fix more missing 'static' specifiers (-Wmissing-declarations)
This commit is contained in:
parent
5457b0c11d
commit
e63254755c
4 changed files with 33 additions and 29 deletions
|
@ -20,7 +20,7 @@
|
|||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
|
@ -31,7 +31,7 @@ void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph,
|
|||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
static float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
float sum = 0;
|
||||
if (tensor->type==GGML_TYPE_F32) {
|
||||
for (int j = 0; j < tensor->ne[1]; j++) {
|
||||
|
@ -43,7 +43,7 @@ float tensor_sum_elements(const ggml_tensor * tensor) {
|
|||
return sum;
|
||||
}
|
||||
|
||||
void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
static void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
|
||||
tensor->type, ggml_type_name(tensor->type),
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||
|
@ -58,7 +58,7 @@ struct benchmark_params_struct {
|
|||
int32_t n_iterations = 10;
|
||||
};
|
||||
|
||||
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
||||
static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
|
|
38
ggml-cuda.cu
38
ggml-cuda.cu
|
@ -6593,27 +6593,27 @@ static void ggml_cuda_op_mul_mat(
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
|
||||
}
|
||||
|
||||
void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
|
||||
}
|
||||
|
||||
void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
|
||||
}
|
||||
|
||||
void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
|
||||
}
|
||||
|
||||
void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
|
||||
}
|
||||
|
||||
void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
|
||||
}
|
||||
|
||||
|
@ -6634,7 +6634,7 @@ bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_te
|
|||
return false;
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||||
|
@ -6663,7 +6663,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||
static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
|
@ -6697,7 +6697,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
|
|||
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
||||
src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
|
||||
|
||||
|
@ -6741,11 +6741,11 @@ void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
|
||||
}
|
||||
|
||||
void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
|
||||
|
@ -6793,29 +6793,29 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
|
|||
(void) dst;
|
||||
}
|
||||
|
||||
void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_cpy(src0, dst, nullptr);
|
||||
(void) src1;
|
||||
}
|
||||
|
||||
void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
|
||||
}
|
||||
|
||||
void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
|
||||
}
|
||||
|
||||
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
|
||||
}
|
||||
|
||||
void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
||||
}
|
||||
|
||||
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
(void) src0;
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
|
@ -6938,7 +6938,9 @@ static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
|||
return extra;
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) {
|
||||
static void ggml_cuda_assign_buffers_impl(
|
||||
struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc
|
||||
) {
|
||||
if (scratch && g_scratch_size == 0) {
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -847,7 +847,7 @@ std::array<std::string, 2> mul_str_values = {
|
|||
"mul_f32", "float"
|
||||
};
|
||||
|
||||
std::string& replace(std::string& s, const std::string& from, const std::string& to) {
|
||||
static std::string & replace(std::string & s, const std::string & from, const std::string & to) {
|
||||
size_t pos = 0;
|
||||
while ((pos = s.find(from, pos)) != std::string::npos) {
|
||||
s.replace(pos, from.length(), to);
|
||||
|
@ -856,7 +856,7 @@ std::string& replace(std::string& s, const std::string& from, const std::string&
|
|||
return s;
|
||||
}
|
||||
|
||||
std::string generate_kernels() {
|
||||
static std::string generate_kernels() {
|
||||
std::stringstream src;
|
||||
src << program_source << '\n';
|
||||
src << k_quants_source << '\n';
|
||||
|
@ -1788,7 +1788,9 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
|
|||
return false;
|
||||
}
|
||||
|
||||
bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
|
||||
static bool ggml_cl_mul_mat_use_f16(
|
||||
const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */
|
||||
) {
|
||||
// If device doesn't support FP16
|
||||
if (!fp16_support) {
|
||||
return false;
|
||||
|
|
|
@ -43,7 +43,7 @@ static_assert(QK4_1 == QK8_0, "QK4_1 and QK8_0 must be the same");
|
|||
static_assert(QK4_0 == QK8_0, "QK4_0 and QK8_0 must be the same");
|
||||
|
||||
template <typename T>
|
||||
void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
||||
static void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
||||
for (auto& b : blocks) {
|
||||
b.d = 1;
|
||||
for (int i=0; i<QK4_1/2; ++i) {
|
||||
|
@ -54,7 +54,7 @@ void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
|||
}
|
||||
}
|
||||
|
||||
void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
||||
static void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
||||
for (auto& b : blocks) {
|
||||
b.d = 1;
|
||||
int sum = 0;
|
||||
|
@ -66,7 +66,7 @@ void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
|||
}
|
||||
}
|
||||
|
||||
float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
||||
static float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
||||
int s1 = 0; //, s2 = 0;
|
||||
for (int i=0; i<QK4_1/2; i+=2) {
|
||||
int v1 = x.qs[i+0] & 0xf;
|
||||
|
@ -81,7 +81,7 @@ float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
|||
//return y.d * x.d * (s1 - 8 * s2);
|
||||
}
|
||||
|
||||
float simpleDot(const block_q4_1& x, const block_q8_0& y) {
|
||||
static float simpleDot(const block_q4_1& x, const block_q8_0& y) {
|
||||
int s1 = 0; //, s2 = 0;
|
||||
for (int i=0; i<QK4_1/2; i+=2) {
|
||||
int v1 = x.qs[i+0] & 0xf;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue