convert.py: named instance logging
This commit is contained in:
parent
88c1e2ff10
commit
e8be0c8f73
1 changed files with 13 additions and 11 deletions
24
convert.py
24
convert.py
|
@ -36,6 +36,8 @@ import gguf
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from typing_extensions import Self, TypeAlias
|
from typing_extensions import Self, TypeAlias
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
||||||
faulthandler.register(signal.SIGUSR1)
|
faulthandler.register(signal.SIGUSR1)
|
||||||
|
|
||||||
|
@ -644,7 +646,7 @@ class LlamaHfVocab(Vocab):
|
||||||
|
|
||||||
|
|
||||||
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
|
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
|
||||||
# logging.info( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
|
# logger.info( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
|
||||||
if n_head_kv is not None and n_head != n_head_kv:
|
if n_head_kv is not None and n_head != n_head_kv:
|
||||||
n_head = n_head_kv
|
n_head = n_head_kv
|
||||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||||
|
@ -1034,12 +1036,12 @@ def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False)
|
||||||
|
|
||||||
# Check for a vocab size mismatch
|
# Check for a vocab size mismatch
|
||||||
if params.n_vocab == vocab.vocab_size:
|
if params.n_vocab == vocab.vocab_size:
|
||||||
logging.warning("Ignoring added_tokens.json since model matches vocab size without it.")
|
logger.warning("Ignoring added_tokens.json since model matches vocab size without it.")
|
||||||
return
|
return
|
||||||
|
|
||||||
if pad_vocab and params.n_vocab > vocab.vocab_size:
|
if pad_vocab and params.n_vocab > vocab.vocab_size:
|
||||||
pad_count = params.n_vocab - vocab.vocab_size
|
pad_count = params.n_vocab - vocab.vocab_size
|
||||||
logging.debug(
|
logger.debug(
|
||||||
f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
|
f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
|
||||||
)
|
)
|
||||||
for i in range(1, pad_count + 1):
|
for i in range(1, pad_count + 1):
|
||||||
|
@ -1167,7 +1169,7 @@ class OutputFile:
|
||||||
elapsed = time.time() - start
|
elapsed = time.time() - start
|
||||||
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
||||||
padi = len(str(len(model)))
|
padi = len(str(len(model)))
|
||||||
logging.info(
|
logger.info(
|
||||||
f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
|
f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
|
||||||
)
|
)
|
||||||
self.gguf.write_tensor_data(ndarray)
|
self.gguf.write_tensor_data(ndarray)
|
||||||
|
@ -1282,12 +1284,12 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) ->
|
||||||
# HF models permut or pack some of the tensors, so we need to undo that
|
# HF models permut or pack some of the tensors, so we need to undo that
|
||||||
for i in itertools.count():
|
for i in itertools.count():
|
||||||
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
||||||
logging.debug(f"Permuting layer {i}")
|
logger.debug(f"Permuting layer {i}")
|
||||||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
|
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
|
||||||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
|
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
|
||||||
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
||||||
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
||||||
logging.debug(f"Unpacking and permuting layer {i}")
|
logger.debug(f"Unpacking and permuting layer {i}")
|
||||||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
|
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
|
||||||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
|
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
|
||||||
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
||||||
|
@ -1300,15 +1302,15 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) ->
|
||||||
tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
|
tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
|
||||||
if name_new is None:
|
if name_new is None:
|
||||||
if skip_unknown:
|
if skip_unknown:
|
||||||
logging.warning(f"Unexpected tensor name: {name} - skipping")
|
logger.warning(f"Unexpected tensor name: {name} - skipping")
|
||||||
continue
|
continue
|
||||||
raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
|
raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
|
||||||
|
|
||||||
if tensor_type in should_skip:
|
if tensor_type in should_skip:
|
||||||
logging.debug(f"skipping tensor {name_new}")
|
logger.debug(f"skipping tensor {name_new}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
logging.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
|
logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
|
||||||
out[name_new] = lazy_tensor
|
out[name_new] = lazy_tensor
|
||||||
|
|
||||||
return out
|
return out
|
||||||
|
@ -1373,7 +1375,7 @@ def load_some_model(path: Path) -> ModelPlus:
|
||||||
paths = find_multifile_paths(path)
|
paths = find_multifile_paths(path)
|
||||||
models_plus: list[ModelPlus] = []
|
models_plus: list[ModelPlus] = []
|
||||||
for path in paths:
|
for path in paths:
|
||||||
logging.info(f"Loading model file {path}")
|
logger.info(f"Loading model file {path}")
|
||||||
models_plus.append(lazy_load_file(path))
|
models_plus.append(lazy_load_file(path))
|
||||||
|
|
||||||
model_plus = merge_multifile_models(models_plus)
|
model_plus = merge_multifile_models(models_plus)
|
||||||
|
@ -1414,7 +1416,7 @@ class VocabFactory:
|
||||||
else:
|
else:
|
||||||
raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")
|
raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")
|
||||||
|
|
||||||
logging.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
|
logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
|
||||||
return vocab
|
return vocab
|
||||||
|
|
||||||
def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
|
def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue