From 234b30676a97ce227b604c38beb9dcaca406dea9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ji=C5=99=C3=AD=20Podiv=C3=ADn?= <66251151+jpodivin@users.noreply.github.com> Date: Thu, 15 Aug 2024 08:21:57 +0200 Subject: [PATCH 01/16] server : init stop and error fields of the result struct (#9026) Signed-off-by: Jiri Podivin --- examples/server/server.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index c25338f57..ace17a12f 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1852,6 +1852,8 @@ struct server_context { llama_lora_adapters_apply(ctx, lora_adapters); server_task_result result; result.id = task.id; + result.stop = true; + result.error = false; result.data = json{{ "success", true }}; queue_results.send(result); } break; From d5492f0525fa533817a67e93a4bde9d71d81cf58 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 15 Aug 2024 10:11:11 +0300 Subject: [PATCH 02/16] ci : disable bench workflow (#9010) --- .github/workflows/{bench.yml => bench.yml.disabled} | 3 +++ 1 file changed, 3 insertions(+) rename .github/workflows/{bench.yml => bench.yml.disabled} (98%) diff --git a/.github/workflows/bench.yml b/.github/workflows/bench.yml.disabled similarity index 98% rename from .github/workflows/bench.yml rename to .github/workflows/bench.yml.disabled index 56d22bc0c..bfdbb4ef5 100644 --- a/.github/workflows/bench.yml +++ b/.github/workflows/bench.yml.disabled @@ -1,3 +1,6 @@ +# TODO: there have been some issues with the workflow, so disabling for now +# https://github.com/ggerganov/llama.cpp/issues/7893 +# # Benchmark name: Benchmark From 6bda7ce6c3a9284fcbb70c1ace4107db8eb63e5c Mon Sep 17 00:00:00 2001 From: Esko Toivonen Date: Thu, 15 Aug 2024 10:17:12 +0300 Subject: [PATCH 03/16] llama : add pre-tokenizer regexes for BLOOM and gpt3-finnish (#8850) --- convert_hf_to_gguf.py | 8 +++++++- convert_hf_to_gguf_update.py | 2 ++ include/llama.h | 2 ++ src/llama-vocab.cpp | 2 ++ src/llama.cpp | 6 ++++++ 5 files changed, 19 insertions(+), 1 deletion(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 550dd5cfd..41063d94b 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -590,6 +590,12 @@ class Model: if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249": # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M res = "smollm" + if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7": + # ref: https://huggingface.co/bigscience/bloom + res = "bloom" + if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21": + # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small + res = "gpt3-finnish" if res is None: logger.warning("\n") @@ -893,7 +899,7 @@ class GPTNeoXModel(Model): return tensors -@Model.register("BloomForCausalLM") +@Model.register("BloomForCausalLM", "BloomModel") class BloomModel(Model): model_arch = gguf.MODEL_ARCH.BLOOM diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index d5a2d925e..ba98f5c88 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -94,6 +94,8 @@ models = [ {"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", }, {"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", }, {"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", }, + {'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, + {'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, ] diff --git a/include/llama.h b/include/llama.h index 3c28cf0b5..fda68da85 100644 --- a/include/llama.h +++ b/include/llama.h @@ -93,6 +93,8 @@ extern "C" { LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20, LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21, LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22, + LLAMA_VOCAB_PRE_TYPE_BLOOM = 23, + LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24, }; enum llama_rope_type { diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 749f85718..063af648e 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -410,6 +410,8 @@ struct llm_tokenizer_bpe { }; break; case LLAMA_VOCAB_PRE_TYPE_PORO: + case LLAMA_VOCAB_PRE_TYPE_BLOOM: + case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH: regex_exprs = { " ?[^(\\s|.,!?…。,、।۔،)]+", }; diff --git a/src/llama.cpp b/src/llama.cpp index 7f2f00031..bf7a57c79 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -5467,6 +5467,12 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "codeshell") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL; + } else if ( + tokenizer_pre == "bloom") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_BLOOM; + } else if ( + tokenizer_pre == "gpt3-finnish") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } From 4af8420afba39de4968adf2695ce12fd42422a13 Mon Sep 17 00:00:00 2001 From: Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com> Date: Thu, 15 Aug 2024 15:23:23 +0800 Subject: [PATCH 04/16] common : remove duplicate function llama_should_add_bos_token (#8778) --- common/common.cpp | 6 ------ common/common.h | 4 ---- examples/cvector-generator/cvector-generator.cpp | 2 +- examples/eval-callback/eval-callback.cpp | 2 +- examples/imatrix/imatrix.cpp | 4 ++-- examples/infill/infill.cpp | 4 ++-- examples/main/main.cpp | 4 ++-- examples/perplexity/perplexity.cpp | 12 ++++++------ examples/server/server.cpp | 7 +++---- examples/tokenize/tokenize.cpp | 2 +- include/llama.h | 7 ++----- src/llama-vocab.cpp | 4 ++-- src/llama-vocab.h | 4 ++-- src/llama.cpp | 4 ++-- 14 files changed, 26 insertions(+), 40 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index d3d896115..ce46e65ae 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -2702,12 +2702,6 @@ std::string llama_detokenize(llama_context * ctx, const std::vector return text; } -bool llama_should_add_bos_token(const llama_model * model) { - const int add_bos = llama_add_bos_token(model); - - return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); -} - // // Chat template utils // diff --git a/common/common.h b/common/common.h index bbc33a499..df23460a5 100644 --- a/common/common.h +++ b/common/common.h @@ -380,10 +380,6 @@ std::string llama_detokenize( const std::vector & tokens, bool special = true); -// Uses the value from the model metadata if possible, otherwise -// defaults to true when model type is SPM, otherwise false. -bool llama_should_add_bos_token(const llama_model * model); - // // Chat template utils // diff --git a/examples/cvector-generator/cvector-generator.cpp b/examples/cvector-generator/cvector-generator.cpp index a12e90d82..8fa492571 100644 --- a/examples/cvector-generator/cvector-generator.cpp +++ b/examples/cvector-generator/cvector-generator.cpp @@ -271,7 +271,7 @@ struct tokenized_prompt { size_t max_seq_len; tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) { - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); tokens_pos = ::llama_tokenize(ctx, pos, add_bos, true); tokens_neg = ::llama_tokenize(ctx, neg, add_bos, true); max_seq_len = std::max(tokens_pos.size(), tokens_neg.size()); diff --git a/examples/eval-callback/eval-callback.cpp b/examples/eval-callback/eval-callback.cpp index ef35ba2c0..5e89988e2 100644 --- a/examples/eval-callback/eval-callback.cpp +++ b/examples/eval-callback/eval-callback.cpp @@ -127,7 +127,7 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) { } static bool run(llama_context * ctx, const gpt_params & params) { - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 58814b96e..83b85d72b 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -433,8 +433,8 @@ static void process_logits( } static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); - GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); + GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); const int n_ctx = llama_n_ctx(ctx); auto tim1 = std::chrono::high_resolution_clock::now(); diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index 92d630b15..05700c1d5 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -203,8 +203,8 @@ int main(int argc, char ** argv) { LOG_TEE("\n"); LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str()); } - const bool add_bos = llama_should_add_bos_token(model); - GGML_ASSERT(llama_add_eos_token(model) != 1); + const bool add_bos = llama_add_bos_token(model); + GGML_ASSERT(!llama_add_eos_token(model)); LOG("add_bos: %d\n", add_bos); std::vector embd_inp; diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 6e0635a66..4a342ad03 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -267,9 +267,9 @@ int main(int argc, char ** argv) { } } - const bool add_bos = llama_should_add_bos_token(model); + const bool add_bos = llama_add_bos_token(model); if (!llama_model_has_encoder(model)) { - GGML_ASSERT(llama_add_eos_token(model) != 1); + GGML_ASSERT(!llama_add_eos_token(model)); } LOG("add_bos: %d\n", add_bos); diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 372684f09..484dd5891 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -340,8 +340,8 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); - GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); + GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); @@ -480,8 +480,8 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); - GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); + GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); std::ofstream logits_stream; if (!params.logits_file.empty()) { @@ -1733,8 +1733,8 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { const int n_batch = params.n_batch; const int num_batches = (n_ctx + n_batch - 1)/n_batch; const int nv = 2*((n_vocab + 1)/2) + 4; - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); - GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); + GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); std::vector log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); std::vector kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); diff --git a/examples/server/server.cpp b/examples/server/server.cpp index ace17a12f..3fe0e6558 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -693,9 +693,8 @@ struct server_context { n_ctx = llama_n_ctx(ctx); - add_bos_token = llama_should_add_bos_token(model); - has_eos_token = llama_add_eos_token(model) != 1; - + add_bos_token = llama_add_bos_token(model); + has_eos_token = !llama_add_eos_token(model); return true; } @@ -2038,7 +2037,7 @@ struct server_context { slot.t_start_generation = 0; if (slot.infill) { - const bool add_bos = llama_should_add_bos_token(model); + const bool add_bos = llama_add_bos_token(model); bool suff_rm_leading_spc = true; if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { params.input_suffix.erase(0, 1); diff --git a/examples/tokenize/tokenize.cpp b/examples/tokenize/tokenize.cpp index 17f5e4961..c817be566 100644 --- a/examples/tokenize/tokenize.cpp +++ b/examples/tokenize/tokenize.cpp @@ -362,7 +362,7 @@ int main(int raw_argc, char ** raw_argv) { prompt = stdin_buffer.str(); } - const bool model_wants_add_bos = llama_should_add_bos_token(model); + const bool model_wants_add_bos = llama_add_bos_token(model); const bool add_bos = model_wants_add_bos && !no_bos; const bool parse_special = !no_parse_special; diff --git a/include/llama.h b/include/llama.h index fda68da85..ed81aa469 100644 --- a/include/llama.h +++ b/include/llama.h @@ -914,11 +914,8 @@ extern "C" { LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding - // Returns -1 if unknown, 1 for true or 0 for false. - LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model); - - // Returns -1 if unknown, 1 for true or 0 for false. - LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model); + LLAMA_API bool llama_add_bos_token(const struct llama_model * model); + LLAMA_API bool llama_add_eos_token(const struct llama_model * model); // Codellama infill tokens LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 063af648e..11fffce93 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1468,11 +1468,11 @@ llama_token llama_token_pad_impl(const struct llama_vocab & vocab) { return vocab.special_pad_id; } -int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab) { +bool llama_add_bos_token_impl(const struct llama_vocab & vocab) { return vocab.tokenizer_add_bos; } -int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab) { +bool llama_add_eos_token_impl(const struct llama_vocab & vocab) { return vocab.tokenizer_add_eos; } diff --git a/src/llama-vocab.h b/src/llama-vocab.h index 7adfc16da..6e8f30be4 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -95,8 +95,8 @@ llama_token llama_token_sep_impl(const struct llama_vocab & vocab); llama_token llama_token_nl_impl (const struct llama_vocab & vocab); llama_token llama_token_pad_impl(const struct llama_vocab & vocab); -int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab); -int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab); +bool llama_add_bos_token_impl(const struct llama_vocab & vocab); +bool llama_add_eos_token_impl(const struct llama_vocab & vocab); llama_token llama_token_prefix_impl(const struct llama_vocab & vocab); llama_token llama_token_middle_impl(const struct llama_vocab & vocab); diff --git a/src/llama.cpp b/src/llama.cpp index bf7a57c79..ee36de977 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -18705,11 +18705,11 @@ llama_token llama_token_pad(const struct llama_model * model) { return llama_token_pad_impl(model->vocab); } -int32_t llama_add_bos_token(const struct llama_model * model) { +bool llama_add_bos_token(const struct llama_model * model) { return llama_add_bos_token_impl(model->vocab); } -int32_t llama_add_eos_token(const struct llama_model * model) { +bool llama_add_eos_token(const struct llama_model * model) { return llama_add_eos_token_impl(model->vocab); } From 37501d9c79ed5897db4b73ea7502211d25b3f763 Mon Sep 17 00:00:00 2001 From: Riceball LEE Date: Thu, 15 Aug 2024 15:28:05 +0800 Subject: [PATCH 05/16] server : fix duplicated n_predict key in the generation_settings (#8994) --- examples/server/server.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 3fe0e6558..e073f5813 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1321,7 +1321,7 @@ struct server_context { return json { {"n_ctx", slot.n_ctx}, - {"n_predict", slot.n_predict}, + {"n_predict", slot.n_predict}, // Server configured n_predict {"model", params.model_alias}, {"seed", slot.sparams.seed}, {"temperature", slot.sparams.temp}, @@ -1343,7 +1343,7 @@ struct server_context { {"mirostat_eta", slot.sparams.mirostat_eta}, {"penalize_nl", slot.sparams.penalize_nl}, {"stop", slot.params.antiprompt}, - {"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict + {"max_tokens", slot.params.n_predict}, // User configured n_predict {"n_keep", slot.params.n_keep}, {"n_discard", slot.params.n_discard}, {"ignore_eos", ignore_eos}, From 4b9afbbe9037f8a2d659097c0c7d9fce32c6494c Mon Sep 17 00:00:00 2001 From: gtygo Date: Thu, 15 Aug 2024 15:40:12 +0800 Subject: [PATCH 06/16] retrieval : fix memory leak in retrieval query handling (#8955) * retrieval * Reuse querybatch to reduce frequent memory allocation * delete unused white space --- examples/retrieval/retrieval.cpp | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/examples/retrieval/retrieval.cpp b/examples/retrieval/retrieval.cpp index 65b19ce71..aab9d8105 100644 --- a/examples/retrieval/retrieval.cpp +++ b/examples/retrieval/retrieval.cpp @@ -253,6 +253,8 @@ int main(int argc, char ** argv) { chunks[i].tokens.clear(); } + struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1); + // start loop, receive query and return top k similar chunks based on cosine similarity std::string query; while (true) { @@ -260,7 +262,6 @@ int main(int argc, char ** argv) { std::getline(std::cin, query); std::vector query_tokens = llama_tokenize(ctx, query, true); - struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1); batch_add_seq(query_batch, query_tokens, 0); std::vector query_emb(n_embd, 0); @@ -293,6 +294,7 @@ int main(int argc, char ** argv) { } // clean up + llama_batch_free(query_batch); llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); From e3f6fd56b1ab3c426596217d786910d641ae6ce0 Mon Sep 17 00:00:00 2001 From: Nico Bosshard Date: Fri, 16 Aug 2024 04:22:55 +0200 Subject: [PATCH 07/16] ggml : dynamic ggml_sched_max_splits based on graph_size (#9047) * ggml : Dynamic ggml_sched_max_splits based on graph_size * Fixed and readded debug code for causes --- ggml/src/ggml-backend.c | 13 +++++-------- 1 file changed, 5 insertions(+), 8 deletions(-) diff --git a/ggml/src/ggml-backend.c b/ggml/src/ggml-backend.c index e1651cc64..8856967c9 100644 --- a/ggml/src/ggml-backend.c +++ b/ggml/src/ggml-backend.c @@ -1018,10 +1018,6 @@ static bool ggml_is_view_op(enum ggml_op op) { #define GGML_SCHED_MAX_BACKENDS 16 #endif -#ifndef GGML_SCHED_MAX_SPLITS -#define GGML_SCHED_MAX_SPLITS 2048 -#endif - #ifndef GGML_SCHED_MAX_SPLIT_INPUTS #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC #endif @@ -1125,7 +1121,8 @@ static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, co } #if 0 -static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only +#define GGML_SCHED_MAX_SPLITS_DEBUG 4096 +static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__) #define GET_CAUSE(node) causes[hash_id(node)] #else @@ -1549,7 +1546,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split)); GGML_ASSERT(sched->splits != NULL); } - GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS); split = &sched->splits[i_split]; split->backend_id = node_backend_id; split->i_start = i; @@ -1865,13 +1861,14 @@ ggml_backend_sched_t ggml_backend_sched_new( sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0])); sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *)); - const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2; + const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph + const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2; sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0])); sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0])); sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0])); sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0])); - sched->context_buffer_size = GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false); + sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false); sched->context_buffer = malloc(sched->context_buffer_size); const int initial_splits_capacity = 16; From 2a24c8caa6d10a7263ca317fa7cb64f0edc72aae Mon Sep 17 00:00:00 2001 From: Yoshi Suhara Date: Thu, 15 Aug 2024 19:23:33 -0700 Subject: [PATCH 08/16] Add Nemotron/Minitron GGUF Conversion & Inference Support (#8922) * Add nemotron GGUF conversion & inference support * Fix formatting issues * Remove unnecessary write_tensors() * Update convert_hf_to_gguf.py Co-authored-by: compilade * Update src/llama.cpp Co-authored-by: compilade * Address comments by @compilade * Replace ggml_mul_mat()->llm_build_lora_mm() * Remove mutable variable * Use for bias tensors * Cover corner case for role_scaling not in config.json --------- Co-authored-by: compilade --- convert_hf_to_gguf.py | 41 +++++++ gguf-py/gguf/constants.py | 21 ++++ gguf-py/gguf/tensor_mapping.py | 21 ++-- src/llama.cpp | 199 ++++++++++++++++++++++++++++++++- 4 files changed, 271 insertions(+), 11 deletions(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 41063d94b..8f0e8680f 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -3740,6 +3740,47 @@ class ChatGLMModel(Model): name = name.removeprefix("transformer.") return [(self.map_tensor_name(name), data_torch)] + +@Model.register("NemotronForCausalLM") +class NemotronModel(Model): + model_arch = gguf.MODEL_ARCH.NEMOTRON + + def set_vocab(self): + self._set_vocab_sentencepiece() + self.gguf_writer.add_pad_token_id(0) + self.gguf_writer.add_unk_token_id(1) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + + f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"]) + self.gguf_writer.add_layer_norm_eps(f_norm_eps) + + # * Partial RoPE + rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"]) + n_embd = self.find_hparam(["hidden_size", "n_embd"]) + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) + + # * RopeScaling for Nemotron + if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + else: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"]) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side + # model.layers.{l}.input_layernorm.weight + # model.layers.{l}.post_attention_layernorm.weight + # model.norm.weight + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + + return [(self.map_tensor_name(name), data_torch)] + ###### CONVERSION LOGIC ###### diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index f63ec450a..63d51d872 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -219,6 +219,7 @@ class MODEL_ARCH(IntEnum): T5 = auto() T5ENCODER = auto() JAIS = auto() + NEMOTRON = auto() class MODEL_TENSOR(IntEnum): @@ -347,6 +348,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.T5: "t5", MODEL_ARCH.T5ENCODER: "t5encoder", MODEL_ARCH.JAIS: "jais", + MODEL_ARCH.NEMOTRON: "nemotron", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -1065,6 +1067,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_GATE, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.NEMOTRON: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], # TODO } @@ -1105,6 +1122,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_ARCH.CHATGLM: [ MODEL_TENSOR.ROPE_FREQS, ], + MODEL_ARCH.NEMOTRON: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], } # diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 9aa2209e2..a07f7f582 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -13,7 +13,7 @@ class TensorNameMap: "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais "transformer.word_embeddings", # falcon "word_embeddings", # bloom - "model.embed_tokens", # llama-hf + "model.embed_tokens", # llama-hf nemotron "tok_embeddings", # llama-pth "embeddings.word_embeddings", # bert nomic-bert "language_model.embedding.word_embeddings", # persimmon @@ -52,7 +52,7 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais + "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 @@ -75,6 +75,7 @@ class TensorNameMap: "transformer.rms_norm", # Grok "encoder.final_layernorm", # chatglm "transformer.norm", # openelm + "model.norm", # nemotron ), # Rope frequencies @@ -93,7 +94,7 @@ class TensorNameMap: "transformer.h.{bid}.input_layernorm", # falcon7b "h.{bid}.input_layernorm", # bloom "transformer.h.{bid}.ln_mlp", # falcon40b - "model.layers.{bid}.input_layernorm", # llama-hf + "model.layers.{bid}.input_layernorm", # llama-hf nemotron "layers.{bid}.attention_norm", # llama-pth "language_model.encoder.layers.{bid}.input_layernorm", # persimmon "model.layers.{bid}.ln1", # yi @@ -135,7 +136,7 @@ class TensorNameMap: # Attention query MODEL_TENSOR.ATTN_Q: ( - "model.layers.{bid}.self_attn.q_proj", # llama-hf + "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron "layers.{bid}.attention.wq", # llama-pth "encoder.layer.{bid}.attention.self.query", # bert "transformer.h.{bid}.attn.q_proj", # gpt-j @@ -146,7 +147,7 @@ class TensorNameMap: # Attention key MODEL_TENSOR.ATTN_K: ( - "model.layers.{bid}.self_attn.k_proj", # llama-hf + "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron "layers.{bid}.attention.wk", # llama-pth "encoder.layer.{bid}.attention.self.key", # bert "transformer.h.{bid}.attn.k_proj", # gpt-j @@ -158,7 +159,7 @@ class TensorNameMap: # Attention value MODEL_TENSOR.ATTN_V: ( - "model.layers.{bid}.self_attn.v_proj", # llama-hf + "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron "layers.{bid}.attention.wv", # llama-pth "encoder.layer.{bid}.attention.self.value", # bert "transformer.h.{bid}.attn.v_proj", # gpt-j @@ -175,7 +176,7 @@ class TensorNameMap: "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom - "model.layers.{bid}.self_attn.o_proj", # llama-hf + "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert "transformer.h.{bid}.attn.out_proj", # gpt-j @@ -218,7 +219,7 @@ class TensorNameMap: "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais "h.{bid}.post_attention_layernorm", # bloom "transformer.blocks.{bid}.norm_2", # mpt - "model.layers.{bid}.post_attention_layernorm", # llama-hf + "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron "layers.{bid}.ffn_norm", # llama-pth "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon "model.layers.{bid}.ln2", # yi @@ -258,7 +259,7 @@ class TensorNameMap: "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "h.{bid}.mlp.dense_h_to_4h", # bloom - "model.layers.{bid}.mlp.up_proj", # llama-hf refact + "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert "transformer.h.{bid}.mlp.fc_in", # gpt-j @@ -329,7 +330,7 @@ class TensorNameMap: "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "h.{bid}.mlp.dense_4h_to_h", # bloom - "model.layers.{bid}.mlp.down_proj", # llama-hf + "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron "layers.{bid}.feed_forward.w2", # llama-pth "encoder.layer.{bid}.output.dense", # bert "transformer.h.{bid}.mlp.fc_out", # gpt-j diff --git a/src/llama.cpp b/src/llama.cpp index ee36de977..1128bf53b 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -210,6 +210,7 @@ enum llm_arch { LLM_ARCH_T5, LLM_ARCH_T5ENCODER, LLM_ARCH_JAIS, + LLM_ARCH_NEMOTRON, LLM_ARCH_UNKNOWN, }; @@ -255,6 +256,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_T5, "t5" }, { LLM_ARCH_T5ENCODER, "t5encoder" }, { LLM_ARCH_JAIS, "jais" }, + { LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1296,6 +1298,24 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, + { + LLM_ARCH_NEMOTRON, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -5235,6 +5255,14 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_NEMOTRON: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_4B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -7568,6 +7596,48 @@ static bool llm_load_tensors( layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); } } break; + case LLM_ARCH_NEMOTRON: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + + // optional MLP bias + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -8254,7 +8324,7 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); cb(kq, "kq", il); - if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) { + if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON) { // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 ggml_mul_mat_set_prec(kq, GGML_PREC_F32); @@ -13755,6 +13825,128 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_nemotron() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + //GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, + NULL, NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, + NULL, + LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { @@ -14010,6 +14202,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_jais(); } break; + case LLM_ARCH_NEMOTRON: + { + result = llm.build_nemotron(); + } break; default: GGML_ABORT("fatal error"); } @@ -17080,6 +17276,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_OPENELM: case LLM_ARCH_GPTNEOX: case LLM_ARCH_CODESHELL: + case LLM_ARCH_NEMOTRON: return LLAMA_ROPE_TYPE_NEOX; // all model arches should be listed explicitly here From fb487bb5671b37267f35ff43fe8849ddccd925cd Mon Sep 17 00:00:00 2001 From: Liu Jia Date: Fri, 16 Aug 2024 14:23:12 +0800 Subject: [PATCH 09/16] common : add support for cpu_get_num_physical_cores() on Windows (#8771) * Add support for cpu_get_num_phsical_cores() on Windows * fix build bug on msys2-clang64 and ucrt64 * avoid adding new function * add new macros to avoid windows+mingw64 * Add error checking to return default value --- common/common.cpp | 36 ++++++++++++++++++++++++++++++++++-- 1 file changed, 34 insertions(+), 2 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index ce46e65ae..382d585a5 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -110,8 +110,34 @@ int32_t cpu_get_num_physical_cores() { if (result == 0) { return num_physical_cores; } -#elif defined(_WIN32) - //TODO: Implement +#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later + // TODO: windows + arm64 + mingw64 + unsigned int n_threads_win = std::thread::hardware_concurrency(); + unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4; + + DWORD buffer_size = 0; + if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) { + if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { + return default_threads; + } + } + + std::vector buffer(buffer_size); + if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast(buffer.data()), &buffer_size)) { + return default_threads; + } + + int32_t num_physical_cores = 0; + PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast(buffer.data()); + while (buffer_size > 0) { + if (info->Relationship == RelationProcessorCore) { + num_physical_cores += info->Processor.GroupCount; + } + buffer_size -= info->Size; + info = reinterpret_cast(reinterpret_cast(info) + info->Size); + } + + return num_physical_cores > 0 ? num_physical_cores : default_threads; #endif unsigned int n_threads = std::thread::hardware_concurrency(); return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; @@ -1727,7 +1753,13 @@ std::string gpt_params_get_system_info(const gpt_params & params) { if (params.n_threads_batch != -1) { os << " (n_threads_batch = " << params.n_threads_batch << ")"; } +#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later + // TODO: windows + arm64 + mingw64 + DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS); + os << " / " << logicalProcessorCount << " | " << llama_print_system_info(); +#else os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); +#endif return os.str(); } From c679e0cb5c378bfb63643c44a453345ba8b90126 Mon Sep 17 00:00:00 2001 From: Minsoo Cheong Date: Fri, 16 Aug 2024 15:35:18 +0900 Subject: [PATCH 10/16] llama : add EXAONE model support (#9025) * add exaone model support * add chat template * fix whitespace Co-authored-by: Georgi Gerganov * add ftype * add exaone pre-tokenizer in `llama-vocab.cpp` Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com> * fix lint Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com> * add `EXAONE` to supported models in `README.md` * fix space Co-authored-by: compilade --------- Co-authored-by: Georgi Gerganov Co-authored-by: compilade <113953597+compilade@users.noreply.github.com> Co-authored-by: compilade --- README.md | 1 + convert_hf_to_gguf.py | 74 ++++++++++++ convert_hf_to_gguf_update.py | 1 + gguf-py/gguf/constants.py | 18 +++ gguf-py/gguf/tensor_mapping.py | 19 ++- include/llama.h | 1 + src/llama-vocab.cpp | 1 + src/llama.cpp | 212 ++++++++++++++++++++++++++++++++- 8 files changed, 320 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 7f48fde6e..e76ba9218 100644 --- a/README.md +++ b/README.md @@ -105,6 +105,7 @@ Typically finetunes of the base models below are supported as well. - [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca) - [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) - [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966) +- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) (instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md)) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 8f0e8680f..6a1a3a937 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -596,6 +596,9 @@ class Model: if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21": # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small res = "gpt3-finnish" + if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae": + # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct + res = "exaone" if res is None: logger.warning("\n") @@ -3781,6 +3784,77 @@ class NemotronModel(Model): return [(self.map_tensor_name(name), data_torch)] + +@Model.register("ExaoneForCausalLM") +class ExaoneModel(Model): + model_arch = gguf.MODEL_ARCH.EXAONE + + def set_gguf_parameters(self): + hparams = self.hparams + + assert(hparams["activation_function"] == "silu") + + max_position_embeddings = hparams["max_position_embeddings"] + embed_dim = hparams["hidden_size"] + num_heads = hparams["num_attention_heads"] + num_kv_heads = hparams.get("num_key_value_heads", num_heads) + layer_norm_eps = hparams["layer_norm_epsilon"] + intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim + num_layers = hparams["num_layers"] + # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0 + # attention_dropout_rate = hparams["attention_dropout"] + # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0 + # embed_dropout_rate = hparams["embed_dropout"] + self.gguf_writer.add_embedding_length(embed_dim) + self.gguf_writer.add_head_count(num_heads) + self.gguf_writer.add_head_count_kv(num_kv_heads) + self.gguf_writer.add_context_length(max_position_embeddings) + self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps) + self.gguf_writer.add_feed_forward_length(intermediate_size) + self.gguf_writer.add_block_count(num_layers) + self.gguf_writer.add_file_type(self.ftype) + + if (rope_theta := self.hparams.get("rope_theta")) is not None: + self.gguf_writer.add_rope_freq_base(rope_theta) + rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True) + rotary_factor = rotary_factor if rotary_factor is not None else 1.0 + self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) + if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]: + if hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"]) + + def prepare_tensors(self): + if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): + if rope_scaling.get("rope_type", '').lower() == "llama3": + base = self.hparams.get("rope_theta", 10000.0) + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = rope_scaling.get("factor", 8.0) + low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.hparams.get("original_max_position_embeddings", 8192) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + assert low_freq_wavelen != high_freq_wavelen + + rope_factors = [] + for freq in freqs: + wavelen = 2 * math.pi / freq + if wavelen < high_freq_wavelen: + rope_factors.append(1) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1 / ((1 - smooth) / factor + smooth)) + + self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32)) + + super().prepare_tensors() + ###### CONVERSION LOGIC ###### diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index ba98f5c88..ff4955f9c 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -96,6 +96,7 @@ models = [ {"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", }, {'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, {'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, + {"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, ] diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 63d51d872..5541972ce 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -220,6 +220,7 @@ class MODEL_ARCH(IntEnum): T5ENCODER = auto() JAIS = auto() NEMOTRON = auto() + EXAONE = auto() class MODEL_TENSOR(IntEnum): @@ -349,6 +350,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.T5ENCODER: "t5encoder", MODEL_ARCH.JAIS: "jais", MODEL_ARCH.NEMOTRON: "nemotron", + MODEL_ARCH.EXAONE: "exaone", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -1082,6 +1084,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.EXAONE: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], # TODO } diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index a07f7f582..a4f185c06 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -10,7 +10,7 @@ class TensorNameMap: # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais + "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone "transformer.word_embeddings", # falcon "word_embeddings", # bloom "model.embed_tokens", # llama-hf nemotron @@ -52,7 +52,7 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron + "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 @@ -62,7 +62,7 @@ class TensorNameMap: # Output norm MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox - "transformer.ln_f", # gpt2 gpt-j falcon jais + "transformer.ln_f", # gpt2 gpt-j falcon jais exaone "model.norm", # llama-hf baichuan internlm2 "norm", # llama-pth "transformer.norm_f", # mpt dbrx @@ -89,7 +89,7 @@ class TensorNameMap: # Attention norm MODEL_TENSOR.ATTN_NORM: ( "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b "h.{bid}.input_layernorm", # bloom @@ -143,6 +143,7 @@ class TensorNameMap: "model.layers.layers.{bid}.self_attn.q_proj", # plamo "model.layers.{bid}.attention.wq", # internlm2 "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok + "transformer.h.{bid}.attn.attention.q_proj", # exaone ), # Attention key @@ -155,6 +156,7 @@ class TensorNameMap: "model.layers.layers.{bid}.self_attn.k_proj", # plamo "model.layers.{bid}.attention.wk", # internlm2 "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok + "transformer.h.{bid}.attn.attention.k_proj", # exaone ), # Attention value @@ -166,7 +168,8 @@ class TensorNameMap: "transformer.h.{bid}.attn.v", # refact "model.layers.layers.{bid}.self_attn.v_proj", # plamo "model.layers.{bid}.attention.wv", # internlm2 - "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok + "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok + "transformer.h.{bid}.attn.attention.v_proj", # exaone ), # Attention output @@ -191,6 +194,7 @@ class TensorNameMap: "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx "encoder.layers.{bid}.self_attention.dense", # chatglm "transformer.layers.{bid}.attn.out_proj", # openelm + "transformer.h.{bid}.attn.attention.out_proj", # exaone ), # Attention output norm @@ -216,7 +220,7 @@ class TensorNameMap: # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais + "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone "h.{bid}.post_attention_layernorm", # bloom "transformer.blocks.{bid}.norm_2", # mpt "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron @@ -278,6 +282,7 @@ class TensorNameMap: "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 "model.layers.{bid}.residual_mlp.w3", # arctic "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm + "transformer.h.{bid}.mlp.c_fc_1", # exaone ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -309,6 +314,7 @@ class TensorNameMap: "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 "transformer.h.{bid}.mlp.linear_1", # refact "model.layers.{bid}.residual_mlp.w1", # arctic + "transformer.h.{bid}.mlp.c_fc_0", # exaone ), MODEL_TENSOR.FFN_GATE_EXP: ( @@ -348,6 +354,7 @@ class TensorNameMap: "model.layers.{bid}.residual_mlp.w2", # arctic "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2 "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm + "model.layers.h.{bid}.mlp.c_proj", # exaone ), MODEL_TENSOR.FFN_DOWN_EXP: ( diff --git a/include/llama.h b/include/llama.h index ed81aa469..188ae76f8 100644 --- a/include/llama.h +++ b/include/llama.h @@ -95,6 +95,7 @@ extern "C" { LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22, LLAMA_VOCAB_PRE_TYPE_BLOOM = 23, LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24, + LLAMA_VOCAB_PRE_TYPE_EXAONE = 25, }; enum llama_rope_type { diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 11fffce93..17deefaa8 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -388,6 +388,7 @@ struct llm_tokenizer_bpe { case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: case LLAMA_VOCAB_PRE_TYPE_SMOLLM: case LLAMA_VOCAB_PRE_TYPE_CODESHELL: + case LLAMA_VOCAB_PRE_TYPE_EXAONE: regex_exprs = { "\\p{N}", "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", diff --git a/src/llama.cpp b/src/llama.cpp index 1128bf53b..7e9149eb9 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -211,6 +211,7 @@ enum llm_arch { LLM_ARCH_T5ENCODER, LLM_ARCH_JAIS, LLM_ARCH_NEMOTRON, + LLM_ARCH_EXAONE, LLM_ARCH_UNKNOWN, }; @@ -257,6 +258,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_T5ENCODER, "t5encoder" }, { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_NEMOTRON, "nemotron" }, + { LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1316,6 +1318,25 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_EXAONE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -5263,6 +5284,15 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_EXAONE: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_8B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -5501,6 +5531,9 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "gpt3-finnish") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH; + } else if ( + tokenizer_pre == "exaone") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } @@ -7638,6 +7671,36 @@ static bool llm_load_tensors( layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); } } break; + case LLM_ARCH_EXAONE: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -13895,7 +13958,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } if (il == n_layer - 1) { @@ -13947,6 +14009,133 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_exaone() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // rope freq factors for llama3; may return nullptr for llama2 and other models + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { @@ -14206,6 +14395,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_nemotron(); } break; + case LLM_ARCH_EXAONE: + { + result = llm.build_exaone(); + } break; default: GGML_ABORT("fatal error"); } @@ -17277,6 +17470,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_GPTNEOX: case LLM_ARCH_CODESHELL: case LLM_ARCH_NEMOTRON: + case LLM_ARCH_EXAONE: return LLAMA_ROPE_TYPE_NEOX; // all model arches should be listed explicitly here @@ -19207,6 +19401,22 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "Assistant:"; } + } else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) { + // ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb + // EXAONE-3.0-7.8B-Instruct + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n"; + } else if (role == "user") { + ss << "[|user|]" << trim(message->content) << "\n"; + } else if (role == "assistant") { + ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n"; + } + } + if (add_ass) { + ss << "[|assistant|]"; + } } else { // template not supported return -1; From 23fd4535445e3e859ded2f02d6142b6e93b43890 Mon Sep 17 00:00:00 2001 From: compilade Date: Fri, 16 Aug 2024 02:36:11 -0400 Subject: [PATCH 11/16] gguf-py : bump version from 0.9.1 to 0.10.0 (#9051) --- gguf-py/pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 19f6761e2..eea381e5a 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.9.1" +version = "0.10.0" description = "Read and write ML models in GGUF for GGML" authors = ["GGML "] packages = [ From c8ddce85606d9fb6e30745b6e4fe103eecadc73f Mon Sep 17 00:00:00 2001 From: Aisuko Date: Fri, 16 Aug 2024 19:08:59 +1000 Subject: [PATCH 12/16] Fix inference example lacks required parameters (#9035) Signed-off-by: Aisuko --- examples/quantize/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/quantize/README.md b/examples/quantize/README.md index 553c2701b..5d1e11c67 100644 --- a/examples/quantize/README.md +++ b/examples/quantize/README.md @@ -34,7 +34,7 @@ Run the quantized model: ```bash # start inference on a gguf model -./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128 +./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -cnv -p "You are a helpful assistant" ``` When running the larger models, make sure you have enough disk space to store all the intermediate files. From ee2984bdaf10c14d440ad873a049bcc09b786d9b Mon Sep 17 00:00:00 2001 From: Farbod Bijary <110523279+farbodbj@users.noreply.github.com> Date: Fri, 16 Aug 2024 14:06:30 +0330 Subject: [PATCH 13/16] py : fix wrong input type for raw_dtype in ggml to gguf scripts (#8928) Co-authored-by: farbod --- convert_llama_ggml_to_gguf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/convert_llama_ggml_to_gguf.py b/convert_llama_ggml_to_gguf.py index 7b00b4398..29b14e98d 100755 --- a/convert_llama_ggml_to_gguf.py +++ b/convert_llama_ggml_to_gguf.py @@ -116,7 +116,7 @@ class Tensor: assert quant is not None, 'Unknown tensor type' (blksize, tysize) = quant offset += 12 - self.dtype= dtype + self.dtype= gguf.GGMLQuantizationType(dtype) self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)]) offset += 4 * n_dims self.name = bytes(data[offset:offset + name_len]) From d565bb2fd5a2a58b9924a7a34e77a87c78c52137 Mon Sep 17 00:00:00 2001 From: tc-mb <157115220+tc-mb@users.noreply.github.com> Date: Fri, 16 Aug 2024 21:34:41 +0800 Subject: [PATCH 14/16] llava : support MiniCPM-V-2.6 (#8967) * init * rename * add run android for termux in readme * add android readme * add instructions in readme * change name in readme * Update README.md * fixed line * add result in readme * random pos_embed * add positions index * change for ollama * change for ollama * better pos_embed in clip * support ollama * updata cmakelist * updata cmakelist * rename wrapper * clear code * replace and organize code * add link * sync master * fix warnings * fix warnings * fix bug in bicubic resize when need resize iamge smaller * receive review comments and modify * receive review comments and modify * put all code into llava dir * fix quality problem in pr code * change n_layer * add space in "-1" * imitate reshape bug of python code * fix bug in clip * fix issues for merging * fix llama-minicpmv-cli in cmake file * change pr readme * fix code review * remove in line 33 directory in the /cmakelists.txt (not in example, in the main dir * fix cmakefile * add warn * fix KEY_HAS_MINICPMV_PROJ * remove load_image_size into clip_ctx * remove the extern "C", MINICPMV_API * fix uhd code for review comment * delete minicpmv-wrapper in pr * remove uhd_image_embed * Modify 2 notes * support minicpmv2.6 * modify convert script of minicpmv * modify convert * modify convert * add readme * add resampler of v2.6 * modify clip * modify readme * fix type-check * fix type-check * fix type-check * fix type-check * modify convert script and readme * fix convert script and readme * fix convert * fix num in convert * fix type-check --------- Co-authored-by: Hongji Zhu Co-authored-by: harvestingmoon --- examples/llava/README-minicpmv2.5.md | 4 +- examples/llava/README-minicpmv2.6.md | 107 +++++ examples/llava/clip.cpp | 96 +++- examples/llava/clip.h | 2 +- examples/llava/llava.cpp | 9 +- examples/llava/minicpmv-cli.cpp | 26 +- .../minicpmv-convert-image-encoder-to-gguf.py | 432 +++++++++++++++++- examples/llava/minicpmv-surgery.py | 4 +- 8 files changed, 645 insertions(+), 35 deletions(-) create mode 100644 examples/llava/README-minicpmv2.6.md diff --git a/examples/llava/README-minicpmv2.5.md b/examples/llava/README-minicpmv2.5.md index 4affc1d0f..62009b0af 100644 --- a/examples/llava/README-minicpmv2.5.md +++ b/examples/llava/README-minicpmv2.5.md @@ -16,8 +16,8 @@ Convert PyTorch model to gguf files (You can also download the converted [gguf]( ```bash python ./examples/minicpmv/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5 -python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 -python ./convert-hf-to-gguf.py ../MiniCPM-Llama3-V-2_5/model +python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2 +python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model # quantize int4 version ./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M diff --git a/examples/llava/README-minicpmv2.6.md b/examples/llava/README-minicpmv2.6.md new file mode 100644 index 000000000..c4be5e5dd --- /dev/null +++ b/examples/llava/README-minicpmv2.6.md @@ -0,0 +1,107 @@ +## MiniCPM-V 2.6 + +### Prepare models and code + +Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch model from huggingface to "MiniCPM-V-2_6" folder. + +Clone llama.cpp: +```bash +git clone git@github.com:OpenBMB/llama.cpp.git +cd llama.cpp +git checkout minicpmv-main +``` + +### Usage of MiniCPM-V 2.6 + +Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us) + +```bash +python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-V-2_6 +python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3 +python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model + +# quantize int4 version +./llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M +``` + +Build for Linux or Mac + +```bash +make +make llama-minicpmv-cli +``` + +Inference on Linux or Mac +``` +# run f16 version +./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" + +# run quantized int4 version +./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" + +# or run in interactive mode +./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i +``` + +### Video +Install FFmpeg +``` +brew install ffmpeg +brew install pkg-config +``` + +### Android + +#### Build on Android device using Termux +We found that build on Android device would bring better runtime performance, so we recommend to build on device. + +[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required). + +Install tools in Termux: +``` +apt update && apt upgrade -y +apt install git make cmake +``` + +It's recommended to move your model inside the `~/` directory for best performance: +``` +cd storage/downloads +mv model.gguf ~/ +``` + +#### Building the Project using Android NDK +Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake. + +Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux: + +```bash +mkdir build-android +cd build-android +export NDK=/your_ndk_path +cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod .. +make +``` + +Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice). + +Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission: + +(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`) +``` +$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/ +$cd /data/data/com.termux/files/home/bin +$chmod +x ./* +``` + +Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/` + +``` +$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/ +$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/ +``` + +Now, you can start chatting: +``` +$cd /data/data/com.termux/files/home/bin +$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" +``` diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 54aa822c9..342042ffb 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -81,6 +81,7 @@ static std::string format(const char * fmt, ...) { #define KEY_HAS_VIS_ENC "clip.has_vision_encoder" #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector" +#define KEY_MINICPMV_VERSION "clip.minicpmv_version" #define KEY_USE_GELU "clip.use_gelu" #define KEY_N_EMBD "clip.%s.embedding_length" #define KEY_N_FF "clip.%s.feed_forward_length" @@ -526,6 +527,7 @@ struct clip_ctx { bool has_vision_encoder = false; bool has_llava_projector = false; bool has_minicpmv_projector = false; + int minicpmv_version = 2; struct clip_vision_model vision_model; projector_type proj_type = PROJECTOR_TYPE_MLP; @@ -641,7 +643,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 if (ctx->has_minicpmv_projector) { int pos_w = image_size_width/patch_size; int pos_h = image_size_height/patch_size; - pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); + if (ctx->minicpmv_version == 2) { + pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); + } + else if (ctx->minicpmv_version == 3) { + pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1); + } ggml_set_name(pos_embed, "pos_embed"); ggml_set_input(pos_embed); } @@ -768,8 +775,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 embeddings = ggml_gelu(ctx0, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); - - } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { + } + else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); @@ -949,10 +956,20 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } { // attention - const int hidden_size = 4096; + int hidden_size = 4096; const int d_head = 128; - const int n_head = hidden_size/d_head; - const int num_query = 96; + int n_head = hidden_size/d_head; + int num_query = 96; + if (ctx->minicpmv_version == 2) { + hidden_size = 4096; + n_head = hidden_size/d_head; + num_query = 96; + } + else if (ctx->minicpmv_version == 3) { + hidden_size = 3584; + n_head = hidden_size/d_head; + num_query = 64; + } struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); @@ -1149,6 +1166,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx); } + idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION); + if (idx != -1) { + new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx); + } + // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search GGML_ASSERT(new_clip->has_vision_encoder); @@ -1910,10 +1932,12 @@ int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) { // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector // res_imgs memory is being allocated here, previous allocations will be freed if found bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) { - if (clip_is_minicpmv(ctx)) { - std::vector> imgs = uhd_slice_image(img); + + if(clip_is_minicpmv(ctx)){ + int max_slice_nums = 9; + std::vector> imgs = uhd_slice_image(img, max_slice_nums); res_imgs->size = 0; - for (size_t i = 0; i < imgs.size(); ++i) { + for (size_t i = 0; i < imgs.size(); ++i){ res_imgs->size += imgs[i].size(); } res_imgs->data = new clip_image_f32[res_imgs->size]; @@ -2146,7 +2170,12 @@ int clip_n_patches(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) { n_patches /= 4; } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { - n_patches = 96; + if (ctx->minicpmv_version == 2) { + n_patches = 96; + } + else if (ctx->minicpmv_version == 3) { + n_patches = 64; + } } return n_patches; @@ -2282,6 +2311,11 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); + if(ctx->load_image_size==nullptr){ + ctx->load_image_size= clip_image_size_init(); + } + const int pos_w = ctx->load_image_size->width/patch_size; + const int pos_h = ctx->load_image_size->height/patch_size; { struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw"); @@ -2316,8 +2350,18 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); int* positions_data = (int*)malloc(ggml_nbytes(positions)); - for (int i = 0; i < num_positions; i++) { - positions_data[i] = std::floor(70.0*i/num_positions); + int bucket_coords_h[70]; + int bucket_coords_w[70]; + for (int i = 0; i < pos_h; i++){ + bucket_coords_h[i] = std::floor(70.0*i/pos_h); + } + for (int i = 0; i < pos_w; i++){ + bucket_coords_w[i] = std::floor(70.0*i/pos_w); + } + for (int i = 0, id = 0; i < pos_h; i++){ + for (int j = 0; j < pos_w; j++){ + positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j]; + } } ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); free(positions_data); @@ -2328,12 +2372,13 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima // -> https://huggingface.co/Qwen/Qwen-VL/tree/main // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); - if(ctx->load_image_size==nullptr){ - ctx->load_image_size= clip_image_size_init(); - } - int pos_w = ctx->load_image_size->width/patch_size; - int pos_h = ctx->load_image_size->height/patch_size; int embed_dim = 4096; + if (ctx->minicpmv_version == 2) { + embed_dim = 4096; + } + else if (ctx->minicpmv_version == 3) { + embed_dim = 3584; + } auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); @@ -2346,7 +2391,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed)); free(pos_embed_data); } - } else { + } + else{ { if (ctx->has_class_embedding) { struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); @@ -2548,13 +2594,21 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) { return ctx->vision_model.mm_3_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { - return 4096; + if (ctx->minicpmv_version == 2) { + return 4096; + } + else if (ctx->minicpmv_version == 3) { + return 3584; + } } std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); } -bool clip_is_minicpmv(const struct clip_ctx * ctx) { - return ctx->has_minicpmv_projector; +int clip_is_minicpmv(const struct clip_ctx * ctx) { + if (ctx->has_minicpmv_projector) { + return ctx->minicpmv_version; + } + return 0; } diff --git a/examples/llava/clip.h b/examples/llava/clip.h index 2ff4d3992..78588bdf1 100644 --- a/examples/llava/clip.h +++ b/examples/llava/clip.h @@ -85,7 +85,7 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype); -CLIP_API bool clip_is_minicpmv(const struct clip_ctx * ctx); +CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx); #ifdef __cplusplus } diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp index 916d9dc40..851af0f00 100644 --- a/examples/llava/llava.cpp +++ b/examples/llava/llava.cpp @@ -256,7 +256,14 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli load_image_size->width = img_res_v.data[i].nx; load_image_size->height = img_res_v.data[i].ny; clip_add_load_image_size(ctx_clip, load_image_size); - const bool encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); + bool encoded = false; + int has_minicpmv_projector = clip_is_minicpmv(ctx_clip); + if (has_minicpmv_projector == 2) { + encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); + } + else if (has_minicpmv_projector == 3) { + encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); + } if (!encoded) { LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); return false; diff --git a/examples/llava/minicpmv-cli.cpp b/examples/llava/minicpmv-cli.cpp index f951b57b2..379fc295f 100644 --- a/examples/llava/minicpmv-cli.cpp +++ b/examples/llava/minicpmv-cli.cpp @@ -134,7 +134,13 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e std::string system_prompt; int idx = 0; int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip); - system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"; + int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip); + if (has_minicpmv_projector == 2) { + system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"; + } + else if (has_minicpmv_projector == 3) { + system_prompt = "<|im_start|>user\n"; + } LOG_TEE("%s: image token past: %d\n", __func__, n_past); eval_string(ctx_llava->ctx_llama, (system_prompt+"").c_str(), params->n_batch, &n_past, false); process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++); @@ -210,10 +216,24 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){ std::string user_prompt = prompt; - if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt; + int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip); + if (!is_first) { + if (has_minicpmv_projector == 2) { + user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt; + } + else if (has_minicpmv_projector == 3) { + user_prompt = "<|im_start|>user\n" + prompt; + } + } eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false); - eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false); + if (has_minicpmv_projector == 2) { + eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false); + } + else if (has_minicpmv_projector == 3) { + eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false); + } + // generate the response LOG_TEE("\n"); diff --git a/examples/llava/minicpmv-convert-image-encoder-to-gguf.py b/examples/llava/minicpmv-convert-image-encoder-to-gguf.py index 12cdd1281..ea773742a 100644 --- a/examples/llava/minicpmv-convert-image-encoder-to-gguf.py +++ b/examples/llava/minicpmv-convert-image-encoder-to-gguf.py @@ -1,9 +1,416 @@ -import argparse +# coding=utf-8 +# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Siglip model. """ +# Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes + + import os +import math +import warnings + +import numpy as np +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn.init import _calculate_fan_in_and_fan_out + +from transformers.activations import ACT2FN +from transformers.modeling_utils import PreTrainedModel +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import ( + logging, +) +from transformers.utils import logging + +logger = logging.get_logger(__name__) + +class SiglipVisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a + Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip + [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + num_channels (`int`, *optional*, defaults to 3): + Number of channels in the input images. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + Example: + ```python + >>> from transformers import SiglipVisionConfig, SiglipVisionModel + >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration + >>> configuration = SiglipVisionConfig() + >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration + >>> model = SiglipVisionModel(configuration) + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "siglip_vision_model" + + def __init__( + self, + hidden_size=768, + intermediate_size=3072, + num_hidden_layers=12, + num_attention_heads=12, + num_channels=3, + image_size=224, + patch_size=16, + hidden_act="gelu_pytorch_tanh", + layer_norm_eps=1e-6, + attention_dropout=0.0, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_channels = num_channels + self.patch_size = patch_size + self.image_size = image_size + self.attention_dropout = attention_dropout + self.layer_norm_eps = layer_norm_eps + self.hidden_act = hidden_act + +_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" + +SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/siglip-base-patch16-224", + # See all SigLIP models at https://huggingface.co/models?filter=siglip +] + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +def _trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn( + "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2, + ) + + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + if tensor.dtype in [torch.float16, torch.bfloat16]: + # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu + og_dtype = tensor.dtype + tensor = tensor.to(torch.float32) + tensor.erfinv_() + tensor = tensor.to(og_dtype) + else: + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.0)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + if tensor.dtype == torch.float16: + # The `clamp_` op is not (yet?) defined in float16+cpu + tensor = tensor.to(torch.float32) + tensor.clamp_(min=a, max=b) + tensor = tensor.to(torch.float16) + else: + tensor.clamp_(min=a, max=b) + + +def trunc_normal_tf_( + tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 +): + """Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \\leq \text{mean} \\leq b`. + NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the + bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 + and the result is subsquently scaled and shifted by the mean and std args. + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + """ + with torch.no_grad(): + _trunc_normal_(tensor, 0, 1.0, a, b) + tensor.mul_(std).add_(mean) + + +def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): + fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) + denom = fan_in + if mode == "fan_in": + denom = fan_in + elif mode == "fan_out": + denom = fan_out + elif mode == "fan_avg": + denom = (fan_in + fan_out) / 2 + + variance = scale / denom + + if distribution == "truncated_normal": + # constant is stddev of standard normal truncated to (-2, 2) + trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) + elif distribution == "normal": + with torch.no_grad(): + tensor.normal_(std=math.sqrt(variance)) + elif distribution == "uniform": + bound = math.sqrt(3 * variance) + with torch.no_grad(): + tensor.uniform_(-bound, bound) + else: + raise ValueError(f"invalid distribution {distribution}") + + +def lecun_normal_(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") + + +def default_flax_embed_init(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="normal") + +class SiglipVisionEmbeddings(nn.Module): + def __init__(self, config: SiglipVisionConfig): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.image_size = config.image_size + self.patch_size = config.patch_size + + self.patch_embedding = nn.Conv2d( + in_channels=config.num_channels, + out_channels=self.embed_dim, + kernel_size=self.patch_size, + stride=self.patch_size, + padding="valid", + ) + + self.num_patches_per_side = self.image_size // self.patch_size + self.num_patches = self.num_patches_per_side**2 + self.num_positions = self.num_patches + self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) + +class SiglipAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ + def __init__(self, config): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = config.attention_dropout + + self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) + +# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip +class SiglipMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip +class SiglipEncoderLayer(nn.Module): + def __init__(self, config: SiglipVisionConfig): + super().__init__() + self.embed_dim = config.hidden_size + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.self_attn = ( + SiglipAttention(config) + ) + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = SiglipMLP(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + +class SiglipPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SiglipVisionConfig + base_model_prefix = "siglip" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + + if isinstance(module, SiglipVisionEmbeddings): + width = self.config.hidden_size + nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) + elif isinstance(module, nn.Embedding): + default_flax_embed_init(module.weight) + elif isinstance(module, SiglipAttention): + nn.init.normal_(module.q_proj.weight) + nn.init.normal_(module.k_proj.weight) + nn.init.normal_(module.v_proj.weight) + nn.init.normal_(module.out_proj.weight) + nn.init.zeros_(module.q_proj.bias) + nn.init.zeros_(module.k_proj.bias) + nn.init.zeros_(module.v_proj.bias) + nn.init.zeros_(module.out_proj.bias) + elif isinstance(module, SiglipMLP): + nn.init.normal_(module.fc1.weight) + nn.init.normal_(module.fc2.weight) + nn.init.normal_(module.fc1.bias, std=1e-6) + nn.init.normal_(module.fc2.bias, std=1e-6) + elif isinstance(module, (nn.Linear, nn.Conv2d)): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +SIGLIP_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + Parameters: + config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SIGLIP_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip +class SiglipEncoder(nn.Module): + """ + Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a + [`SiglipEncoderLayer`]. + Args: + config: SiglipConfig + """ + + def __init__(self, config: SiglipVisionConfig): + super().__init__() + self.config = config + self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + +class SiglipVisionTransformer(SiglipPreTrainedModel): + config_class = SiglipVisionConfig + main_input_name = "pixel_values" + _supports_flash_attn_2 = True + + def __init__(self, config: SiglipVisionConfig): + super().__init__(config) + self.config = config + embed_dim = config.hidden_size + + self.embeddings = SiglipVisionEmbeddings(config) + self.encoder = SiglipEncoder(config) + self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.embeddings.patch_embedding + +import argparse import json import re -import torch import numpy as np from gguf import * from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig @@ -94,6 +501,7 @@ default_image_mean = [0.48145466, 0.4578275, 0.40821073] default_image_std = [0.26862954, 0.26130258, 0.27577711] ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) +ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2) # with proper args = ap.parse_args() @@ -135,6 +543,15 @@ if args.use_f32: # model = CLIPModel.from_pretrained(dir_model) # processor = CLIPProcessor.from_pretrained(dir_model) +minicpmv_version = args.minicpmv_version +emb_dim = 4096 +if minicpmv_version == 1: + emb_dim = 2304 +elif minicpmv_version == 2: + emb_dim = 4096 +elif minicpmv_version == 3: + emb_dim = 3584 + default_vision_config = { "hidden_size": 1152, "image_size": 980, @@ -144,8 +561,12 @@ default_vision_config = { "num_hidden_layers": 27, "patch_size": 14, } + vision_config = Idefics2VisionConfig(**default_vision_config) model = Idefics2VisionTransformer(vision_config) +if minicpmv_version == 3: + vision_config = SiglipVisionConfig(**default_vision_config) + model = SiglipVisionTransformer(vision_config) processor = None # if model.attn_pool is not None: @@ -158,6 +579,7 @@ fname_middle = None has_text_encoder = True has_vision_encoder = True has_minicpmv_projector = False + if args.text_only: fname_middle = "text-" has_vision_encoder = False @@ -165,6 +587,7 @@ elif args.minicpmv_projector is not None: fname_middle = "mmproj-" has_text_encoder = False has_minicpmv_projector = True + minicpmv_version = 3 elif args.vision_only: fname_middle = "vision-" has_text_encoder = False @@ -189,6 +612,7 @@ elif has_minicpmv_projector: fout.add_description("image encoder for MiniCPM-V") # add projector type fout.add_string("clip.projector_type", "resampler") + fout.add_int32("clip.minicpmv_version", minicpmv_version) else: fout.add_description("two-tower CLIP model") @@ -274,11 +698,11 @@ def _replace_name_resampler(s, v): if re.match("resampler.pos_embed", s): return { s: v, - re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))), + re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), } if re.match("resampler.proj", s): return { - re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))), + re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(), } if re.match("resampler.attn.in_proj_.*", s): diff --git a/examples/llava/minicpmv-surgery.py b/examples/llava/minicpmv-surgery.py index 2b6bce7cf..748ff5c57 100644 --- a/examples/llava/minicpmv-surgery.py +++ b/examples/llava/minicpmv-surgery.py @@ -4,7 +4,7 @@ import torch from transformers import AutoModel, AutoTokenizer ap = argparse.ArgumentParser() -ap.add_argument("-m", "--model", help="Path to MiniCPM-V-2.5 model") +ap.add_argument("-m", "--model", help="Path to MiniCPM-V model") args = ap.parse_args() # find the model part that includes the the multimodal projector weights @@ -29,7 +29,6 @@ if len(clip_tensors) > 0: f.write("{}\n") config = model.llm.config -config._name_or_path = "openbmb/MiniCPM-Llama3-V-2.5" config.auto_map = { "AutoConfig": "configuration_minicpm.MiniCPMConfig", "AutoModel": "modeling_minicpm.MiniCPMModel", @@ -40,7 +39,6 @@ config.auto_map = { model.llm.save_pretrained(f"{args.model}/model") tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) tok.save_pretrained(f"{args.model}/model") -# os.system(f"cp {args.model}/modeling_minicpm.py {args.model}/MiniCPM_l3/modeling_minicpm.py") print("Done!") print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.") From 8b3befc0e2ed8fb18b903735831496b8b0c80949 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Fri, 16 Aug 2024 17:19:05 +0200 Subject: [PATCH 15/16] server : refactor middleware and /health endpoint (#9056) * server : refactor middleware and /health endpoint * move "fail_on_no_slot" to /slots * Update examples/server/server.cpp Co-authored-by: Georgi Gerganov * fix server tests * fix CI * update server docs --------- Co-authored-by: Georgi Gerganov --- examples/server/README.md | 35 ++- examples/server/server.cpp | 281 ++++++++---------- examples/server/tests/features/steps/steps.py | 78 ++--- 3 files changed, 177 insertions(+), 217 deletions(-) diff --git a/examples/server/README.md b/examples/server/README.md index e17595fe8..930ae15f6 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -368,15 +368,16 @@ node index.js ## API Endpoints -### GET `/health`: Returns the current state of the server +### GET `/health`: Returns heath check result - - 503 -> `{"status": "loading model"}` if the model is still being loaded. - - 500 -> `{"status": "error"}` if the model failed to load. - - 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below. - - 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slots are currently available. - - 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slots are currently available. +**Response format** - If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set. +- HTTP status code 503 + - Body: `{"error": {"code": 503, "message": "Loading model", "type": "unavailable_error"}}` + - Explanation: the model is still being loaded. +- HTTP status code 200 + - Body: `{"status": "ok" }` + - Explanation: the model is successfully loaded and the server is ready. ### POST `/completion`: Given a `prompt`, it returns the predicted completion. @@ -639,10 +640,16 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte }' ``` -### GET `/slots`: Returns the current slots processing state. Can be disabled with `--slots-endpoint-disable`. +### GET `/slots`: Returns the current slots processing state + +This endpoint can be disabled with `--no-slots` + +If query param `?fail_on_no_slot=1` is set, this endpoint will respond with status code 503 if there is no available slots. **Response format** +Example: + ```json [ { @@ -702,7 +709,13 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte ] ``` -### GET `/metrics`: Prometheus compatible metrics exporter endpoint if `--metrics` is enabled: +Possible values for `slot[i].state` are: +- `0`: SLOT_STATE_IDLE +- `1`: SLOT_STATE_PROCESSING + +### GET `/metrics`: Prometheus compatible metrics exporter + +This endpoint is only accessible if `--metrics` is set. Available metrics: - `llamacpp:prompt_tokens_total`: Number of prompt tokens processed. @@ -767,6 +780,10 @@ Available metrics: ### GET `/lora-adapters`: Get list of all LoRA adapters +This endpoint returns the loaded LoRA adapters. You can add adapters using `--lora` when starting the server, for example: `--lora my_adapter_1.gguf --lora my_adapter_2.gguf ...` + +By default, all adapters will be loaded with scale set to 1. To initialize all adapters scale to 0, add `--lora-init-without-apply` + If an adapter is disabled, the scale will be set to 0. **Response format** diff --git a/examples/server/server.cpp b/examples/server/server.cpp index e073f5813..ce711eadd 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -15,6 +15,8 @@ // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" +// mime type for sending response +#define MIMETYPE_JSON "application/json; charset=utf-8" // auto generated files (update with ./deps.sh) #include "colorthemes.css.hpp" @@ -67,7 +69,6 @@ enum slot_command { enum server_state { SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet SERVER_STATE_READY, // Server is ready and model is loaded - SERVER_STATE_ERROR // An error occurred, load_model failed }; enum server_task_type { @@ -695,6 +696,7 @@ struct server_context { add_bos_token = llama_add_bos_token(model); has_eos_token = !llama_add_eos_token(model); + return true; } @@ -2555,19 +2557,19 @@ int main(int argc, char ** argv) { svr->set_default_headers({{"Server", "llama.cpp"}}); // CORS preflight - svr->Options(R"(.*)", [](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); + svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) { + // Access-Control-Allow-Origin is already set by middleware res.set_header("Access-Control-Allow-Credentials", "true"); res.set_header("Access-Control-Allow-Methods", "POST"); res.set_header("Access-Control-Allow-Headers", "*"); - return res.set_content("", "application/json; charset=utf-8"); + return res.set_content("", "text/html"); // blank response, no data }); svr->set_logger(log_server_request); auto res_error = [](httplib::Response & res, json error_data) { json final_response {{"error", error_data}}; - res.set_content(final_response.dump(), "application/json; charset=utf-8"); + res.set_content(final_response.dump(), MIMETYPE_JSON); res.status = json_value(error_data, "code", 500); }; @@ -2597,11 +2599,6 @@ int main(int argc, char ** argv) { svr->set_read_timeout (params.timeout_read); svr->set_write_timeout(params.timeout_write); - if (!svr->bind_to_port(params.hostname, params.port)) { - fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", params.hostname.c_str(), params.port); - return 1; - } - std::unordered_map log_data; log_data["hostname"] = params.hostname; @@ -2617,35 +2614,6 @@ int main(int argc, char ** argv) { // Necessary similarity of prompt for slot selection ctx_server.slot_prompt_similarity = params.slot_prompt_similarity; - // load the model - if (!ctx_server.load_model(params)) { - state.store(SERVER_STATE_ERROR); - return 1; - } else { - ctx_server.init(); - state.store(SERVER_STATE_READY); - } - - LOG_INFO("model loaded", {}); - - const auto model_meta = ctx_server.model_meta(); - - // if a custom chat template is not supplied, we will use the one that comes with the model (if any) - if (params.chat_template.empty()) { - if (!ctx_server.validate_model_chat_template()) { - LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); - params.chat_template = "chatml"; - } - } - - // print sample chat example to make it clear which template is used - { - LOG_INFO("chat template", { - {"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)}, - {"built_in", params.chat_template.empty()}, - }); - } - // // Middlewares // @@ -2689,8 +2657,6 @@ int main(int argc, char ** argv) { } // API key is invalid or not provided - // TODO: make another middleware for CORS related logic - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION)); LOG_WARNING("Unauthorized: Invalid API Key", {}); @@ -2698,8 +2664,21 @@ int main(int argc, char ** argv) { return false; }; + auto middleware_server_state = [&res_error, &state](const httplib::Request &, httplib::Response & res) { + server_state current_state = state.load(); + if (current_state == SERVER_STATE_LOADING_MODEL) { + res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE)); + return false; + } + return true; + }; + // register server middlewares - svr->set_pre_routing_handler([&middleware_validate_api_key](const httplib::Request & req, httplib::Response & res) { + svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) { + res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); + if (!middleware_server_state(req, res)) { + return httplib::Server::HandlerResponse::Handled; + } if (!middleware_validate_api_key(req, res)) { return httplib::Server::HandlerResponse::Handled; } @@ -2710,62 +2689,15 @@ int main(int argc, char ** argv) { // Route handlers (or controllers) // - const auto handle_health = [&](const httplib::Request & req, httplib::Response & res) { - server_state current_state = state.load(); - switch (current_state) { - case SERVER_STATE_READY: - { - // request slots data using task queue - server_task task; - task.id = ctx_server.queue_tasks.get_new_id(); - task.type = SERVER_TASK_TYPE_METRICS; - task.id_target = -1; - - ctx_server.queue_results.add_waiting_task_id(task.id); - ctx_server.queue_tasks.post(task); - - // get the result - server_task_result result = ctx_server.queue_results.recv(task.id); - ctx_server.queue_results.remove_waiting_task_id(task.id); - - const int n_idle_slots = result.data.at("idle"); - const int n_processing_slots = result.data.at("processing"); - - json health = { - {"status", "ok"}, - {"slots_idle", n_idle_slots}, - {"slots_processing", n_processing_slots} - }; - - res.status = 200; // HTTP OK - if (params.endpoint_slots && req.has_param("include_slots")) { - health["slots"] = result.data.at("slots"); - } - - if (n_idle_slots == 0) { - health["status"] = "no slot available"; - if (req.has_param("fail_on_no_slot")) { - res.status = 503; // HTTP Service Unavailable - } - } - - res.set_content(health.dump(), "application/json"); - break; - } - case SERVER_STATE_LOADING_MODEL: - { - res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE)); - } break; - case SERVER_STATE_ERROR: - { - res_error(res, format_error_response("Model failed to load", ERROR_TYPE_SERVER)); - } break; - } + const auto handle_health = [&](const httplib::Request &, httplib::Response & res) { + // error and loading states are handled by middleware + json health = {{"status", "ok"}}; + res.set_content(health.dump(), "application/json"); }; - const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) { + const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) { if (!params.endpoint_slots) { - res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED)); + res_error(res, format_error_response("This server does not support slots endpoint. Start it without `--no-slots`", ERROR_TYPE_NOT_SUPPORTED)); return; } @@ -2783,13 +2715,22 @@ int main(int argc, char ** argv) { server_task_result result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); - res.set_content(result.data.at("slots").dump(), "application/json"); + // optionally return "fail_on_no_slot" error + const int n_idle_slots = result.data.at("idle"); + if (req.has_param("fail_on_no_slot")) { + if (n_idle_slots == 0) { + res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE)); + return; + } + } + + res.set_content(result.data.at("slots").dump(), MIMETYPE_JSON); res.status = 200; // HTTP OK }; const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) { if (!params.endpoint_metrics) { - res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED)); + res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED)); return; } @@ -2914,7 +2855,7 @@ int main(int argc, char ** argv) { if (result.error) { res_error(res, result.data); } else { - res.set_content(result.data.dump(), "application/json"); + res.set_content(result.data.dump(), MIMETYPE_JSON); } }; @@ -2944,7 +2885,7 @@ int main(int argc, char ** argv) { if (result.error) { res_error(res, result.data); } else { - res.set_content(result.data.dump(), "application/json"); + res.set_content(result.data.dump(), MIMETYPE_JSON); } }; @@ -2964,13 +2905,11 @@ int main(int argc, char ** argv) { if (result.error) { res_error(res, result.data); } else { - res.set_content(result.data.dump(), "application/json"); + res.set_content(result.data.dump(), MIMETYPE_JSON); } }; const auto handle_slots_action = [&res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - std::string id_slot_str = req.path_params.at("id_slot"); int id_slot; @@ -2994,7 +2933,7 @@ int main(int argc, char ** argv) { } }; - const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) { + const auto handle_props = [&ctx_server](const httplib::Request &, httplib::Response & res) { std::string template_key = "tokenizer.chat_template", curr_tmpl; int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0); if (tlen > 0) { @@ -3003,7 +2942,6 @@ int main(int argc, char ** argv) { curr_tmpl = std::string(curr_tmpl_buf.data(), tlen); } } - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = { { "system_prompt", ctx_server.system_prompt.c_str() }, { "default_generation_settings", ctx_server.default_generation_settings_for_props }, @@ -3011,7 +2949,7 @@ int main(int argc, char ** argv) { { "chat_template", curr_tmpl.c_str() } }; - res.set_content(data.dump(), "application/json; charset=utf-8"); + res.set_content(data.dump(), MIMETYPE_JSON); }; const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) { @@ -3020,8 +2958,6 @@ int main(int argc, char ** argv) { return; } - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - json data = json::parse(req.body); const int id_task = ctx_server.queue_tasks.get_new_id(); @@ -3032,7 +2968,7 @@ int main(int argc, char ** argv) { if (!json_value(data, "stream", false)) { server_task_result result = ctx_server.queue_results.recv(id_task); if (!result.error && result.stop) { - res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); + res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); } else { res_error(res, result.data); } @@ -3095,9 +3031,7 @@ int main(int argc, char ** argv) { } }; - const auto handle_models = [¶ms, &model_meta](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - + const auto handle_models = [¶ms, &ctx_server](const httplib::Request &, httplib::Response & res) { json models = { {"object", "list"}, {"data", { @@ -3106,12 +3040,12 @@ int main(int argc, char ** argv) { {"object", "model"}, {"created", std::time(0)}, {"owned_by", "llamacpp"}, - {"meta", model_meta} + {"meta", ctx_server.model_meta()} }, }} }; - res.set_content(models.dump(), "application/json; charset=utf-8"); + res.set_content(models.dump(), MIMETYPE_JSON); }; const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error](const httplib::Request & req, httplib::Response & res) { @@ -3119,8 +3053,6 @@ int main(int argc, char ** argv) { res_error(res, format_error_response("This server does not support chat completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); return; } - - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template); const int id_task = ctx_server.queue_tasks.get_new_id(); @@ -3135,7 +3067,7 @@ int main(int argc, char ** argv) { if (!result.error && result.stop) { json result_oai = format_final_response_oaicompat(data, result.data, completion_id); - res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); + res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); } else { res_error(res, result.data); } @@ -3197,8 +3129,6 @@ int main(int argc, char ** argv) { return; } - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - json data = json::parse(req.body); const int id_task = ctx_server.queue_tasks.get_new_id(); @@ -3209,7 +3139,7 @@ int main(int argc, char ** argv) { if (!json_value(data, "stream", false)) { server_task_result result = ctx_server.queue_results.recv(id_task); if (!result.error && result.stop) { - res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); + res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); } else { res_error(res, result.data); } @@ -3257,7 +3187,6 @@ int main(int argc, char ** argv) { }; const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); const json body = json::parse(req.body); std::vector tokens; @@ -3266,11 +3195,10 @@ int main(int argc, char ** argv) { tokens = ctx_server.tokenize(body.at("content"), add_special); } const json data = format_tokenizer_response(tokens); - return res.set_content(data.dump(), "application/json; charset=utf-8"); + return res.set_content(data.dump(), MIMETYPE_JSON); }; const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); const json body = json::parse(req.body); std::string content; @@ -3280,12 +3208,10 @@ int main(int argc, char ** argv) { } const json data = format_detokenized_response(content); - return res.set_content(data.dump(), "application/json; charset=utf-8"); + return res.set_content(data.dump(), MIMETYPE_JSON); }; const auto handle_embeddings = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - const json body = json::parse(req.body); bool is_openai = false; @@ -3331,11 +3257,10 @@ int main(int argc, char ** argv) { json root = is_openai ? format_embeddings_response_oaicompat(body, responses) : responses[0]; - return res.set_content(root.dump(), "application/json; charset=utf-8"); + return res.set_content(root.dump(), MIMETYPE_JSON); }; - const auto handle_lora_adapters_list = [&](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); + const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) { json result = json::array(); for (size_t i = 0; i < ctx_server.lora_adapters.size(); ++i) { auto & la = ctx_server.lora_adapters[i]; @@ -3345,13 +3270,11 @@ int main(int argc, char ** argv) { {"scale", la.scale}, }); } - res.set_content(result.dump(), "application/json"); + res.set_content(result.dump(), MIMETYPE_JSON); res.status = 200; // HTTP OK }; const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - const std::vector body = json::parse(req.body); int max_idx = ctx_server.lora_adapters.size(); @@ -3379,7 +3302,7 @@ int main(int argc, char ** argv) { server_task_result result = ctx_server.queue_results.recv(id_task); ctx_server.queue_results.remove_waiting_task_id(id_task); - res.set_content(result.data.dump(), "application/json"); + res.set_content(result.data.dump(), MIMETYPE_JSON); res.status = 200; // HTTP OK }; @@ -3455,35 +3378,75 @@ int main(int argc, char ** argv) { log_data["n_threads_http"] = std::to_string(params.n_threads_http); svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); }; - LOG_INFO("HTTP server listening", log_data); + // clean up function, to be called before exit + auto clean_up = [&svr]() { + svr->stop(); + llama_backend_free(); + }; - // run the HTTP server in a thread - see comment below - std::thread t([&]() { - if (!svr->listen_after_bind()) { - state.store(SERVER_STATE_ERROR); - return 1; + // bind HTTP listen port, run the HTTP server in a thread + if (!svr->bind_to_port(params.hostname, params.port)) { + LOG_ERROR("couldn't bind HTTP server socket", { + {"hostname", params.hostname}, + {"port", params.port}, + }); + clean_up(); + LOG_ERROR("exiting due to HTTP server error", {}); + return 1; + } + std::thread t([&]() { svr->listen_after_bind(); }); + svr->wait_until_ready(); + + LOG_INFO("HTTP server is listening", log_data); + + // load the model + LOG_INFO("loading model", log_data); + if (!ctx_server.load_model(params)) { + clean_up(); + t.join(); + LOG_ERROR("exiting due to model loading error", {}); + return 1; + } else { + ctx_server.init(); + state.store(SERVER_STATE_READY); + + LOG_INFO("model loaded", {}); + + // if a custom chat template is not supplied, we will use the one that comes with the model (if any) + if (params.chat_template.empty()) { + if (!ctx_server.validate_model_chat_template()) { + LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); + params.chat_template = "chatml"; + } } - return 0; - }); + // print sample chat example to make it clear which template is used + { + LOG_INFO("chat template", { + {"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)}, + {"built_in", params.chat_template.empty()}, + }); + } - ctx_server.queue_tasks.on_new_task(std::bind( - &server_context::process_single_task, &ctx_server, std::placeholders::_1)); - ctx_server.queue_tasks.on_finish_multitask(std::bind( - &server_context::on_finish_multitask, &ctx_server, std::placeholders::_1)); - ctx_server.queue_tasks.on_update_slots(std::bind( - &server_context::update_slots, &ctx_server)); - ctx_server.queue_results.on_multitask_update(std::bind( - &server_queue::update_multitask, - &ctx_server.queue_tasks, - std::placeholders::_1, - std::placeholders::_2, - std::placeholders::_3 - )); + ctx_server.queue_tasks.on_new_task(std::bind( + &server_context::process_single_task, &ctx_server, std::placeholders::_1)); + ctx_server.queue_tasks.on_finish_multitask(std::bind( + &server_context::on_finish_multitask, &ctx_server, std::placeholders::_1)); + ctx_server.queue_tasks.on_update_slots(std::bind( + &server_context::update_slots, &ctx_server)); + ctx_server.queue_results.on_multitask_update(std::bind( + &server_queue::update_multitask, + &ctx_server.queue_tasks, + std::placeholders::_1, + std::placeholders::_2, + std::placeholders::_3 + )); - shutdown_handler = [&](int) { - ctx_server.queue_tasks.terminate(); - }; + shutdown_handler = [&](int) { + ctx_server.queue_tasks.terminate(); + }; + ctx_server.queue_tasks.start_loop(); + } #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) struct sigaction sigint_action; @@ -3499,12 +3462,8 @@ int main(int argc, char ** argv) { SetConsoleCtrlHandler(reinterpret_cast(console_ctrl_handler), true); #endif - ctx_server.queue_tasks.start_loop(); - - svr->stop(); + clean_up(); t.join(); - llama_backend_free(); - return 0; } diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py index 6705a34fc..1ba7b60b6 100644 --- a/examples/server/tests/features/steps/steps.py +++ b/examples/server/tests/features/steps/steps.py @@ -205,27 +205,20 @@ def step_start_server(context): async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str): match expecting_status: case 'healthy': - await wait_for_health_status(context, context.base_url, 200, 'ok', - timeout=30) + await wait_for_slots_status(context, context.base_url, 200, + timeout=30) case 'ready' | 'idle': - await wait_for_health_status(context, context.base_url, 200, 'ok', - timeout=30, - params={'fail_on_no_slot': 0, 'include_slots': 0}, - slots_idle=context.n_slots, - slots_processing=0, - expected_slots=[{'id': slot_id, 'state': 0} - for slot_id in - range(context.n_slots if context.n_slots else 1)]) + await wait_for_slots_status(context, context.base_url, 200, + timeout=30, + params={'fail_on_no_slot': 1}, + slots_idle=context.n_slots, + slots_processing=0) case 'busy': - await wait_for_health_status(context, context.base_url, 503, - 'no slot available', - params={'fail_on_no_slot': 0, 'include_slots': 0}, - slots_idle=0, - slots_processing=context.n_slots, - expected_slots=[{'id': slot_id, 'state': 1} - for slot_id in - range(context.n_slots if context.n_slots else 1)]) + await wait_for_slots_status(context, context.base_url, 503, + params={'fail_on_no_slot': 1}, + slots_idle=0, + slots_processing=context.n_slots) case _: assert False, "unknown status" @@ -1187,17 +1180,15 @@ async def gather_tasks_results(context): return n_completions -async def wait_for_health_status(context, - base_url, - expected_http_status_code, - expected_health_status, - timeout=3, - params=None, - slots_idle=None, - slots_processing=None, - expected_slots=None): +async def wait_for_slots_status(context, + base_url, + expected_http_status_code, + timeout=3, + params=None, + slots_idle=None, + slots_processing=None): if context.debug: - print(f"Starting checking for health for expected_health_status={expected_health_status}") + print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}") interval = 0.5 counter = 0 if 'GITHUB_ACTIONS' in os.environ: @@ -1205,26 +1196,19 @@ async def wait_for_health_status(context, async with aiohttp.ClientSession() as session: while True: - async with await session.get(f'{base_url}/health', params=params) as health_response: - status_code = health_response.status - health = await health_response.json() + async with await session.get(f'{base_url}/slots', params=params) as slots_response: + status_code = slots_response.status + slots = await slots_response.json() if context.debug: - print(f"HEALTH - response for expected health status='{expected_health_status}' on " - f"'{base_url}/health'?{params} is {health}\n") - if (status_code == expected_http_status_code - and health['status'] == expected_health_status - and (slots_idle is None or health['slots_idle'] == slots_idle) - and (slots_processing is None or health['slots_processing'] == slots_processing)): - if expected_slots is not None: - assert_slots_status(health['slots'], expected_slots) - return - if (status_code == expected_http_status_code - and health['status'] == expected_health_status - and (slots_idle is None or health['slots_idle'] == slots_idle) - and (slots_processing is None or health['slots_processing'] == slots_processing)): - if expected_slots is not None: - assert_slots_status(health['slots'], expected_slots) + print(f"slots responses {slots}\n") + if status_code == 503 and status_code == expected_http_status_code: return + if status_code == 200 and status_code == expected_http_status_code: + n_slots_idle = sum(1 if slot["state"] == 0 else 0 for slot in slots) + n_slots_processing = sum(1 if slot["state"] != 0 else 0 for slot in slots) + if ((slots_idle is None or slots_idle == n_slots_idle) + and (slots_processing is None or slots_processing == n_slots_processing)): + return await asyncio.sleep(interval) counter += interval @@ -1238,7 +1222,7 @@ async def wait_for_health_status(context, if n_completions > 0: return - assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}' + assert False, f'slots check timeout exceeded {counter}s>={timeout}' def assert_embeddings(embeddings): From 2fb9267887d24a431892ce4dccc75c7095b0d54d Mon Sep 17 00:00:00 2001 From: Yoshi Suhara Date: Sat, 17 Aug 2024 06:34:21 -0700 Subject: [PATCH 16/16] Fix incorrect use of ctx_split for bias tensors (#9063) --- src/llama.cpp | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/llama.cpp b/src/llama.cpp index 7e9149eb9..5ab65ea97 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -6172,9 +6172,9 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); // optional MLP bias - layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); } else { layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); @@ -6498,7 +6498,7 @@ static bool llm_load_tensors( layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens - layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});