fix more missing 'static' specifiers (-Wmissing-declarations)

This commit is contained in:
Cebtenzzre 2023-09-15 16:03:45 -04:00
parent 5457b0c11d
commit e63254755c
4 changed files with 33 additions and 29 deletions

View file

@ -20,7 +20,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) { if (plan.work_size > 0) {
@ -31,7 +31,7 @@ void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph,
ggml_graph_compute(graph, &plan); ggml_graph_compute(graph, &plan);
} }
float tensor_sum_elements(const ggml_tensor * tensor) { static float tensor_sum_elements(const ggml_tensor * tensor) {
float sum = 0; float sum = 0;
if (tensor->type==GGML_TYPE_F32) { if (tensor->type==GGML_TYPE_F32) {
for (int j = 0; j < tensor->ne[1]; j++) { for (int j = 0; j < tensor->ne[1]; j++) {
@ -43,7 +43,7 @@ float tensor_sum_elements(const ggml_tensor * tensor) {
return sum; return sum;
} }
void tensor_dump(const ggml_tensor * tensor, const char * name) { static void tensor_dump(const ggml_tensor * tensor, const char * name) {
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name, printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
tensor->type, ggml_type_name(tensor->type), tensor->type, ggml_type_name(tensor->type),
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]); tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
@ -58,7 +58,7 @@ struct benchmark_params_struct {
int32_t n_iterations = 10; int32_t n_iterations = 10;
}; };
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n"); fprintf(stderr, "\n");
fprintf(stderr, "options:\n"); fprintf(stderr, "options:\n");

View file

@ -6593,27 +6593,27 @@ static void ggml_cuda_op_mul_mat(
} }
} }
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
} }
void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
} }
void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
} }
void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
} }
void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
} }
void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
} }
@ -6634,7 +6634,7 @@ bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_te
return false; return false;
} }
void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
@ -6663,7 +6663,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream); ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
} }
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1)); GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
GGML_ASSERT(!ggml_is_permuted(src0)); GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
@ -6697,7 +6697,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream); ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
} }
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) && bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU; src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
@ -6741,11 +6741,11 @@ void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_
} }
} }
void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
} }
void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne = ggml_nelements(src0); const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1)); GGML_ASSERT(ne == ggml_nelements(src1));
@ -6793,29 +6793,29 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
(void) dst; (void) dst;
} }
void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_cpy(src0, dst, nullptr); ggml_cuda_cpy(src0, dst, nullptr);
(void) src1; (void) src1;
} }
void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
} }
void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
} }
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
} }
void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
} }
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
(void) src0; (void) src0;
(void) src1; (void) src1;
(void) dst; (void) dst;
@ -6938,7 +6938,9 @@ static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
return extra; return extra;
} }
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) { static void ggml_cuda_assign_buffers_impl(
struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc
) {
if (scratch && g_scratch_size == 0) { if (scratch && g_scratch_size == 0) {
return; return;
} }

View file

@ -847,7 +847,7 @@ std::array<std::string, 2> mul_str_values = {
"mul_f32", "float" "mul_f32", "float"
}; };
std::string& replace(std::string& s, const std::string& from, const std::string& to) { static std::string & replace(std::string & s, const std::string & from, const std::string & to) {
size_t pos = 0; size_t pos = 0;
while ((pos = s.find(from, pos)) != std::string::npos) { while ((pos = s.find(from, pos)) != std::string::npos) {
s.replace(pos, from.length(), to); s.replace(pos, from.length(), to);
@ -856,7 +856,7 @@ std::string& replace(std::string& s, const std::string& from, const std::string&
return s; return s;
} }
std::string generate_kernels() { static std::string generate_kernels() {
std::stringstream src; std::stringstream src;
src << program_source << '\n'; src << program_source << '\n';
src << k_quants_source << '\n'; src << k_quants_source << '\n';
@ -1788,7 +1788,9 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
return false; return false;
} }
bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { static bool ggml_cl_mul_mat_use_f16(
const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */
) {
// If device doesn't support FP16 // If device doesn't support FP16
if (!fp16_support) { if (!fp16_support) {
return false; return false;

View file

@ -43,7 +43,7 @@ static_assert(QK4_1 == QK8_0, "QK4_1 and QK8_0 must be the same");
static_assert(QK4_0 == QK8_0, "QK4_0 and QK8_0 must be the same"); static_assert(QK4_0 == QK8_0, "QK4_0 and QK8_0 must be the same");
template <typename T> template <typename T>
void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) { static void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
for (auto& b : blocks) { for (auto& b : blocks) {
b.d = 1; b.d = 1;
for (int i=0; i<QK4_1/2; ++i) { for (int i=0; i<QK4_1/2; ++i) {
@ -54,7 +54,7 @@ void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
} }
} }
void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) { static void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
for (auto& b : blocks) { for (auto& b : blocks) {
b.d = 1; b.d = 1;
int sum = 0; int sum = 0;
@ -66,7 +66,7 @@ void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
} }
} }
float simpleDot(const block_q4_0& x, const block_q8_0& y) { static float simpleDot(const block_q4_0& x, const block_q8_0& y) {
int s1 = 0; //, s2 = 0; int s1 = 0; //, s2 = 0;
for (int i=0; i<QK4_1/2; i+=2) { for (int i=0; i<QK4_1/2; i+=2) {
int v1 = x.qs[i+0] & 0xf; int v1 = x.qs[i+0] & 0xf;
@ -81,7 +81,7 @@ float simpleDot(const block_q4_0& x, const block_q8_0& y) {
//return y.d * x.d * (s1 - 8 * s2); //return y.d * x.d * (s1 - 8 * s2);
} }
float simpleDot(const block_q4_1& x, const block_q8_0& y) { static float simpleDot(const block_q4_1& x, const block_q8_0& y) {
int s1 = 0; //, s2 = 0; int s1 = 0; //, s2 = 0;
for (int i=0; i<QK4_1/2; i+=2) { for (int i=0; i<QK4_1/2; i+=2) {
int v1 = x.qs[i+0] & 0xf; int v1 = x.qs[i+0] & 0xf;