examples : migrate to gpt_params
ggml-ci
This commit is contained in:
parent
b47e91ed75
commit
e7e0381411
5 changed files with 53 additions and 83 deletions
|
@ -1563,7 +1563,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||
options.push_back({ "*", " --keep N", "number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep });
|
||||
options.push_back({ "*", " --chunks N", "max number of chunks to process (default: %d, -1 = all)", params.n_chunks });
|
||||
options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" });
|
||||
options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with (default: empty)" });
|
||||
options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with (default: '%s')", params.prompt.c_str() });
|
||||
options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" });
|
||||
options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" });
|
||||
options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)" });
|
||||
|
@ -1626,6 +1626,10 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||
"JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\n"
|
||||
"For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead" });
|
||||
|
||||
options.push_back({ "embedding" });
|
||||
options.push_back({ "embedding", " --pooling {none,mean,cls}",
|
||||
"pooling type for embeddings, use model default if unspecified" });
|
||||
|
||||
options.push_back({ "context hacking" });
|
||||
options.push_back({ "*", " --rope-scaling {none,linear,yarn}",
|
||||
"RoPE frequency scaling method, defaults to linear unless specified by the model" });
|
||||
|
@ -1644,9 +1648,6 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||
options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() });
|
||||
options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() });
|
||||
|
||||
options.push_back({ "embedding", " --pooling {none,mean,cls}",
|
||||
"pooling type for embeddings, use model default if unspecified" });
|
||||
|
||||
options.push_back({ "perplexity" });
|
||||
options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" });
|
||||
options.push_back({ "perplexity", " --hellaswag", "compute HellaSwag score over random tasks from datafile supplied with -f" });
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
The example demonstrates batched generation from a given prompt
|
||||
|
||||
```bash
|
||||
./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4
|
||||
./batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
|
||||
|
||||
...
|
||||
|
||||
|
|
|
@ -7,48 +7,31 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]);
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
// number of parallel batches
|
||||
int n_parallel = 1;
|
||||
int n_parallel = params.n_parallel;
|
||||
|
||||
// total length of the sequences including the prompt
|
||||
int n_len = 32;
|
||||
|
||||
// number of layers to offload to the GPU
|
||||
int n_gpu_layers = 0;
|
||||
|
||||
if (argc >= 2) {
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if (argc >= 3) {
|
||||
params.prompt = argv[2];
|
||||
}
|
||||
|
||||
if (argc >= 4) {
|
||||
n_parallel = std::atoi(argv[3]);
|
||||
}
|
||||
|
||||
if (argc >= 5) {
|
||||
n_len = std::atoi(argv[4]);
|
||||
}
|
||||
|
||||
if (argc >= 6) {
|
||||
n_gpu_layers = std::atoi(argv[5]);
|
||||
}
|
||||
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
string_process_escapes(params.prompt);
|
||||
int n_predict = 32;
|
||||
|
||||
// init LLM
|
||||
|
||||
|
@ -57,9 +40,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
|
@ -73,18 +54,14 @@ int main(int argc, char ** argv) {
|
|||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
|
||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
ctx_params.n_seq_max = n_parallel;
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
|
@ -95,7 +72,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
|
@ -156,7 +133,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
while (n_cur <= n_len) {
|
||||
while (n_cur <= n_predict) {
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
|
||||
|
@ -192,7 +169,7 @@ int main(int argc, char ** argv) {
|
|||
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
i_batch[i] = -1;
|
||||
LOG_TEE("\n");
|
||||
if (n_parallel > 1) {
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt.
|
||||
|
||||
```bash
|
||||
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is"
|
||||
./simple -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is"
|
||||
|
||||
...
|
||||
|
||||
|
|
|
@ -6,28 +6,27 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (argc >= 2) {
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if (argc >= 3) {
|
||||
params.prompt = argv[2];
|
||||
}
|
||||
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
// total length of the sequence including the prompt
|
||||
const int n_len = 32;
|
||||
const int n_predict = params.n_predict;
|
||||
|
||||
// init LLM
|
||||
|
||||
|
@ -36,9 +35,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
|
@ -49,12 +46,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = 2048;
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
|
@ -69,14 +61,14 @@ int main(int argc, char ** argv) {
|
|||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
|
||||
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
|
||||
LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__);
|
||||
LOG_TEE("%s: either reduce n_predict or increase n_ctx\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -115,7 +107,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
while (n_cur <= n_len) {
|
||||
while (n_cur <= n_predict) {
|
||||
// sample the next token
|
||||
{
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
|
@ -134,7 +126,7 @@ int main(int argc, char ** argv) {
|
|||
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
break;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue