llama: dbrx: document changes, permute only FFN_DOWN_EXPS. Add a check for ftype
This commit is contained in:
parent
9968952921
commit
e66f1e3448
1 changed files with 17 additions and 6 deletions
|
@ -1522,16 +1522,21 @@ class DbrxModel(Model):
|
|||
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
|
||||
n_embd = self.hparams["d_model"]
|
||||
|
||||
# Specific behavior for experts tensors: suffix .weight, reshape to 3D and transpose
|
||||
# orginal implementation expects (n_expert, n_ff, n_embd)
|
||||
exp_tensor_names = {"ffn.experts.mlp.v1": (0, 1, 2), # LLM_TENSOR_FFN_GATE_EXPS(n_embd, n_ff, n_expert)
|
||||
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS(n_ff, n_embd, n_expert)
|
||||
"ffn.experts.mlp.w1": (0, 1, 2)} # LLM_TENSOR_FFN_UP_EXPS (n_embd, n_ff, n_expert)
|
||||
# Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
|
||||
# original implementation expects (n_expert, n_ff, n_embd) for all experts weights
|
||||
# But llama.cpp moe graph works differently
|
||||
# AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
|
||||
# so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
|
||||
exp_tensor_names = {"ffn.experts.mlp.v1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
|
||||
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
|
||||
"ffn.experts.mlp.w1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
|
||||
experts = False
|
||||
for exp_tensor_name in exp_tensor_names.keys():
|
||||
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
|
||||
experts = True
|
||||
data_torch = data_torch.view(n_expert, n_ff, n_embd).permute(*exp_tensor_names[exp_tensor_name])
|
||||
data_torch = data_torch.view(n_expert, n_ff, n_embd)
|
||||
if permute_tensor := exp_tensor_names[exp_tensor_name] is not None:
|
||||
data_torch = data_torch.permute(*permute_tensor)
|
||||
break
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
@ -1556,6 +1561,12 @@ class DbrxModel(Model):
|
|||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# Most of the codebase that takes in 1D tensors only handles F32 tensors
|
||||
# and most of the outputs tensors are F32.
|
||||
if data_dtype != np.float32 and n_dims == 1:
|
||||
print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
|
||||
sys.exit()
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue