t wg1 = CEIL_DIV(elements[1], pipeline.wg_denoms[1]); uint32_t wg1 = CEIL_DIV(elements[1], pipeline.wg_denoms[1]);
uint32_t wg2 = CEIL_DIV(elements[2], pipeline.wg_denoms[2]); uint32_t wg2 = CEIL_DIV(elements[2], pipeline.wg_denoms[2]);
@ -874,9 +886,7 @@ static void ggml_vk_dispatch_pipeline(vk_submission& s, vk_pipeline& pipeline, s
vk_device.updateDescriptorSets(write_descriptor_sets, {}); vk_device.updateDescriptorSets(write_descriptor_sets, {});
ggml_vk_sync_buffers(s.buffer, std::move(buffers), q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eMemoryRead); s.buffer.pushConstants(pipeline.layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
s.buffer.pushConstants<int>(pipeline.layout, vk::ShaderStageFlagBits::eCompute, 0, push_constants);
s.buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline.pipeline); s.buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline.pipeline);
s.buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute, s.buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
pipeline.layout, pipeline.layout,
@ -903,11 +913,11 @@ static vk_sequence ggml_vk_buffer_write_2d_async(vk_buffer* dst, size_t offset,
// Buffer is already mapped // Buffer is already mapped
if(mem_prop_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { if(mem_prop_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl; std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
GGML_ASSERT(false);
} }
// Check if src is pinned memory // Check if src is pinned memory
vk_buffer* buf = nullptr; vk_buffer* buf = nullptr;
size_t buf_offset = 0; size_t buf_offset = 0;
PROFILE("ggml_vk_buffer_write pinned check",
for (size_t i = 0; i < vk_buf_list.size(); i++) { for (size_t i = 0; i < vk_buf_list.size(); i++) {
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_buf_list[i]); const uint8_t* addr = (const uint8_t*) std::get<0>(vk_buf_list[i]);
const uint8_t* endr = addr + std::get<1>(vk_buf_list[i]); const uint8_t* endr = addr + std::get<1>(vk_buf_list[i]);
@ -917,22 +927,29 @@ static vk_sequence ggml_vk_buffer_write_2d_async(vk_buffer* dst, size_t offset,
break; break;
} }
} }
);
vk_submission s = ggml_vk_create_submission(q, std::move(wait_semaphores), std::move(signal_semaphores)); vk_submission s = ggml_vk_create_submission(q, std::move(wait_semaphores), std::move(signal_semaphores));
if (buf != nullptr) { if (buf != nullptr) {
// Memory is pinned, use as staging buffer // Memory is pinned, use as staging buffer
std::vector<VkBufferCopy> slices(height); std::vector<vk::BufferCopy> slices(1);
if (width == spitch) {
// Only do single write if stride is equal
slices[0].srcOffset = buf_offset;
slices[0].dstOffset = offset;
slices[0].size = width * height;
} else {
slices.resize(height);
for (size_t i = 0; i < height; i++) { for (size_t i = 0; i < height; i++) {
slices[i].srcOffset = buf_offset + i * spitch; slices[i].srcOffset = buf_offset + i * spitch;
slices[i].dstOffset = offset + i * width; slices[i].dstOffset = offset + i * width;
slices[i].size = width; slices[i].size = width;
} }
}
s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit }); s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
ggml_vk_sync_buffers(s.buffer, { *dst }, q, vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eMemoryWrite); ggml_vk_sync_buffers(s.buffer, { *dst }, q, vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eMemoryWrite, false);
vkCmdCopyBuffer(s.buffer, buf->buffer, dst->buffer, height, slices.data()); s.buffer.copyBuffer(buf->buffer, dst->buffer, slices);
s.buffer.end(); s.buffer.end();
return { s }; return { s };
} }
@ -953,13 +970,17 @@ static vk_sequence ggml_vk_buffer_write_2d_async(vk_buffer* dst, size_t offset,
width * height}; width * height};
s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit }); s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
ggml_vk_sync_buffers(s.buffer, { *dst }, q, vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eMemoryWrite); ggml_vk_sync_buffers(s.buffer, { *dst }, q, vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eMemoryWrite, false);
vkCmdCopyBuffer(s.buffer, dst->sb_write->buffer, dst->buffer, 1, &buf_copy); vkCmdCopyBuffer(s.buffer, dst->sb_write->buffer, dst->buffer, 1, &buf_copy);
s.buffer.end(); s.buffer.end();
if (width == spitch) {
memcpy(dst->sb_write->info.pMappedData, src, width * height);
} else {
for (size_t i = 0; i < height; i++) { for (size_t i = 0; i < height; i++) {
memcpy((uint8_t *)dst->sb_write->info.pMappedData + offset + i * width, (const uint8_t *) src + i * spitch, width); memcpy((uint8_t *)dst->sb_write->info.pMappedData + offset + i * width, (const uint8_t *) src + i * spitch, width);
} }
}
return { s }; return { s };
} }
@ -975,11 +996,9 @@ static void ggml_vk_buffer_write_2d(vk_buffer* dst, size_t offset, const void *
if(mem_prop_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { if(mem_prop_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
GGML_ASSERT(mem_prop_flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); GGML_ASSERT(mem_prop_flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
PROFILE("ggml_vk_buffer_write visible",
for (size_t i = 0; i < height; i++) { for (size_t i = 0; i < height; i++) {
memcpy((uint8_t *)dst->info.pMappedData + offset + i * width, (const uint8_t *) src + i * spitch, width); memcpy((uint8_t *)dst->info.pMappedData + offset + i * width, (const uint8_t *) src + i * spitch, width);
} }
);
} else { } else {
vk::Fence fence = vk_device.createFence({}); vk::Fence fence = vk_device.createFence({});
std::vector<vk_sequence> s = { ggml_vk_buffer_write_2d_async(dst, offset, src, spitch, width, height, q, {}, {}) }; std::vector<vk_sequence> s = { ggml_vk_buffer_write_2d_async(dst, offset, src, spitch, width, height, q, {}, {}) };
@ -988,6 +1007,112 @@ static void ggml_vk_buffer_write_2d(vk_buffer* dst, size_t offset, const void *
} }
} }
static inline size_t ggml_vk_align_size(size_t width, size_t align) {
return CEIL_DIV(width, align) * align;
}
static vk_sequence ggml_vk_buffer_write_2d_async_zeropad(vk_buffer* dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, size_t align, vk_queue& q, std::vector<vk::Semaphore>&& wait_semaphores, std::vector<vk::Semaphore>&& signal_semaphores) {
#ifdef VK_DEBUG
std::cerr << "ggml_vk_buffer_write_2d_async_zeropad(" << offset << ", " << spitch << ", " << width << ", " << height << ", " << align << ")" << std::endl;
#endif
VkMemoryPropertyFlags mem_prop_flags;
vmaGetAllocationMemoryProperties(vk_allocator, dst->allocation, &mem_prop_flags);
// Buffer is already mapped
if(mem_prop_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
std::cerr << "ggml_vulkan: buffer_write_2d_async_zeropad dst buffer is host_visible. Use synchronous write." << std::endl;
GGML_ASSERT(false);
}
// Check if src is pinned memory
vk_buffer* buf = nullptr;
size_t buf_offset = 0;
for (size_t i = 0; i < vk_buf_list.size(); i++) {
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_buf_list[i]);
const uint8_t* endr = addr + std::get<1>(vk_buf_list[i]);
if (src >= addr && src < endr) {
buf = &std::get<2>(vk_buf_list[i]);
buf_offset = ((const uint8_t *)src) - addr;
break;
}
}
// Align slices to the value of align
const uint32_t padded_width = ggml_vk_align_size(width, align);
if (buf != nullptr) {
vk_submission s = ggml_vk_create_submission(q, std::move(wait_semaphores), std::move(signal_semaphores));
std::vector<vk::BufferCopy> slices(1);
if (width == padded_width && width == spitch) {
// Only do single write if no padding happens
slices[0].srcOffset = buf_offset;
slices[0].dstOffset = offset;
slices[0].size = width * height;
} else {
slices.resize(height);
for (size_t i = 0; i < height; i++) {
slices[i].srcOffset = buf_offset + i * spitch;
slices[i].dstOffset = offset + i * padded_width;
slices[i].size = width;
}
}
s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
ggml_vk_sync_buffers(s.buffer, { *dst }, q, vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eMemoryWrite, false);
if (padded_width > width) {
s.buffer.fillBuffer(dst->buffer, 0, VK_WHOLE_SIZE, 0);
}
s.buffer.pipelineBarrier(
q.stage_flags,
q.stage_flags,
{},
{},
{
{ vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eMemoryWrite, vk::QueueFamilyIgnored, vk::QueueFamilyIgnored, dst->buffer, 0, VK_WHOLE_SIZE }
},
{}
);
s.buffer.copyBuffer(buf->buffer, dst->buffer, slices);
s.buffer.end();
return { s };
}
// Staging buffer required, malloc because of async transfer
if (dst->sb_write == nullptr) {
dst->sb_write = new vk_buffer;
*dst->sb_write = ggml_vk_create_buffer(dst->size, VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT, VMA_MEMORY_USAGE_AUTO_PREFER_HOST, 0);
}
vk_submission s = ggml_vk_create_submission(q, std::move(wait_semaphores), std::move(signal_semaphores));
VkMemoryPropertyFlags mpf_staging;
vmaGetAllocationMemoryProperties(vk_allocator, dst->sb_write->allocation, &mpf_staging);
GGML_ASSERT(mpf_staging & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
vk::BufferCopy buf_copy = {
0,
offset,
padded_width * height};
s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
ggml_vk_sync_buffers(s.buffer, { *dst }, q, vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eTransferWrite, false);
s.buffer.copyBuffer(dst->sb_write->buffer, dst->buffer, { buf_copy });
s.buffer.end();
const size_t zeropad = padded_width - width;
if (width == padded_width && width == spitch) {
memcpy(dst->sb_write->info.pMappedData, src, width * height);
} else {
for (size_t i = 0; i < height; i++) {
memcpy((uint8_t *)dst->sb_write->info.pMappedData + i * padded_width, (const uint8_t *) src + i * spitch, width);
memset((uint8_t *)dst->sb_write->info.pMappedData + i * padded_width + width, 0, zeropad);
}
}
return { s };
}
static vk_sequence ggml_vk_buffer_write_async(vk_buffer* dst, size_t offset, const void * src, size_t size, vk_queue& q, std::vector<vk::Semaphore>&& wait_semaphores, std::vector<vk::Semaphore>&& signal_semaphores) { static vk_sequence ggml_vk_buffer_write_async(vk_buffer* dst, size_t offset, const void * src, size_t size, vk_queue& q, std::vector<vk::Semaphore>&& wait_semaphores, std::vector<vk::Semaphore>&& signal_semaphores) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_buffer_write_async(" << size << ")" << std::endl; std::cerr << "ggml_vk_buffer_write_async(" << size << ")" << std::endl;
@ -1031,7 +1156,7 @@ static vk_sequence ggml_vk_buffer_read_async(vk_buffer* src, size_t offset, void
vk_submission s = ggml_vk_create_submission(q, std::move(wait_semaphores), std::move(signal_semaphores)); vk_submission s = ggml_vk_create_submission(q, std::move(wait_semaphores), std::move(signal_semaphores));
s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit }); s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
ggml_vk_sync_buffers(s.buffer, { *src }, q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eMemoryRead); ggml_vk_sync_buffers(s.buffer, { *src }, q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eMemoryRead, false);
vkCmdCopyBuffer(s.buffer, src->buffer, buf->buffer, 1, &buf_copy); vkCmdCopyBuffer(s.buffer, src->buffer, buf->buffer, 1, &buf_copy);
s.buffer.end(); s.buffer.end();
@ -1073,7 +1198,7 @@ static void ggml_vk_buffer_read(vk_buffer* src, size_t offset, void * dst, size_
std::vector<vk_sequence> s = { ggml_vk_create_sequence_1(q, {}, {}) }; std::vector<vk_sequence> s = { ggml_vk_create_sequence_1(q, {}, {}) };
s[0][0].buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit }); s[0][0].buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
ggml_vk_sync_buffers(s[0][0].buffer, { *src }, q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eMemoryRead); ggml_vk_sync_buffers(s[0][0].buffer, { *src }, q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eTransferRead, false);
vkCmdCopyBuffer(s[0][0].buffer, src->buffer, buf->buffer, 1, &buf_copy); vkCmdCopyBuffer(s[0][0].buffer, src->buffer, buf->buffer, 1, &buf_copy);
s[0][0].buffer.end(); s[0][0].buffer.end();
ggml_vk_submit(q, s, fence); ggml_vk_submit(q, s, fence);
@ -1098,7 +1223,7 @@ static void ggml_vk_buffer_read(vk_buffer* src, size_t offset, void * dst, size_
vk::CommandBuffer cmd_buffer = ggml_vk_create_cmd_buffer(q); vk::CommandBuffer cmd_buffer = ggml_vk_create_cmd_buffer(q);
vk::CommandBufferBeginInfo cmd_buffer_begin_info(vk::CommandBufferUsageFlagBits::eOneTimeSubmit); vk::CommandBufferBeginInfo cmd_buffer_begin_info(vk::CommandBufferUsageFlagBits::eOneTimeSubmit);
cmd_buffer.begin(cmd_buffer_begin_info); cmd_buffer.begin(cmd_buffer_begin_info);
ggml_vk_sync_buffers(cmd_buffer, { *src }, q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eMemoryRead); ggml_vk_sync_buffers(cmd_buffer, { *src }, q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eTransferRead, false);
vkCmdCopyBuffer(cmd_buffer, src->buffer, src->sb_read->buffer, 1, &buf_copy); vkCmdCopyBuffer(cmd_buffer, src->buffer, src->sb_read->buffer, 1, &buf_copy);
cmd_buffer.end(); cmd_buffer.end();
@ -1117,7 +1242,7 @@ static void ggml_vk_buffer_read(vk_buffer* src, size_t offset, void * dst, size_
} }
} }
static vk_sequence ggml_vk_h2d_tensor_2d(vk_buffer* dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, vk_queue& q, std::vector<vk::Semaphore>&& wait_semaphores, std::vector<vk::Semaphore>&& signal_semaphores) { static vk_sequence ggml_vk_h2d_tensor_2d(vk_buffer* dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, size_t align, vk_queue& q, std::vector<vk::Semaphore>&& wait_semaphores, std::vector<vk::Semaphore>&& signal_semaphores) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_h2d_tensor_2d()" << std::endl; std::cerr << "ggml_vk_h2d_tensor_2d()" << std::endl;
#endif #endif
@ -1134,10 +1259,11 @@ static vk_sequence ggml_vk_h2d_tensor_2d(vk_buffer* dst, size_t offset, const st
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
if (nb0 == ts && nb1 == row_length) { if (nb0 == ts && nb1 == row_length) {
return ggml_vk_buffer_write_async(dst, offset, x, ne1*nb1, q, std::move(wait_semaphores), std::move(signal_semaphores)); // return ggml_vk_buffer_write_async(dst, offset, x, ne1*nb1, q, std::move(wait_semaphores), std::move(signal_semaphores));
return ggml_vk_buffer_write_2d_async_zeropad(dst, offset, x, nb1, row_length, ne1, align, q, std::move(wait_semaphores), std::move(signal_semaphores));
} }
if (nb0 == ts) { if (nb0 == ts) {
return ggml_vk_buffer_write_2d_async(dst, offset, x, nb1, row_length, ne1, q, std::move(wait_semaphores), std::move(signal_semaphores)); return ggml_vk_buffer_write_2d_async_zeropad(dst, offset, x, nb1, row_length, ne1, align, q, std::move(wait_semaphores), std::move(signal_semaphores));
} }
GGML_ASSERT(false); GGML_ASSERT(false);
// TODO: also needs handling of staging buffers // TODO: also needs handling of staging buffers
@ -1184,30 +1310,26 @@ static vk_pipeline* ggml_vk_guess_matmul_pipeline(bool bit16, int m, int n) {
return &vk_pipeline_matmul_f32_l; return &vk_pipeline_matmul_f32_l;
} }
static vk_sequence ggml_vk_matmul(vk_pipeline& pipeline, vk_buffer& a, vk_buffer& b, vk_buffer& d, int m, int n, int k, int split_k, vk_queue& q, std::vector<vk::Semaphore>&& wait_semaphores, std::vector<vk::Semaphore>&& signal_semaphores) { static vk_sequence ggml_vk_matmul(vk_pipeline& pipeline, vk_buffer& a, vk_buffer& b, vk_buffer& d, int m, int n, int k, int stride_a, int stride_b, int stride_d, int split_k, vk_queue& q, std::vector<vk::Semaphore>&& wait_semaphores, std::vector<vk::Semaphore>&& signal_semaphores) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_matmul(" << m << ", " << n << ", " << k << ")" << std::endl; std::cerr << "ggml_vk_matmul(" << m << ", " << n << ", " << k << ")" << std::endl;
#endif #endif
vk_submission s = ggml_vk_begin_submission(q); vk_submission s = ggml_vk_begin_submission(q);
ggml_vk_sync_buffers(s.buffer, { a, b }, q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eShaderRead, false);
ggml_vk_sync_buffers(s.buffer, { d }, q, vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eShaderWrite, false);
if (split_k == 1) { if (split_k == 1) {
ggml_vk_dispatch_pipeline(s, pipeline, { a, b, d }, { m, n, k, k, k, m, k }, { (uint32_t)m, (uint32_t)n, 1 }, q); const std::vector<int> pc = { m, n, k, stride_a, stride_b, stride_d, k };
ggml_vk_dispatch_pipeline(s, pipeline, { a, b, d }, pc.size() * sizeof(int), pc.data(), { (uint32_t)m, (uint32_t)n, 1 }, q);
ggml_vk_end_submission(s, std::move(wait_semaphores), std::move(signal_semaphores)); ggml_vk_end_submission(s, std::move(wait_semaphores), std::move(signal_semaphores));
return { s }; return { s };
} }
// Synchronize the two submissions // Synchronize the two submissions
ggml_vk_dispatch_pipeline(s, pipeline, { a, b, d }, { m, n, k, k, k, m, CEIL_DIV(k, split_k) }, { (uint32_t)m * split_k, (uint32_t)n, 1 }, q); const std::vector<int> pc1 = { m, n, k, stride_a, stride_b, stride_d, CEIL_DIV(stride_a, split_k) };
ggml_vk_dispatch_pipeline(s, pipeline, { a, b, d }, pc1.size() * sizeof(int), pc1.data(), { (uint32_t)m * split_k, (uint32_t)n, 1 }, q);
s.buffer.pipelineBarrier( ggml_vk_sync_buffers(s.buffer, { d }, q, vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite, true);
q.stage_flags, const std::vector<int> pc2 = { m, n, split_k };
q.stage_flags, ggml_vk_dispatch_pipeline(s, vk_pipeline_matmul_split_k_reduce, { d }, pc2.size() * sizeof(int), pc2.data(), { (uint32_t)m, (uint32_t)n, 1 }, q);
{},
{},
{
{ vk::AccessFlagBits::eMemoryWrite, vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite, vk::QueueFamilyIgnored, vk::QueueFamilyIgnored, d.buffer, 0, VK_WHOLE_SIZE } },
{}
);
ggml_vk_dispatch_pipeline(s, vk_pipeline_matmul_split_k_reduce, { d }, { m, n, split_k }, { (uint32_t)m, (uint32_t)n, 1 }, q);
ggml_vk_end_submission(s, std::move(wait_semaphores), std::move(signal_semaphores)); ggml_vk_end_submission(s, std::move(wait_semaphores), std::move(signal_semaphores));
return { s }; return { s };
@ -1215,7 +1337,9 @@ static vk_sequence ggml_vk_matmul(vk_pipeline& pipeline, vk_buffer& a, vk_buffer
static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_mul_mat_f32()" << std::endl; std::cerr << "ggml_vk_mul_mat_f32((type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3];
std::cerr << "), (type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3];
std::cerr << "), (type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << "),)" << std::endl;
#endif #endif
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
@ -1228,22 +1352,22 @@ static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
const int nb2 = dst->nb[2]; const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3]; const int nb3 = dst->nb[3];
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01; const int d_ne = ne11 * ne01;
const int split_k = ggml_vk_guess_split_k(ne01, ne11, ne10); const int split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(false, ne01, ne11); vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(false, ne01, ne11);
const int kpad = ggml_vk_align_size(ne10, pipeline->align);
vk_buffer d_X; vk_buffer d_X;
vk_buffer d_Y; vk_buffer d_Y;
vk_buffer d_D; vk_buffer d_D;
if (src0->backend == GGML_BACKEND_GPU) { if (src0->backend == GGML_BACKEND_GPU) {
d_X = *(vk_buffer*) src0->data; d_X = *(vk_buffer*) src0->data;
} else { } else {
ggml_vk_pool_malloc(sizeof(float) * x_ne, &d_X, 0); ggml_vk_pool_malloc(sizeof(float) * kpad * ne01, &d_X, 0);
} }
ggml_vk_pool_malloc(sizeof(float) * y_ne, &d_Y, 0); ggml_vk_pool_malloc(sizeof(float) * kpad * ne11, &d_Y, 0);
ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0); ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0);
std::vector<vk_sequence> compute_seqs; std::vector<vk_sequence> compute_seqs;
@ -1268,20 +1392,20 @@ static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
s_x = ggml_vk_create_semaphore(vk_compute_queue); s_x = ggml_vk_create_semaphore(vk_compute_queue);
semaphores.push_back(s_x); semaphores.push_back(s_x);
if (first) { if (first) {
transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02, vk_transfer_queues[0], {}, { s_x })); transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02, pipeline->align * sizeof(float), vk_transfer_queues[0], {}, { s_x }));
} else { } else {
// Wait for previous matmul to be done before writing to the input buffers again // Wait for previous matmul to be done before writing to the input buffers again
transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02, vk_transfer_queues[0], { s_it_x }, { s_x })); transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02, pipeline->align * sizeof(float), vk_transfer_queues[0], { s_it_x }, { s_x }));
} }
} }
ggml_vk_submit(vk_transfer_queues[0], transfer_0_seqs, VK_NULL_HANDLE); ggml_vk_submit(vk_transfer_queues[0], transfer_0_seqs, VK_NULL_HANDLE);
if (first) { if (first) {
transfer_1_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02, vk_transfer_queues[1], {}, { s_y })); transfer_1_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02, pipeline->align * sizeof(float), vk_transfer_queues[1], {}, { s_y }));
} else { } else {
// Wait for previous matmul to be done before writing to the input buffers again // Wait for previous matmul to be done before writing to the input buffers again
transfer_1_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02, vk_transfer_queues[1], { s_it_y }, { s_y })); transfer_1_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02, pipeline->align * sizeof(float), vk_transfer_queues[1], { s_it_y }, { s_y }));
} }
// compute // compute
@ -1291,13 +1415,13 @@ static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
if (load_x) { if (load_x) {
s_it_x = ggml_vk_create_semaphore(vk_compute_queue); s_it_x = ggml_vk_create_semaphore(vk_compute_queue);
s_it_y = ggml_vk_create_semaphore(vk_compute_queue); s_it_y = ggml_vk_create_semaphore(vk_compute_queue);
compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_x, s_it_y })); compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, kpad, kpad, ne01, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_x, s_it_y }));
} else { } else {
s_it_y = ggml_vk_create_semaphore(vk_compute_queue); s_it_y = ggml_vk_create_semaphore(vk_compute_queue);
compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_y })); compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, kpad, kpad, ne01, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_y }));
} }
} else { } else {
compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, split_k, vk_compute_queue, std::move(semaphores), { s_mm })); compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, kpad, kpad, ne01, split_k, vk_compute_queue, std::move(semaphores), { s_mm }));
} }
// copy dst to host // copy dst to host
@ -1325,14 +1449,15 @@ static void ggml_vk_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata) { static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_mul_mat_f16()" << std::endl; std::cerr << "ggml_vk_mul_mat_f16((type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3];
std::cerr << "), (type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3];
std::cerr << "), (type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << "),)" << std::endl;
#endif #endif
GGML_ASSERT(vk_fp16_support); GGML_ASSERT(vk_fp16_support);
GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2]; const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3]; const int64_t ne03 = src0->ne[3];
@ -1348,22 +1473,22 @@ static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
const int nb2 = dst->nb[2]; const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3]; const int nb3 = dst->nb[3];
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01; const int d_ne = ne11 * ne01;
const int split_k = ggml_vk_guess_split_k(ne01, ne11, ne10); const int split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(true, ne01, ne11); vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(true, ne01, ne11);
const int kpad = ggml_vk_align_size(ne10, pipeline->align);
vk_buffer d_X; vk_buffer d_X;
vk_buffer d_Y; vk_buffer d_Y;
vk_buffer d_D; vk_buffer d_D;
if (src0->backend == GGML_BACKEND_GPU) { if (src0->backend == GGML_BACKEND_GPU) {
d_X = *(vk_buffer*) src0->data; d_X = *(vk_buffer*) src0->data;
} else { } else {
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &d_X, 0); ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * kpad * ne01, &d_X, 0);
} }
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &d_Y, 0); ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * kpad * ne11, &d_Y, 0);
ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0); ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0);
bool src1_cont_rows = nb10 == sizeof(float); bool src1_cont_rows = nb10 == sizeof(float);
@ -1392,10 +1517,10 @@ static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
s_x = ggml_vk_create_semaphore(vk_compute_queue); s_x = ggml_vk_create_semaphore(vk_compute_queue);
semaphores.push_back(s_x); semaphores.push_back(s_x);
if (first) { if (first) {
transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02, vk_transfer_queues[0], {}, { s_x })); transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02, pipeline->align * sizeof(ggml_fp16_t), vk_transfer_queues[0], {}, { s_x }));
} else { } else {
// Wait for previous matmul to be done before writing to the input buffers again // Wait for previous matmul to be done before writing to the input buffers again
transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02, vk_transfer_queues[0], { s_it_x }, { s_x })); transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_X, 0, src0, i03, i02, pipeline->align * sizeof(ggml_fp16_t), vk_transfer_queues[0], { s_it_x }, { s_x }));
} }
} }
@ -1403,6 +1528,7 @@ static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
// convert src1 to fp16 // convert src1 to fp16
// TODO: use multiple threads // TODO: use multiple threads
// TODO: This memory isn't pinned
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
if (src1_cont_rows) { if (src1_cont_rows) {
@ -1414,8 +1540,7 @@ static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
} }
} }
} } else {
else {
for (int64_t i01 = 0; i01 < ne11; i01++) { for (int64_t i01 = 0; i01 < ne11; i01++) {
for (int64_t i00 = 0; i00 < ne10; i00++) { for (int64_t i00 = 0; i00 < ne10; i00++) {
// very slow due to no inlining // very slow due to no inlining
@ -1425,10 +1550,10 @@ static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
} }
if (first) { if (first) {
transfer_1_seqs.push_back(ggml_vk_buffer_write_async(&d_Y, 0, tmp, sizeof(ggml_fp16_t) * y_ne, vk_transfer_queues[1], {}, { s_y })); transfer_1_seqs.push_back(ggml_vk_buffer_write_2d_async_zeropad(&d_Y, 0, tmp, sizeof(ggml_fp16_t) * ne10, sizeof(ggml_fp16_t) * ne10, ne11, pipeline->align * sizeof(ggml_fp16_t), vk_transfer_queues[1], {}, { s_y }));
} else { } else {
// Wait for previous matmul to be done before writing to the input buffers again // Wait for previous matmul to be done before writing to the input buffers again
transfer_1_seqs.push_back(ggml_vk_buffer_write_async(&d_Y, 0, tmp, sizeof(ggml_fp16_t) * y_ne, vk_transfer_queues[1], { s_it_y }, { s_y })); transfer_1_seqs.push_back(ggml_vk_buffer_write_2d_async_zeropad(&d_Y, 0, tmp, sizeof(ggml_fp16_t) * ne10, sizeof(ggml_fp16_t) * ne10, ne11, pipeline->align * sizeof(ggml_fp16_t), vk_transfer_queues[1], { s_it_y }, { s_y }));
} }
// compute // compute
@ -1437,13 +1562,13 @@ static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
if (load_x) { if (load_x) {
s_it_x = ggml_vk_create_semaphore(vk_compute_queue); s_it_x = ggml_vk_create_semaphore(vk_compute_queue);
s_it_y = ggml_vk_create_semaphore(vk_compute_queue); s_it_y = ggml_vk_create_semaphore(vk_compute_queue);
compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_x, s_it_y })); compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, kpad, kpad, ne01, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_x, s_it_y }));
} else { } else {
s_it_y = ggml_vk_create_semaphore(vk_compute_queue); s_it_y = ggml_vk_create_semaphore(vk_compute_queue);
compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_y })); compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, kpad, kpad, ne01, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_y }));
} }
} else { } else {
compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, split_k, vk_compute_queue, std::move(semaphores), { s_mm })); compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, kpad, kpad, ne01, split_k, vk_compute_queue, std::move(semaphores), { s_mm }));
} }
// copy dst to host // copy dst to host
@ -1456,7 +1581,6 @@ static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
} }
ggml_vk_submit(vk_transfer_queues[0], transfer_0_seqs, VK_NULL_HANDLE); ggml_vk_submit(vk_transfer_queues[0], transfer_0_seqs, VK_NULL_HANDLE);
// vk_transfer_queues[0].queue.waitIdle();
// cleanup waits for the queue to be done // cleanup waits for the queue to be done
ggml_vk_queue_cleanup(vk_transfer_queues[0]); ggml_vk_queue_cleanup(vk_transfer_queues[0]);
@ -1472,7 +1596,9 @@ static void ggml_vk_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
static void ggml_vk_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_vk_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
#ifdef VK_DEBUG #ifdef VK_DEBUG
std::cerr << "ggml_vk_mul_mat_q_f32()" << std::endl; std::cerr << "ggml_vk_mul_mat_q_f32((type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3];
std::cerr << "), (type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3];
std::cerr << "), (type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << "),)" << std::endl;
#endif #endif
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
@ -1495,13 +1621,15 @@ static void ggml_vk_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
const int split_k = ggml_vk_guess_split_k(ne01, ne11, ne10); const int split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(false, ne01, ne11); vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(false, ne01, ne11);
const int kpad = ggml_vk_align_size(ne10, pipeline->align);
vk_buffer d_X; vk_buffer d_X;
vk_buffer d_Y; vk_buffer d_Y;
vk_buffer d_D; vk_buffer d_D;
if (!mul_mat_vec) { if (!mul_mat_vec) {
ggml_vk_pool_malloc(sizeof(float) * x_ne, &d_X, 0); ggml_vk_pool_malloc(sizeof(float) * kpad * ne01, &d_X, 0);
} }
ggml_vk_pool_malloc(sizeof(float) * y_ne, &d_Y, 0); ggml_vk_pool_malloc(sizeof(float) * kpad * ne11, &d_Y, 0);
ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0); ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0);
vk_buffer d_Q; vk_buffer d_Q;
if (src0->backend == GGML_BACKEND_CPU) { if (src0->backend == GGML_BACKEND_CPU) {
@ -1540,10 +1668,10 @@ static void ggml_vk_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
s_x = ggml_vk_create_semaphore(vk_compute_queue); s_x = ggml_vk_create_semaphore(vk_compute_queue);
q_semaphores.push_back(s_x); q_semaphores.push_back(s_x);
if (first) { if (first) {
transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Q, 0, src0, i03, i02, vk_transfer_queues[0], {}, { s_x })); transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Q, 0, src0, i03, i02, 1, vk_transfer_queues[0], {}, { s_x }));
} else { } else {
// Wait for previous dequant to be done before writing to the input buffers again // Wait for previous dequant to be done before writing to the input buffers again
transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Q, 0, src0, i03, i02, vk_transfer_queues[0], { s_it_x }, { s_x })); transfer_0_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Q, 0, src0, i03, i02, 1, vk_transfer_queues[0], { s_it_x }, { s_x }));
} }
} else if (src0->backend == GGML_BACKEND_GPU) { } else if (src0->backend == GGML_BACKEND_GPU) {
d_Q = *(vk_buffer *) src0->data; d_Q = *(vk_buffer *) src0->data;
@ -1555,10 +1683,10 @@ static void ggml_vk_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
// copy src1 to device // copy src1 to device
if (first) { if (first) {
transfer_1_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02, vk_transfer_queues[1], {}, { s_y })); transfer_1_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02, pipeline->align * sizeof(float), vk_transfer_queues[1], {}, { s_y }));
} else { } else {
// Wait for previous matmul to be done before writing to the input buffers again // Wait for previous matmul to be done before writing to the input buffers again
transfer_1_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02, vk_transfer_queues[1], { s_it_y }, { s_y })); transfer_1_seqs.push_back(ggml_vk_h2d_tensor_2d(&d_Y, 0, src1, i03, i02, pipeline->align * sizeof(float), vk_transfer_queues[1], { s_it_y }, { s_y }));
} }
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
@ -1582,7 +1710,10 @@ static void ggml_vk_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
// convert src0 to fp32 on device // convert src0 to fp32 on device
vk_submission s = ggml_vk_begin_submission(vk_compute_queue); vk_submission s = ggml_vk_begin_submission(vk_compute_queue);
ggml_vk_dispatch_pipeline(s, *to_fp32_vk, {d_Q, d_X}, { (int)x_ne }, { (uint32_t)x_ne, 1, 1}, vk_compute_queue); const std::vector<int> pc = { (int)ne01, (int)ne10, (int)ne10, kpad };
ggml_vk_sync_buffers(s.buffer, { d_Q }, vk_compute_queue, vk::AccessFlagBits::eTransferWrite, vk::AccessFlagBits::eShaderRead, false);
ggml_vk_sync_buffers(s.buffer, { d_X }, vk_compute_queue, vk::AccessFlagBits::eShaderRead, vk::AccessFlagBits::eShaderWrite, false);
ggml_vk_dispatch_pipeline(s, *to_fp32_vk, {d_Q, d_X}, pc.size() * sizeof(int), pc.data(), { (uint32_t)x_ne, 1, 1}, vk_compute_queue);
if (load_x && !last) { if (load_x && !last) {
s_it_x = ggml_vk_create_semaphore(vk_compute_queue); s_it_x = ggml_vk_create_semaphore(vk_compute_queue);
ggml_vk_end_submission(s, std::move(q_semaphores), { s_q, s_it_x }); ggml_vk_end_submission(s, std::move(q_semaphores), { s_q, s_it_x });
@ -1594,9 +1725,9 @@ static void ggml_vk_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
// compute // compute
if (!last) { if (!last) {
s_it_y = ggml_vk_create_semaphore(vk_compute_queue); s_it_y = ggml_vk_create_semaphore(vk_compute_queue);
compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_y })); compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, kpad, kpad, ne01, split_k, vk_compute_queue, std::move(semaphores), { s_mm, s_it_y }));
} else { } else {
compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, split_k, vk_compute_queue, std::move(semaphores), { s_mm })); compute_seqs.push_back(ggml_vk_matmul(*pipeline, d_X, d_Y, d_D, ne01, ne11, ne10, kpad, kpad, ne01, split_k, vk_compute_queue, std::move(semaphores), { s_mm }));
} }
} }
@ -1730,7 +1861,7 @@ void ggml_vk_test_transfer(size_t ne) {
double kb = ne * sizeof(float) / 1024.0; double kb = ne * sizeof(float) / 1024.0;
std::cout << "TEST TRANSFER " << kb << " KB to_gpu " << ms_to_gpu << "ms (" << kb / ms_to_gpu * 1000.0 / 1024.0 << " MB/s) from_gpu " << ms_from_gpu << "ms (" << kb / ms_from_gpu * 1000.0 / 1024.0 << " MB/s) avg_err=" << avg_err / ne << std::endl; std::cerr << "TEST TRANSFER " << kb << " KB to_gpu " << ms_to_gpu << "ms (" << kb / ms_to_gpu * 1000.0 / 1024.0 << " MB/s) from_gpu " << ms_from_gpu << "ms (" << kb / ms_from_gpu * 1000.0 / 1024.0 << " MB/s) avg_err=" << avg_err / ne << std::endl;
ggml_vk_destroy_buffer(buffer); ggml_vk_destroy_buffer(buffer);
@ -1742,31 +1873,6 @@ void ggml_vk_test_matmul_f32(size_t m, size_t n, size_t k, size_t num_it, int sp
const size_t y_ne = k * n; const size_t y_ne = k * n;
const size_t d_ne = m * n; const size_t d_ne = m * n;
vk_buffer d_X;
vk_buffer d_Y;
vk_buffer d_D;
ggml_vk_pool_malloc(sizeof(float) * x_ne, &d_X, 0);
ggml_vk_pool_malloc(sizeof(float) * y_ne, &d_Y, 0);
ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0);
float* x = (float *) malloc(sizeof(float) * x_ne);
float* y = (float *) malloc(sizeof(float) * y_ne);
float* d = (float *) malloc(sizeof(float) * d_ne);
for (size_t i = 0; i < x_ne; i++) {
x[i] = rand() / (float)RAND_MAX;
}
for (size_t i = 0; i < y_ne; i++) {
y[i] = rand() / (float)RAND_MAX;
}
ggml_vk_buffer_write(&d_X, 0, x, sizeof(float) * x_ne, vk_transfer_queues[0]);
ggml_vk_buffer_write(&d_Y, 0, y, sizeof(float) * y_ne, vk_transfer_queues[1]);
// Wait for transfers to finish
vk_transfer_queues[0].queue.waitIdle();
vk_transfer_queues[1].queue.waitIdle();
std::vector<vk_sequence> seq; std::vector<vk_sequence> seq;
vk_pipeline * p; vk_pipeline * p;
@ -1784,10 +1890,38 @@ void ggml_vk_test_matmul_f32(size_t m, size_t n, size_t k, size_t num_it, int sp
GGML_ASSERT(0); GGML_ASSERT(0);
} }
const size_t kpad = ggml_vk_align_size(k, p->align);
vk_buffer d_X;
vk_buffer d_Y;
vk_buffer d_D;
ggml_vk_pool_malloc(sizeof(float) * kpad * m, &d_X, 0);
ggml_vk_pool_malloc(sizeof(float) * kpad * n, &d_Y, 0);
ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0);
float* x = (float *) malloc(sizeof(float) * x_ne);
float* y = (float *) malloc(sizeof(float) * y_ne);
float* d = (float *) malloc(sizeof(float) * d_ne);
for (size_t i = 0; i < x_ne; i++) {
x[i] = rand() / (float)RAND_MAX;
}
for (size_t i = 0; i < y_ne; i++) {
y[i] = rand() / (float)RAND_MAX;
}
seq.push_back(ggml_vk_buffer_write_2d_async_zeropad(&d_X, 0, x, sizeof(float) * k, sizeof(float) * k, m, sizeof(float) * p->align, vk_transfer_queues[0], {}, {}));
seq.push_back(ggml_vk_buffer_write_2d_async_zeropad(&d_Y, 0, y, sizeof(float) * k, sizeof(float) * k, n, sizeof(float) * p->align, vk_transfer_queues[0], {}, {}));
ggml_vk_submit(vk_transfer_queues[0], seq, VK_NULL_HANDLE);
// Wait for transfers to finish
vk_transfer_queues[0].queue.waitIdle();
auto begin = std::chrono::high_resolution_clock::now(); auto begin = std::chrono::high_resolution_clock::now();
for (size_t i = 0; i < num_it; i++) { for (size_t i = 0; i < num_it; i++) {
seq.push_back(ggml_vk_matmul(*p, d_X, d_Y, d_D, m, n, k, split_k, vk_compute_queue, {}, {})); seq.push_back(ggml_vk_matmul(*p, d_X, d_Y, d_D, m, n, k, kpad, kpad, m, split_k, vk_compute_queue, {}, {}));
} }
ggml_vk_submit(vk_compute_queue, seq, VK_NULL_HANDLE); ggml_vk_submit(vk_compute_queue, seq, VK_NULL_HANDLE);
@ -1840,30 +1974,6 @@ void ggml_vk_test_matmul_f16(size_t m, size_t n, size_t k, size_t num_it, int sp
const size_t y_ne = k * n; const size_t y_ne = k * n;
const size_t d_ne = m * n; const size_t d_ne = m * n;
vk_buffer d_X;
vk_buffer d_Y;
vk_buffer d_D;
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &d_X, 0);
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &d_Y, 0);
ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0);
ggml_fp16_t* x = (ggml_fp16_t *) malloc(sizeof(ggml_fp16_t) * x_ne);
ggml_fp16_t* y = (ggml_fp16_t *) malloc(sizeof(ggml_fp16_t) * y_ne);
float* d = (float *) malloc(sizeof(float) * d_ne);
for (size_t i = 0; i < x_ne; i++) {
x[i] = ggml_fp32_to_fp16(rand() / (float)RAND_MAX);
}
for (size_t i = 0; i < y_ne; i++) {
y[i] = ggml_fp32_to_fp16(rand() / (float)RAND_MAX);
}
ggml_vk_buffer_write(&d_X, 0, x, sizeof(ggml_fp16_t) * x_ne, vk_transfer_queues[0]);
ggml_vk_buffer_write(&d_Y, 0, y, sizeof(ggml_fp16_t) * y_ne, vk_transfer_queues[1]);
vk_transfer_queues[0].queue.waitIdle();
vk_transfer_queues[1].queue.waitIdle();
std::vector<vk_sequence> seq; std::vector<vk_sequence> seq;
vk_pipeline * p; vk_pipeline * p;
@ -1881,10 +1991,38 @@ void ggml_vk_test_matmul_f16(size_t m, size_t n, size_t k, size_t num_it, int sp
GGML_ASSERT(0); GGML_ASSERT(0);
} }
const size_t kpad = ggml_vk_align_size(k, p->align);
vk_buffer d_X;
vk_buffer d_Y;
vk_buffer d_D;
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * kpad * m, &d_X, 0);
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * kpad * n, &d_Y, 0);
ggml_vk_pool_malloc(sizeof(float) * d_ne * split_k, &d_D, 0);
ggml_fp16_t* x = (ggml_fp16_t *) malloc(sizeof(ggml_fp16_t) * x_ne);
ggml_fp16_t* y = (ggml_fp16_t *) malloc(sizeof(ggml_fp16_t) * y_ne);
float* d = (float *) malloc(sizeof(float) * d_ne);
for (size_t i = 0; i < x_ne; i++) {
x[i] = ggml_fp32_to_fp16(rand() / (float)RAND_MAX);
}
for (size_t i = 0; i < y_ne; i++) {
y[i] = ggml_fp32_to_fp16(rand() / (float)RAND_MAX);
}
seq.push_back(ggml_vk_buffer_write_2d_async_zeropad(&d_X, 0, x, sizeof(ggml_fp16_t) * k, sizeof(ggml_fp16_t) * k, m, sizeof(ggml_fp16_t) * p->align, vk_transfer_queues[0], {}, {}));
seq.push_back(ggml_vk_buffer_write_2d_async_zeropad(&d_Y, 0, y, sizeof(ggml_fp16_t) * k, sizeof(ggml_fp16_t) * k, n, sizeof(ggml_fp16_t) * p->align, vk_transfer_queues[0], {}, {}));
ggml_vk_submit(vk_transfer_queues[0], seq, VK_NULL_HANDLE);
// Wait for transfers to finish
vk_transfer_queues[0].queue.waitIdle();
auto begin = std::chrono::high_resolution_clock::now(); auto begin = std::chrono::high_resolution_clock::now();
for (size_t i = 0; i < num_it; i++) { for (size_t i = 0; i < num_it; i++) {
seq.push_back(ggml_vk_matmul(*p, d_X, d_Y, d_D, m, n, k, split_k, vk_compute_queue, {}, {})); seq.push_back(ggml_vk_matmul(*p, d_X, d_Y, d_D, m, n, k, kpad, kpad, m, split_k, vk_compute_queue, {}, {}));
} }
ggml_vk_submit(vk_compute_queue, seq, VK_NULL_HANDLE); ggml_vk_submit(vk_compute_queue, seq, VK_NULL_HANDLE);
@ -1936,4 +2074,70 @@ void ggml_vk_test_matmul_f16(size_t m, size_t n, size_t k, size_t num_it, int sp
free(y); free(y);
free(d); free(d);
} }
void ggml_vk_test_buffer_write_zeropad(size_t m, size_t k, size_t align) {
std::vector<vk_sequence> seq;
const size_t kpad = ggml_vk_align_size(k, align);
vk_buffer d_X;
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * kpad * m, &d_X, 0);
vk_buffer d_X2;
ggml_vk_pool_malloc(sizeof(ggml_fp16_t) * k * m, &d_X2, 0);
ggml_fp16_t* x = (ggml_fp16_t *) ggml_vk_host_malloc(sizeof(ggml_fp16_t) * m * k);
for (size_t i = 0; i < m * k; i++) {
x[i] = ggml_fp32_to_fp16(rand() / (float)RAND_MAX);
}
seq.push_back(ggml_vk_buffer_write_2d_async_zeropad(&d_X, 0, x, sizeof(ggml_fp16_t) * k, sizeof(ggml_fp16_t) * k, m, sizeof(ggml_fp16_t) * align, vk_transfer_queues[0], {}, {}));
ggml_vk_submit(vk_transfer_queues[0], seq, VK_NULL_HANDLE);
ggml_vk_buffer_write(&d_X2, 0, x, sizeof(ggml_fp16_t) * k * m, vk_transfer_queues[0]);
vk_transfer_queues[0].queue.waitIdle();
ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(sizeof(ggml_fp16_t) * kpad * m);
ggml_fp16_t * x_chk2 = (ggml_fp16_t *) malloc(sizeof(ggml_fp16_t) * k * m);
ggml_vk_buffer_read(&d_X, 0, x_chk, sizeof(ggml_fp16_t) * kpad * m, vk_transfer_queues[0]);
ggml_vk_buffer_read(&d_X2, 0, x_chk2, sizeof(ggml_fp16_t) * k * m, vk_transfer_queues[0]);
double avg_err_async = 0.0;
double avg_err_sync = 0.0;
for (size_t kidx = 0; kidx < kpad; kidx++) {
for (size_t midx = 0; midx < m; midx++) {
if (kidx < k) {
const float err = std::fabs(ggml_fp16_to_fp32(x[midx * k + kidx]) - ggml_fp16_to_fp32(x_chk[midx * kpad + kidx]));
const float err2 = std::fabs(ggml_fp16_to_fp32(x[midx * k + kidx]) - ggml_fp16_to_fp32(x_chk2[midx * k + kidx]));
if (!std::isnan(err)) {
avg_err_async += err;
}
if (!std::isnan(err2)) {
avg_err_sync += err;
}
if (err > 0.01f) {
std::cerr << "midx=" << midx << " kidx=" << kidx << " x: " << ggml_fp16_to_fp32(x[midx * k + kidx]) << " x_chk: " << ggml_fp16_to_fp32(x_chk[midx * kpad + kidx]) << " x_chk2: " << ggml_fp16_to_fp32(x_chk2[midx * k + kidx]) << std::endl;
}
} else {
const float val = std::fabs(ggml_fp16_to_fp32(x_chk[midx * kpad + kidx]));
if (val > 0.01f) {
std::cerr << "ZEROPAD ERROR midx=" << midx << " kidx=" << kidx << " src0: 0.0 x_chkidx: " << val << std::endl;
GGML_ASSERT(false);
}
avg_err_async += val;
}
}
}
std::cerr << "TEST BUFFER WRITE ZEROPAD m=" << m << " k=" << k << " align=" << align << " avg_err_async=" << avg_err_async / (kpad * m) << " avg_err_sync=" << avg_err_sync / (k * m) << std::endl;
free(x_chk);
ggml_vk_host_free(x);
ggml_vk_pool_free(d_X);
}
#endif #endif

View file

@ -21,25 +21,33 @@ layout (binding = 1) writeonly buffer D { float y[]; };
layout (push_constant) uniform parameter layout (push_constant) uniform parameter
{ {
int N; int M;
int K;
int stride_a;
int stride_b;
} p; } p;
void main() { void main() {
const int i = int(gl_GlobalInvocationID.x); const int i = int(gl_GlobalInvocationID.x);
if (i >= p.N) { // Transposed
const int row = i % (p.K / QUANT_K);
const int col = i / (p.K / QUANT_K);
if (row * QUANT_K >= p.K || col >= p.M) {
return; return;
} }
const block_q4_0 blk = x[i]; const int stride_a = p.stride_a / QUANT_K;
const block_q4_0 blk = x[col * stride_a + row];
const float d = float(blk.d); const float d = float(blk.d);
[[unroll]] for (int j = 0; j < QUANT_K/2; ++j) { [[unroll]] for (int j = 0; j < QUANT_K/2; ++j) {
const int x0 = (blk.qs[j] & 0x0F) - 8; const int x0 = (blk.qs[j] & 0x0F) - 8;
const int x1 = (blk.qs[j] >> 4) - 8; const int x1 = (blk.qs[j] >> 4) - 8;
y[i*QUANT_K + j + 0 ] = x0*d; y[col * p.stride_b + row*QUANT_K + j + 0 ] = x0*d;
y[i*QUANT_K + j + QUANT_K/2] = x1*d; y[col * p.stride_b + row*QUANT_K + j + QUANT_K/2] = x1*d;
} }
} }

View file

@ -9,13 +9,17 @@ layout (binding = 1) writeonly buffer D { float data_b[]; };
layout (push_constant) uniform parameter layout (push_constant) uniform parameter
{ {
int N; int M;
int K;
int stride_a;
int stride_b;
} p; } p;
void main() { void main() {
const int idx = int(gl_GlobalInvocationID.x); const int row = int(gl_GlobalInvocationID.x % p.K);
const int col = int(gl_GlobalInvocationID.x / p.K);
if (idx < p.N) { if (row < p.M && col < p.K) {
data_b[idx] = float(data_a[idx]); data_b[col * p.stride_b + row] = float(data_a[col * p.stride_a + row]);
} }
} }

View file

@ -7,8 +7,8 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A { float16_t data_a[]; }; layout (binding = 0) readonly buffer A { f16mat2x4 data_a[]; };
layout (binding = 1) readonly buffer B { float16_t data_b[]; }; layout (binding = 1) readonly buffer B { f16mat2x4 data_b[]; };
layout (binding = 2) writeonly buffer D { float data_d[]; }; layout (binding = 2) writeonly buffer D { float data_d[]; };
layout (push_constant) uniform parameter layout (push_constant) uniform parameter
@ -52,16 +52,16 @@ void main() {
const int tiwr = tiw % (WSUBM / TM); const int tiwr = tiw % (WSUBM / TM);
const int tiwc = tiw / (WSUBM / TM); const int tiwc = tiw / (WSUBM / TM);
const int loadr = int(gl_LocalInvocationID.x % BK); const int loadr = int(gl_LocalInvocationID.x % (BK / 8));
const int loadc = int(gl_LocalInvocationID.x / BK); const int loadc = int(gl_LocalInvocationID.x / (BK / 8));
const int loadstride = int(gl_WorkGroupSize.x); const int loadstride = int(gl_WorkGroupSize.x * 8) / BK;
const int start_k = ik * p.k_split; const int start_k = ik * p.k_split;
const int end_k = (ik + 1) * p.k_split; const int end_k = (ik + 1) * p.k_split;
int pos_a = ir * BM * p.stride_a + start_k; int pos_a = ir * BM * p.stride_a / 8 + start_k / 8;
int pos_b = ic * BN * p.stride_b + start_k; int pos_b = ic * BN * p.stride_b / 8 + start_k / 8;
float sums[WMITER * TM * WNITER * TN]; float sums[WMITER * TM * WNITER * TN];
float16_t cache_a[WMITER * TM]; float16_t cache_a[WMITER * TM];
@ -72,29 +72,33 @@ void main() {
} }
[[unroll]] for (int block = start_k; block < end_k; block += BK) { [[unroll]] for (int block = start_k; block < end_k; block += BK) {
[[unroll]] for (int l = 0; l < BM * BK; l += loadstride) { [[unroll]] for (int l = 0; l < BM; l += loadstride) {
const int lr = l % BK; f16mat2x4 tmp = data_a[pos_a + (loadc + l) * p.stride_a / 8 + loadr];
const int lc = l / BK; buf_a[(loadc + l) * (BK+1) + loadr * 8 + 0] = tmp[0].x;
if (ir * BM + loadc + lc < p.M && block + loadr + lr < p.K) { buf_a[(loadc + l) * (BK+1) + loadr * 8 + 1] = tmp[0].y;
buf_a[(loadc + lc) * (BK+1) + loadr + lr] = data_a[pos_a + (loadc + lc) * p.stride_a + loadr + lr]; buf_a[(loadc + l) * (BK+1) + loadr * 8 + 2] = tmp[0].z;
} else { buf_a[(loadc + l) * (BK+1) + loadr * 8 + 3] = tmp[0].w;
buf_a[(loadc + lc) * (BK+1) + loadr + lr] = 0.0hf; buf_a[(loadc + l) * (BK+1) + loadr * 8 + 4] = tmp[1].x;
} buf_a[(loadc + l) * (BK+1) + loadr * 8 + 5] = tmp[1].y;
} buf_a[(loadc + l) * (BK+1) + loadr * 8 + 6] = tmp[1].z;
[[unroll]] for (int l = 0; l < BN * BK; l += loadstride) { buf_a[(loadc + l) * (BK+1) + loadr * 8 + 7] = tmp[1].w;
const int lr = l % BK;
const int lc = l / BK;
if (ic * BN + loadc + lc < p.N && block + loadr + lr < p.K) {
buf_b[(loadc + lc) * (BK+1) + loadr + lr] = data_b[pos_b + (loadc + lc) * p.stride_b + loadr + lr];
} else {
buf_b[(loadc + lc) * (BK+1) + loadr + lr] = 0.0hf;
} }
[[unroll]] for (int l = 0; l < BN; l += loadstride) {
f16mat2x4 tmp = data_b[pos_b + (loadc + l) * p.stride_b / 8 + loadr];
buf_b[(loadc + l) * (BK+1) + loadr * 8 + 0] = tmp[0].x;
buf_b[(loadc + l) * (BK+1) + loadr * 8 + 1] = tmp[0].y;
buf_b[(loadc + l) * (BK+1) + loadr * 8 + 2] = tmp[0].z;
buf_b[(loadc + l) * (BK+1) + loadr * 8 + 3] = tmp[0].w;
buf_b[(loadc + l) * (BK+1) + loadr * 8 + 4] = tmp[1].x;
buf_b[(loadc + l) * (BK+1) + loadr * 8 + 5] = tmp[1].y;
buf_b[(loadc + l) * (BK+1) + loadr * 8 + 6] = tmp[1].z;
buf_b[(loadc + l) * (BK+1) + loadr * 8 + 7] = tmp[1].w;
} }
barrier(); barrier();
pos_a += BK; pos_a += BK / 8;
pos_b += BK; pos_b += BK / 8;
for (int i = 0; i < min(BK, p.K - block); i++) { for (int i = 0; i < min(BK, p.K - block); i++) {
// Load from shared into cache // Load from shared into cache

View file

@ -6,8 +6,8 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A { float data_a[]; }; layout (binding = 0) readonly buffer A { vec4 data_a[]; };
layout (binding = 1) readonly buffer B { float data_b[]; }; layout (binding = 1) readonly buffer B { vec4 data_b[]; };
layout (binding = 2) writeonly buffer D { float data_d[]; }; layout (binding = 2) writeonly buffer D { float data_d[]; };
layout (push_constant) uniform parameter layout (push_constant) uniform parameter
@ -51,16 +51,16 @@ void main() {
const int tiwr = tiw % (WSUBM / TM); const int tiwr = tiw % (WSUBM / TM);
const int tiwc = tiw / (WSUBM / TM); const int tiwc = tiw / (WSUBM / TM);
const int loadr = int(gl_LocalInvocationID.x % BK); const int loadr = int(gl_LocalInvocationID.x % (BK / 4));
const int loadc = int(gl_LocalInvocationID.x / BK); const int loadc = int(gl_LocalInvocationID.x / (BK / 4));
const int loadstride = int(gl_WorkGroupSize.x); const int loadstride = int(gl_WorkGroupSize.x * 4) / BK;
const int start_k = ik * p.k_split; const int start_k = ik * p.k_split;
const int end_k = (ik + 1) * p.k_split; const int end_k = (ik + 1) * p.k_split;
int pos_a = ir * BM * p.stride_a + start_k; int pos_a = ir * BM * p.stride_a / 4 + start_k / 4;
int pos_b = ic * BN * p.stride_b + start_k; int pos_b = ic * BN * p.stride_b / 4 + start_k / 4;
float sums[WMITER * TM * WNITER * TN]; float sums[WMITER * TM * WNITER * TN];
float cache_a[WMITER * TM]; float cache_a[WMITER * TM];
@ -71,29 +71,25 @@ void main() {
} }
[[unroll]] for (int block = start_k; block < end_k; block += BK) { [[unroll]] for (int block = start_k; block < end_k; block += BK) {
[[unroll]] for (int l = 0; l < BM * BK; l += loadstride) { [[unroll]] for (int l = 0; l < BM; l += loadstride) {
const int lr = l % BK; vec4 tmp = data_a[pos_a + (loadc + l) * p.stride_a / 4 + loadr];
const int lc = l / BK; buf_a[(loadc + l) * (BK+1) + loadr * 4 + 0] = tmp.x;
if (ir * BM + loadc + lc < p.M && block + loadr + lr < p.K) { buf_a[(loadc + l) * (BK+1) + loadr * 4 + 1] = tmp.y;
buf_a[(loadc + lc) * (BK+1) + loadr + lr] = data_a[pos_a + (loadc + lc) * p.stride_a + loadr + lr]; buf_a[(loadc + l) * (BK+1) + loadr * 4 + 2] = tmp.z;
} else { buf_a[(loadc + l) * (BK+1) + loadr * 4 + 3] = tmp.w;
buf_a[(loadc + lc) * (BK+1) + loadr + lr] = 0.0f;
}
}
[[unroll]] for (int l = 0; l < BN * BK; l += loadstride) {
const int lr = l % BK;
const int lc = l / BK;
if (ic * BN + loadc + lc < p.N && block + loadr + lr < p.K) {
buf_b[(loadc + lc) * (BK+1) + loadr + lr] = data_b[pos_b + (loadc + lc) * p.stride_b + loadr + lr];
} else {
buf_b[(loadc + lc) * (BK+1) + loadr + lr] = 0.0f;
} }
[[unroll]] for (int l = 0; l < BN; l += loadstride) {
vec4 tmp = data_b[pos_b + (loadc + l) * p.stride_b / 4 + loadr];
buf_b[(loadc + l) * (BK+1) + loadr * 4 + 0] = tmp.x;
buf_b[(loadc + l) * (BK+1) + loadr * 4 + 1] = tmp.y;
buf_b[(loadc + l) * (BK+1) + loadr * 4 + 2] = tmp.z;
buf_b[(loadc + l) * (BK+1) + loadr * 4 + 3] = tmp.w;
} }
barrier(); barrier();
pos_a += BK; pos_a += BK / 4;
pos_b += BK; pos_b += BK / 4;
for (int i = 0; i < min(BK, p.K - block); i++) { for (int i = 0; i < min(BK, p.K - block); i++) {
// Load from shared into cache // Load from shared into cache