Cleanup for review
This commit is contained in:
parent
a371a8b611
commit
e87d709446
1 changed files with 1 additions and 25 deletions
26
llama.cpp
26
llama.cpp
|
@ -3118,14 +3118,6 @@ static void llm_load_tensors(
|
||||||
ggml_backend_type backend_norm;
|
ggml_backend_type backend_norm;
|
||||||
ggml_backend_type backend_output;
|
ggml_backend_type backend_output;
|
||||||
|
|
||||||
// Don't allow for offloading of more than 33 layers.
|
|
||||||
// Offloading 34 layers causes model to respond with letter 'E'
|
|
||||||
// Offloading 35 layers doesn't work because of missing cuda implementation for rope:
|
|
||||||
// GGML_ASSERT: ggml-cuda.cu:6402: ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet"
|
|
||||||
if (n_gpu_layers > 33) {
|
|
||||||
n_gpu_layers = 33;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (n_gpu_layers > int(n_layer)) {
|
if (n_gpu_layers > int(n_layer)) {
|
||||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||||
// on Windows however this is detrimental unless everything is on the GPU
|
// on Windows however this is detrimental unless everything is on the GPU
|
||||||
|
@ -4323,7 +4315,7 @@ struct llm_build_context {
|
||||||
struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
|
struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
|
||||||
cb(Kcur, "Kcur", il);
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
|
struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 1, 2, 0, 3));
|
||||||
cb(Q, "Q", il);
|
cb(Q, "Q", il);
|
||||||
|
|
||||||
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
|
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
|
||||||
|
@ -4791,20 +4783,6 @@ struct llm_build_context {
|
||||||
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
|
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
|
||||||
cb(Kcur, "Kcur", il);
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
// Qcur = ggml_rope_custom(
|
|
||||||
// ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
|
||||||
// hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
|
||||||
// ext_factor, attn_factor, beta_fast, beta_slow
|
|
||||||
// );
|
|
||||||
// cb(Qcur, "Qcur", il);
|
|
||||||
|
|
||||||
// Kcur = ggml_rope_custom(
|
|
||||||
// ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
|
||||||
// hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
|
||||||
// ext_factor, attn_factor, beta_fast, beta_slow
|
|
||||||
// );
|
|
||||||
// cb(Kcur, "Kcur", il);
|
|
||||||
|
|
||||||
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
|
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
|
||||||
|
|
||||||
cur = llm_build_kqv(ctx0, hparams, kv_self,
|
cur = llm_build_kqv(ctx0, hparams, kv_self,
|
||||||
|
@ -5026,8 +5004,6 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
|
||||||
|
|
||||||
static llm_offload_trie k_offload_func_trie(k_offload_map);
|
static llm_offload_trie k_offload_func_trie(k_offload_map);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
static struct ggml_cgraph * llama_build_graph(
|
static struct ggml_cgraph * llama_build_graph(
|
||||||
llama_context & lctx,
|
llama_context & lctx,
|
||||||
const llama_batch & batch) {
|
const llama_batch & batch) {
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue