llama : ggml-backend integration (#4766)

* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (#4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (#4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
slaren 2024-01-12 20:07:38 +01:00 committed by GitHub
parent 584d674be6
commit e7e4df031b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
21 changed files with 2533 additions and 2295 deletions

View file

@ -102,8 +102,6 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
}
}
AT_PRINTF("block %d\n", best_fit_block);
if (best_fit_block == -1) {
// the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
@ -117,6 +115,7 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
return;
}
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
void * addr = block->addr;
block->addr = (char*)block->addr + size;
@ -129,6 +128,8 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
}
}
AT_PRINTF("block %d, addr %p\n", best_fit_block, addr);
tensor->data = addr;
tensor->buffer = alloc->buffer;
if (!alloc->measure) {
@ -229,6 +230,7 @@ void ggml_tallocr_reset(ggml_tallocr_t alloc) {
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
} else {
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
ggml_backend_buffer_reset(alloc->buffer);
}
}
@ -263,9 +265,9 @@ ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft) {
// create a backend buffer to get the correct tensor allocation sizes
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1);
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, 1);
// TODO: move alloc initialization to a common ggml_tallocr_new_impl function
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
@ -275,13 +277,22 @@ ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backe
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size);
ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
return ggml_tallocr_new_measure_from_buft(ggml_backend_get_default_buffer_type(backend));
}
ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size) {
// create a backend buffer to get the correct tensor allocation sizes
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
return ggml_tallocr_new_from_buft(ggml_backend_get_default_buffer_type(backend), size);
}
ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
@ -779,10 +790,21 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
if (nbytes == 0) {
// all the tensors in the context are already allocated
#ifndef NDEBUG
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
#endif
return NULL;
}
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
if (buffer == NULL) {
// failed to allocate buffer
#ifndef NDEBUG
fprintf(stderr, "%s: failed to allocate buffer\n", __func__);
#endif
return NULL;
}
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {