Merge branch 'master' into xsn/vision_2
This commit is contained in:
commit
e884d3d530
120 changed files with 9666 additions and 1070 deletions
|
@ -708,7 +708,7 @@ class Model:
|
|||
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
|
||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
|
||||
res = "jina-v2-code"
|
||||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
|
||||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
|
||||
|
@ -4822,7 +4822,7 @@ class JaisModel(Model):
|
|||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||||
|
||||
|
||||
@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||
@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||
class ChatGLMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||||
|
||||
|
@ -4928,47 +4928,15 @@ class ChatGLMModel(Model):
|
|||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||
vocab_size = hparams["padded_vocab_size"]
|
||||
vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
|
||||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||||
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
merges = []
|
||||
vocab = {}
|
||||
mergeable_ranks = tokenizer.mergeable_ranks
|
||||
for token, rank in mergeable_ranks.items():
|
||||
vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
|
||||
if len(token) == 1:
|
||||
continue
|
||||
merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||
assert len(merged) >= 2 and len(merged) <= 7
|
||||
merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
|
||||
|
||||
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
if tokenizer.added_tokens_decoder[i].special:
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
else:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
||||
special_vocab.merges = merges
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||
# only add special tokens when they were not already loaded from config.json
|
||||
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
|
||||
|
@ -4979,16 +4947,20 @@ class ChatGLMModel(Model):
|
|||
def set_gguf_parameters(self):
|
||||
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||||
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||||
n_head_kv = self.hparams.get("multi_query_group_num", n_head)
|
||||
n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
|
||||
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
||||
self.gguf_writer.add_embedding_length(n_embed)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
|
||||
self.gguf_writer.add_block_count(self.hparams["num_layers"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
|
||||
self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_rope_dimension_count(64)
|
||||
if "attention_dim" in self.hparams:
|
||||
rope_dim = self.hparams["attention_dim"]
|
||||
else:
|
||||
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
rope_freq = 10000
|
||||
if "rope_ratio" in self.hparams:
|
||||
|
@ -4998,7 +4970,7 @@ class ChatGLMModel(Model):
|
|||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if name.endswith(".rotary_pos_emb.inv_freq"):
|
||||
if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
|
||||
return []
|
||||
|
||||
name = name.removeprefix("transformer.")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue