Compute perplexity over prompt

This commit is contained in:
Gary Linscott 2023-03-18 14:03:20 -07:00
parent d3f202d57b
commit e94bd9c7b9
3 changed files with 67 additions and 15 deletions

View file

@ -547,7 +547,7 @@ bool llama_eval(
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
//fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
@ -747,6 +747,49 @@ bool llama_eval(
return true;
}
std::vector<double> softmax(const std::vector<float>& logits) {
std::vector<double> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) max_logit = std::max(max_logit, v);
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
float logit = logits[i] - max_logit;
double exp_logit = std::exp(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
return probs;
}
void perplexity(const gpt_vocab &vocab, const llama_model &model, const gpt_params &params, size_t mem_per_token) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
std::vector<gpt_vocab::id> tokens = ::llama_tokenize(vocab, params.prompt, true);
double nll = 0.0;
int seq_count = tokens.size() / params.n_ctx;
for (int i = 0; i < seq_count; ++i) {
int start = i * params.n_ctx;
int end = start + params.n_ctx - 1;
std::vector<gpt_vocab::id> embd(tokens.begin() + start, tokens.begin() + end);
std::vector<float> logits;
if (!llama_eval(model, params.n_threads, 0, embd, logits, mem_per_token)) {
fprintf(stderr, "Failed to predict\n");
return;
}
// Calculate probability of next token, given the previous ones.
double prob = softmax(logits)[tokens[end]];
nll += -std::log(prob);
// perplexity is e^(average negative log-likelihood)
printf("perplexity: %.4lf [%d/%d] \r", std::exp(nll / (i + 1)), i + 1, seq_count);
fflush(stdout);
}
printf("\n");
}
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
@ -815,7 +858,7 @@ int main(int argc, char ** argv) {
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!llama_model_load(params.model, model, vocab, params.n_ctx)) {
if (!llama_model_load(params.model, model, vocab, params.n_ctx)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return 1;
}
@ -830,13 +873,22 @@ int main(int argc, char ** argv) {
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
std::vector<float> logits;
// determine the required inference memory per token:
size_t mem_per_token = 0;
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
if (params.perplexity) {
perplexity(vocab, model, params, mem_per_token);
exit(0);
}
int n_past = 0;
int64_t t_sample_us = 0;
int64_t t_predict_us = 0;
std::vector<float> logits;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
@ -881,10 +933,6 @@ int main(int argc, char ** argv) {
std::vector<gpt_vocab::id> embd;
// determine the required inference memory per token:
size_t mem_per_token = 0;
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
int last_n_size = params.repeat_last_n;
std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);

View file

@ -44,7 +44,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
std::copy(std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
back_inserter(params.prompt));
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(argv[++i]);
} else if (arg == "--top_k") {
@ -72,6 +71,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.use_color = true;
} else if (arg == "-r" || arg == "--reverse-prompt") {
params.antiprompt = argv[++i];
} else if (arg == "--perplexity") {
params.perplexity = true;
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, params);
exit(0);
@ -109,6 +110,7 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
fprintf(stderr, " -c N, --ctx_size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
@ -322,9 +324,9 @@ std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::st
while (i > 0) {
gpt_vocab::id token_id = prev[i];
if (token_id == 0) {
// TODO: Return error or something more meaningful
printf("failed to tokenize string!\n");
break;
// TODO: Return error or something more meaningful
printf("failed to tokenize string at %d!\n", i);
break;
}
res.push_back(token_id);
auto token = (*vocab.id_to_token.find(token_id)).second;
@ -398,7 +400,7 @@ gpt_vocab::id llama_sample_top_p_top_k(
logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i));
}
}
} else {
logits_id.push_back(std::make_pair(logits[i]*scale, i));
}
@ -527,7 +529,7 @@ size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t
char * pdst = (char *) dst;
for (int j = 0; j < n; j += k) {
for (int j = 0; j < n; j += k) {
uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
uint8_t * pm = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
@ -550,7 +552,7 @@ size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t
*(float *) pd = d;
*(float *) pm = min;
pd += bs;
pd += bs;
pm += bs;
for (int l = 0; l < qk; l += 2) {

View file

@ -35,6 +35,8 @@ struct gpt_params {
bool interactive = false; // interactive mode
bool interactive_start = false; // reverse prompt immediately
std::string antiprompt = ""; // string upon seeing which more user input is prompted
bool perplexity = false;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);