implemented dynamic temperature sampling from koboldcpp

This commit is contained in:
l3utterfly 2024-01-16 20:58:41 +09:00
parent 3e5ca7931c
commit ea15108462
4 changed files with 97 additions and 1 deletions

View file

@ -129,6 +129,7 @@ static void sampler_queue(
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main)); const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp; const float temp = params.temp;
const float dynatemp_range = params.dynatemp_range;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p; const float top_p = params.top_p;
const float min_p = params.min_p; const float min_p = params.min_p;
@ -143,7 +144,25 @@ static void sampler_queue(
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break; case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break; case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break; case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case 't': llama_sample_temp (ctx_main, &cur_p, temp); break;
case 't':
if (dynatemp_range>0)
{
float dynatemp_min = temp - dynatemp_range;
float dynatemp_max = temp + dynatemp_range;
//do not allow negative values
dynatemp_min = dynatemp_min<0?0:dynatemp_min;
dynatemp_max = dynatemp_max<0?0:dynatemp_max;
llama_sample_entropy(ctx_main, &cur_p, temp, dynatemp_min, dynatemp_max);
}
else
{
llama_sample_temp(ctx_main, &cur_p, temp);
}
break;
default : break; default : break;
} }
} }

View file

@ -18,6 +18,7 @@ typedef struct llama_sampling_params {
float tfs_z = 1.00f; // 1.0 = disabled float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled float temp = 0.80f; // 1.0 = disabled
float dynatemp_range = 0.00f; // 0.0 = disabled
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.10f; // 1.0 = disabled float penalty_repeat = 1.10f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled float penalty_freq = 0.00f; // 0.0 = disabled

View file

@ -7779,6 +7779,74 @@ void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * c
} }
} }
void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp, float min_temp = 0, float max_temp = 2.0f) {
const int64_t t_start_sample_us = ggml_time_us();
llama_sample_softmax(ctx, candidates_p);
float exponent_val = 1.0f;
// Calculate entropy of the softmax probabilities
float entropy = 0.0f;
for (size_t i = 0; i < candidates_p->size; ++i) {
float prob = candidates_p->data[i].p;
if (prob > 0.0f) { // Ensure no log(0)
entropy -= prob * logf(prob);
}
}
// Calculate maximum possible entropy
float max_entropy = -logf(1.0f / candidates_p->size);
// Guard against division by zero
if (max_entropy == 0.0f) {
max_entropy = 1.0f; // This ensures that normalized_entropy will be 0 when entropy is 0
}
// Normalize the entropy
float normalized_entropy = entropy / max_entropy;
// Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
// //todo: Ensure to hide print statements unless debugging!
// printf("Your text maxtemp value is: %f\n", max_temp);
// // Print the variables
// printf("Entropy: %f\n", entropy);
// printf("Max Possible Entropy: %f\n", max_entropy);
// printf("Normalized Entropy: %f\n", normalized_entropy);
// printf("Exponent: %f\n", exponent_val);
// printf("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
// Apply the dynamically calculated temperature scaling
for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].logit /= dyn_temp;
}
// Re-compute softmax probabilities after scaling logits with dynamic temperature
double max_l_double = candidates_p->data[0].logit;
double cum_sum_double = 0.0;
for (size_t i = 0; i < candidates_p->size; ++i) {
double p = exp(candidates_p->data[i].logit - max_l_double);
candidates_p->data[i].p = p; // Store the scaled probability
cum_sum_double += p;
}
for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
}
// //todo: Ensure to hide print statements unless debugging!
// // Print the updated top 25 probabilities after temperature scaling
// printf("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
// for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
// printf("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
// }
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
const int64_t t_start_sample_us = ggml_time_us(); const int64_t t_start_sample_us = ggml_time_us();

View file

@ -770,6 +770,14 @@ extern "C" {
float p, float p,
size_t min_keep); size_t min_keep);
/// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
LLAMA_API void llama_sample_entropy(
struct llama_context * ctx,
llama_token_data_array * candidates_p,
float temp,
float min_temp,
float max_temp);
LLAMA_API void llama_sample_temp( LLAMA_API void llama_sample_temp(
struct llama_context * ctx, struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,