metal : switch to parallel reduce

This commit is contained in:
Georgi Gerganov 2024-04-05 16:10:15 +03:00
parent 5733b00e53
commit e51778de5e
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
2 changed files with 119 additions and 93 deletions

View file

@ -2615,13 +2615,23 @@ static enum ggml_status ggml_metal_graph_compute(
// simdgroups per threadgroup (a.k.a. warps)
// for small batches use more simdgroups (needs more tests, to confirm if it's worth it)
const int64_t nsg = MAX(4, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32));
//const int64_t nsg = MAX(4, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32));
const int64_t nsg = 8;
const size_t smem = nqptg*(ne00 + nsg*(ncpsg + nqptg))*(sizeof(float)/2);
// require power of 2
//{
// int64_t nsgm = 1;
// while (nsgm < nsg) {
// nsgm *= 2;
// }
// GGML_ASSERT(nsg == nsgm);
//}
const size_t smem = (nqptg*(ne00 + nsg*(ncpsg + nqptg)) + nsg*ne00)*(sizeof(float)/2);
//printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);
[encoder setThreadgroupMemoryLength:smem atIndex:0];
[encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
}

View file

@ -2457,6 +2457,8 @@ template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f
template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128, 8, 32>;
template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256, 8, 32>;
#define HALF_MAX_HALF half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
template<int64_t D, int64_t Q, int64_t C> // head size, queries per threadgroup, cache items per threadgroup
kernel void kernel_flash_attn_ext_vec_f16(
device const char * q,
@ -2500,6 +2502,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
const short iq1 = tgpig[0]*Q;
const short D4 = D/4;
const short D8 = D/8;
const short NW = N_SIMDWIDTH;
const short SH = (C + Q); // shared memory per simdgroup in (half)
@ -2510,6 +2513,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4
threadgroup half * ss = (threadgroup half *) (shared + sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix
threadgroup half4 * ss4 = (threadgroup half4 *) (shared + sgitg*SH + 1*D); // same as above but in half4
threadgroup half4 * sr4 = (threadgroup half4 *) (shared + sgitg*D + Q*T); // scratch buffer for the results
// store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
half4 lo[Q][D4];
@ -2545,7 +2549,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
{
half S[Q] = { [0 ... Q-1] = 0.0h };
half M[Q] = { [0 ... Q-1] = -INFINITY };
half M[Q] = { [0 ... Q-1] = -HALF_MAX_HALF };
// assume K and V are same shape
const short ne22 = ne12;
@ -2571,21 +2575,21 @@ kernel void kernel_flash_attn_ext_vec_f16(
const short iv3 = iq3 / rv3;
// load the queries from shared memory into local memory
half4 mq[Q][D4];
simdgroup_half8x8 mq[Q][D8];
for (short j = 0; j < Q; ++j) {
for (short i = tiisg; i < D4; i += NW) {
//simdgroup_load(mq[j][i], sq + 8*j*T + i*8, T);
mq[j][i] = sq4[j*T4 + i];
for (short i = 0; i < D8; ++i) {
simdgroup_load(mq[j][i], sq + 8*j*T + i*8, T);
}
}
// pointer to the mask
device const half4 * mp4 = (device const half4 *) (mask + iq1*nb31);
//device const half4 * mp4 = (device const half4 *) (mask + iq1*nb31);
device const half * mp = (device const half *) (mask + iq1*nb31);
// prepare diagonal scale matrix
//simdgroup_half8x8 mscale(scale);
half mscale(scale);
simdgroup_half8x8 mscale(scale);
//half mscale(scale);
// loop over the KV cache
// each simdgroup handles blocks of Q rows and C columns
@ -2595,54 +2599,82 @@ kernel void kernel_flash_attn_ext_vec_f16(
break;
}
// Q*K^T
//{
// for (short cc = 0; cc < C/4; ++cc) {
// half4 mqk[Q];
// for (short j = 0; j < Q; ++j) {
// mqk[j] = 0.0h;
// }
// device const half4 * pk4 = (device const half4 *) ((device const char *) k + ((ic + 4*cc)*nb11 + ik2*nb12 + ik3*nb13));
// for (short i = tiisg; i < D4; i += NW) {
// half4x4 mk;
// mk[0] = pk4[i + 0*(nb11/8)];
// mk[1] = pk4[i + 1*(nb11/8)];
// mk[2] = pk4[i + 2*(nb11/8)];
// mk[3] = pk4[i + 3*(nb11/8)];
// for (short j = 0; j < Q; ++j) {
// mqk[j] += mq[j][i] * mk;
// }
// }
// // reduce the results from the threads in the simdgroup
// simdgroup_barrier(mem_flags::mem_none);
// for (short i = NW/2; i > 0; i /= 2) {
// if (tiisg < i) {
// for (short j = 0; j < Q; ++j) {
// mqk[j] += simd_shuffle_down(mqk[j], i);
// }
// }
// simdgroup_barrier(mem_flags::mem_none);
// }
// // mqk = mqk*scale + mask
// if (tiisg == 0) {
// for (short j = 0; j < Q; ++j) {
// half4 mm = mp4[(j*(nb31/sizeof(half)) + ic)/4 + cc];
// mqk[j] = mqk[j]*mscale + mm;
// ss4[j*T4 + cc] = mqk[j];
// }
// }
// }
//}
// Q*K^T
{
for (short cc = 0; cc < C/4; ++cc) {
half4 mqk[Q];
for (short cc = 0; cc < C/8; ++cc) {
simdgroup_half8x8 mqk[Q];
for (short j = 0; j < Q; ++j) {
mqk[j] = 0.0h;
mqk[j] = make_filled_simdgroup_matrix<half, 8>(0.h);
}
device const half4 * pk4 = (device const half4 *) ((device const char *) k + ((ic + 4*cc)*nb11 + ik2*nb12 + ik3*nb13));
device const half * pk = (device const half *) ((device const char *) k + ((ic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13));
for (short i = tiisg; i < D4; i += NW) {
half4x4 mk;
mk[0] = pk4[i + 0*(nb11/8)];
mk[1] = pk4[i + 1*(nb11/8)];
mk[2] = pk4[i + 2*(nb11/8)];
mk[3] = pk4[i + 3*(nb11/8)];
for (short i = 0; i < D8; ++i) {
simdgroup_half8x8 mk;
simdgroup_load(mk, pk + i*8, nb11/sizeof(half), 0, true); // transpose
for (short j = 0; j < Q; ++j) {
mqk[j] += mq[j][i] * mk;
simdgroup_multiply_accumulate(mqk[j], mq[j][i], mk, mqk[j]);
}
}
// reduce the results from the threads in the simdgroup
simdgroup_barrier(mem_flags::mem_none);
for (short i = NW/2; i > 0; i /= 2) {
if (tiisg < i) {
for (short j = 0; j < Q; ++j) {
mqk[j] += simd_shuffle_down(mqk[j], i);
}
}
simdgroup_barrier(mem_flags::mem_none);
}
// mqk = mqk*scale + mask
if (tiisg == 0) {
for (short j = 0; j < Q; ++j) {
half4 mm = mp4[(j*(nb31/sizeof(half)) + ic)/4 + cc];
mqk[j] = mqk[j]*mscale + mm;
simdgroup_half8x8 mm;
simdgroup_load(mm, mp + 8*j*(nb31/sizeof(half)) + ic + 8*cc, nb31/sizeof(half), 0, false);
simdgroup_multiply_accumulate(mqk[j], mqk[j], mscale, mm);
ss4[j*T4 + cc] = mqk[j];
simdgroup_store(mqk[j], ss + 8*j*T + 8*cc, T, 0, false);
}
}
}
}
simdgroup_barrier(mem_flags::mem_threadgroup);
// online softmax
half ms[Q];
@ -2655,8 +2687,8 @@ kernel void kernel_flash_attn_ext_vec_f16(
M[j] = simd_max(max(M[j], s));
ms[j] = m == -INFINITY ? 0.0h : exp(m - M[j]);
const half vs = s == -INFINITY ? 0.0h : exp(s - M[j]);
ms[j] = exp(m - M[j]);
const half vs = exp(s - M[j]);
S[j] = S[j]*ms[j] + simd_sum(vs);
@ -2706,75 +2738,59 @@ kernel void kernel_flash_attn_ext_vec_f16(
}
}
// reduce the warps sequentially
for (short sg = 1; sg < nsg; ++sg) {
half S = { 0.0h };
half M = { -INFINITY };
threadgroup_barrier(mem_flags::mem_threadgroup);
// each simdgroup stores its output to shared memory, reusing sq
if (sgitg == sg) {
// store results to shared memory
for (short j = 0; j < Q; ++j) {
for (short i = tiisg; i < D4; i += NW) {
//simdgroup_store(lo[j][i], sq + 8*j*T + i*8, T, 0, false);
sq4[j*T4 + i] = lo[j][i];
}
sr4[i] = lo[j][i];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// the first simdgroup accumulates the results from the other simdgroups
if (sgitg == 0) {
// parallel reduce
for (short r = nsg/2; r > 0; r >>= 1) {
if (sgitg < r) {
if (tiisg == 0) {
for (short j = 0; j < Q; ++j) {
const half S0 = ss[j*T + 0];
const half S1 = ss[j*T + sg*SH + 0];
const half S1 = ss[j*T + r*SH + 0];
const half M0 = ss[j*T + 1];
const half M1 = ss[j*T + sg*SH + 1];
const half M1 = ss[j*T + r*SH + 1];
M = max(M0, M1);
const half M = max(M0, M1);
const half ms0 = M0 == -INFINITY ? 0.0h : exp(M0 - M);
const half ms1 = M1 == -INFINITY ? 0.0h : exp(M1 - M);
const half ms0 = exp(M0 - M);
const half ms1 = exp(M1 - M);
S = S0*ms0 + S1*ms1;
const half S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[j*T + 0] = S;
ss[j*T + 1] = M;
ss[j*T + C + j ] = ms0;
ss[j*T + C + j + sg*SH] = ms1;
}
}
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
for (short j = 0; j < Q; ++j) {
for (short i = tiisg; i < D4; i += NW) {
half4 t = sq4[j*T4 + i];
half ms0 = ss[j*T + C + j];
half ms1 = ss[j*T + C + j + sg*SH];
lo[j][i] = lo[j][i]*ms0 + t*ms1;
}
}
}
}
// store result to shared memory (reuse sq)
if (sgitg == 0) {
for (short j = 0; j < Q; ++j) {
for (short i = tiisg; i < D4; i += NW) {
//simdgroup_store(lo[j][i], sq + 8*j*T + i*8, T, 0, false);
sq4[j*T4 + i] = lo[j][i];
ss[j*T + C + j + r*SH] = ms1;
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (sgitg < r) {
for (short j = 0; j < Q; ++j) {
const half ms0 = ss[j*T + C + j];
const half ms1 = ss[j*T + C + j + r*SH];
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
for (short i = tiisg; i < D4; i += NW) {
sr4[i] = sr4[i]*ms0 + sr4[i + r*D4]*ms1;
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
device float4 * dst4 = (device float4 *) dst;
// final rescale with 1/S and store to global memory
@ -2783,7 +2799,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
const half S = ss[j*T + 0];
for (short i = tiisg; i < D4; i += NW) {
dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) sq4[j*T4 + i]/S;
dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) sr4[i]/S;
}
}
}