diff --git a/common/arg.cpp b/common/arg.cpp index 27886b84e..7f5c8287a 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -2224,8 +2224,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf"; params.vocoder.hf_repo = "ggml-org/WavTokenizer"; params.vocoder.hf_file = "WavTokenizer-Large-75-F16.gguf"; + params.ctx_shift = false; // for better results } - ).set_examples({LLAMA_EXAMPLE_TTS})); + ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER})); return ctx_arg; } diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt index 1b7cc8c13..6e84abd1b 100644 --- a/examples/server/CMakeLists.txt +++ b/examples/server/CMakeLists.txt @@ -13,6 +13,7 @@ set(TARGET_SRCS server.cpp utils.hpp httplib.h + ../tts/tts-impl.cpp ) set(PUBLIC_ASSETS index.html.gz diff --git a/examples/server/public_tts/index.html b/examples/server/public_tts/index.html new file mode 100644 index 000000000..a7a8d3784 --- /dev/null +++ b/examples/server/public_tts/index.html @@ -0,0 +1,132 @@ + + + + + + llama.cpp TTS + + + + +

llama.cpp TTS

+ + Input text:
+
+
+
+

Status: ready


+

+ + + + + diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 127323e77..732067d3a 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -7,6 +7,7 @@ #include "log.h" #include "sampling.h" #include "speculative.h" +#include "../tts/tts-impl.hpp" // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT @@ -65,6 +66,7 @@ enum server_task_type { SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE, SERVER_TASK_TYPE_SET_LORA, + SERVER_TASK_TYPE_TTS_EMBD, }; enum oaicompat_type { @@ -551,12 +553,12 @@ struct server_task_result_cmpl_final : server_task_result { bool post_sampling_probs; std::vector probs_output; - std::vector response_fields; + std::vector response_fields; slot_params generation_params; // OAI-compat fields - bool verbose = false; + bool verbose = false; oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE; std::string oaicompat_model; std::string oaicompat_cmpl_id; @@ -937,6 +939,20 @@ struct server_task_result_embd : server_task_result { } }; +struct server_task_result_tts_embd : server_task_result { + int index = 0; + std::vector embd; + double t_ms = 0.0; + + virtual int get_index() override { + return index; // unused + } + + virtual json to_json() override { + return json {}; // unused + } +}; + struct server_task_result_rerank : server_task_result { int index = 0; float score = -1e6; @@ -1629,6 +1645,7 @@ struct server_context { // note: keep these alive - they determine the lifetime of the model, context, etc. common_init_result llama_init; common_init_result llama_init_dft; + common_init_result llama_init_vocoder; llama_model * model = nullptr; llama_context * ctx = nullptr; @@ -1731,6 +1748,20 @@ struct server_context { cparams_dft.type_v = GGML_TYPE_F16; } + if (!params.vocoder.model.empty()) { + common_params v_params = params_base; + v_params.model = params.vocoder.model; + v_params.model_url = params.vocoder.model_url; + v_params.hf_repo = params.vocoder.hf_repo; + v_params.hf_file = params.vocoder.hf_file; + v_params.embedding = true; + v_params.pooling_type = LLAMA_POOLING_TYPE_NONE; + // make sure the vocoder has the sufficient batch size + v_params.n_batch = v_params.n_ctx; + v_params.n_ubatch = v_params.n_ctx; + llama_init_vocoder = common_init_from_params(v_params); + } + return true; } @@ -2578,6 +2609,34 @@ struct server_context { res->id = task.id; queue_results.send(std::move(res)); } break; + case SERVER_TASK_TYPE_TTS_EMBD: + { + const auto ctx_cts = llama_init_vocoder.context.get(); + const int n_ubatch = llama_n_ubatch(ctx_cts); + const int n_codes = (int) task.prompt_tokens.size(); + if (n_codes > n_ubatch) { + send_error(task, string_format("Number of codes (%d) exceeds the maximum ubatch of vocoder model (%d)", n_codes, n_ubatch), ERROR_TYPE_INVALID_REQUEST); + break; + } + + std::vector embd; + uint64_t t_start = ggml_time_us(); + SRV_DBG("tts_get_embd with %d codes", n_codes); + int status = tts_get_embd(ctx_cts, task.prompt_tokens, embd); + if (status != 0) { + send_error(task, string_format("Failed to get TTS embedding, status code = %d", status), ERROR_TYPE_SERVER); + break; + } + if (embd.size() == 0) { + send_error(task, "no embeddings is returned from tts_get_embd()", ERROR_TYPE_SERVER); + break; + } + auto res = std::make_unique(); + res->id = task.id; + res->embd = std::move(embd); + res->t_ms = (ggml_time_us() - t_start) / 1e3; + queue_results.send(std::move(res)); + } break; } } @@ -3148,7 +3207,10 @@ static void log_server_request(const httplib::Request & req, const httplib::Resp LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status); LOG_DBG("request: %s\n", req.body.c_str()); - LOG_DBG("response: %s\n", res.body.c_str()); + // exclude TTS endpoint, because response is raw WAV data + if (req.path != "/v1/audio/speech") { + LOG_DBG("response: %s\n", res.body.c_str()); + } } std::function shutdown_handler; @@ -4076,6 +4138,152 @@ int main(int argc, char ** argv) { res_ok(res, root); }; + // TODO: this is POC, not optimized for performance + const auto handle_speech = [&](const httplib::Request & req, httplib::Response & res) { + if (ctx_server.llama_init_vocoder.context.get() == nullptr) { + res_error(res, format_error_response("This server does not support TTS. Start it with `--model-vocoder`", ERROR_TYPE_NOT_SUPPORTED)); + return; + } + + const json body = json::parse(req.body); + + // ignore "model" and "voice" for now + const std::string input = json_value(body, "input", std::string()); + const std::string response_format = json_value(body, "response_format", std::string("wav")); + const float speed = json_value(body, "speed", 1.0f); + if (input.empty()) { + res_error(res, format_error_response("\"input\" must be a non-empty string", ERROR_TYPE_INVALID_REQUEST)); + return; + } + if (response_format != "wav") { + res_error(res, format_error_response("\"response_format\" must be \"wav\"", ERROR_TYPE_INVALID_REQUEST)); + return; + } + if (speed != 1.0f) { + res_error(res, format_error_response("\"speed\" must be 1.0", ERROR_TYPE_INVALID_REQUEST)); + return; + } + + llama_tokens codes; + result_timings ttc_timings; + // convert text to codes + { + server_task task = server_task(SERVER_TASK_TYPE_COMPLETION); + task.id = ctx_server.queue_tasks.get_new_id(); + task.index = 0; + task.prompt_tokens = tts_preprocess_prompt(ctx_server.model, input); + + task.params.stream = false; + task.params.return_tokens = true; + task.params.sampling.temp = 0.0; + task.params.sampling.top_k = 1; + + ctx_server.queue_results.add_waiting_tasks({task}); + ctx_server.queue_tasks.post(task); + + // get the result + const server_task_result_ptr raw_result = ctx_server.queue_results.recv(task.id); + if (raw_result->is_error()) { + res_error(res, raw_result->to_json()); + return; + } + const server_task_result_cmpl_final * result = dynamic_cast(raw_result.get()); + GGML_ASSERT(result != nullptr); + GGML_ASSERT(!result->tokens.empty()); + codes = std::move(result->tokens); + + // debug + // SRV_DBG("codes str (before filter) = %s\n", common_detokenize(ctx_server.ctx, codes, true).c_str()); + + // post-process codes + // remove all non-audio tokens (i.e. < 151672 || > 155772) + codes.erase(std::remove_if( + codes.begin(), + codes.end(), + [](llama_token t) { return t < 151672 || t > 155772; }), + codes.end()); + SRV_DBG("codes size = %d\n", (int) codes.size()); + + ttc_timings = std::move(result->timings); + } + + // debug + // SRV_DBG("codes str = %s\n", common_detokenize(ctx_server.ctx, codes, true).c_str()); + + // convert codes to embeddings + int n_embd = llama_n_embd(ctx_server.llama_init_vocoder.model.get()); + int n_codes = -1; + double t_voc_ms = 0.0; + std::vector embd; + { + server_task task = server_task(SERVER_TASK_TYPE_TTS_EMBD); + task.id = ctx_server.queue_tasks.get_new_id(); + task.prompt_tokens = std::move(codes); + + ctx_server.queue_results.add_waiting_tasks({task}); + ctx_server.queue_tasks.post(task); + + // get the result + const server_task_result_ptr raw_result = ctx_server.queue_results.recv(task.id); + if (raw_result->is_error()) { + res_error(res, raw_result->to_json()); + return; + } + const server_task_result_tts_embd * result = dynamic_cast(raw_result.get()); + GGML_ASSERT(result != nullptr); + GGML_ASSERT(!result->embd.empty()); + + // flatten the array + n_codes = result->embd.size() / n_embd; + embd = std::move(result->embd); + t_voc_ms = result->t_ms; + SRV_DBG("tts embd n_code = %d\n", n_codes); + SRV_DBG("tts embd size = %zu\n", embd.size()); + SRV_DBG("tts embd t_voc_ms = %lf\n", t_voc_ms); + GGML_ASSERT(n_codes > 0); + } + + // convert embeddings to wav + // will be freed by chunked_content_provider + const auto t_spec_start = ggml_time_us(); + std::vector audio = tts_embd_to_audio(embd.data(), n_codes, n_embd, params.cpuparams.n_threads); + double t_spec_ms = (ggml_time_us() - t_spec_start) / 1e3; + + // for now, we can only leave timings in response headers, mostly for debugging + res.set_header("X-timings-ttc", ttc_timings.to_json().dump()); + res.set_header("X-timings-voc", (json{{ "t_voc_ms", t_voc_ms }}).dump()); + res.set_header("X-timings-spec", (json{{ "t_spec_ms", t_spec_ms }}).dump()); + + const auto chunked_content_provider = [audio = std::move(audio)](size_t, httplib::DataSink & sink) mutable { + // TODO: some how reuse save_wav16 instead of duplicating the code here + const int n_sr = 24000; // sampling rate + // zero out first 0.25 seconds + for (int i = 0; i < 24000/4; ++i) { + audio[i] = 0.0f; + } + + wav_header header; + header.sample_rate = n_sr; + header.byte_rate = header.sample_rate * header.num_channels * (header.bits_per_sample / 8); + header.block_align = header.num_channels * (header.bits_per_sample / 8); + header.data_size = audio.size() * (header.bits_per_sample / 8); + header.chunk_size = 36 + header.data_size; + + sink.write(reinterpret_cast(&header), sizeof(header)); + + for (const auto & sample : audio) { + int16_t pcm_sample = static_cast(std::clamp(sample * 32767.0, -32768.0, 32767.0)); + sink.write(reinterpret_cast(&pcm_sample), sizeof(pcm_sample)); + } + sink.done(); + return false; + }; + + // https://mimetype.io/audio/vnd.wav + res.set_chunked_content_provider("audio/vnd.wav", chunked_content_provider); + res.status = 200; + }; + const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) { json result = json::array(); const auto & loras = ctx_server.params_base.lora_adapters; @@ -4166,6 +4374,7 @@ int main(int argc, char ** argv) { svr->Post("/v1/reranking", handle_rerank); svr->Post("/tokenize", handle_tokenize); svr->Post("/detokenize", handle_detokenize); + svr->Post("/v1/audio/speech", handle_speech); // LoRA adapters hotswap svr->Get ("/lora-adapters", handle_lora_adapters_list); svr->Post("/lora-adapters", handle_lora_adapters_apply); diff --git a/examples/tts/CMakeLists.txt b/examples/tts/CMakeLists.txt index c72bd814c..7dcb43292 100644 --- a/examples/tts/CMakeLists.txt +++ b/examples/tts/CMakeLists.txt @@ -1,5 +1,5 @@ set(TARGET llama-tts) -add_executable(${TARGET} tts.cpp) +add_executable(${TARGET} tts-impl.hpp tts-impl.cpp tts.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_17) diff --git a/examples/tts/tts-impl.cpp b/examples/tts/tts-impl.cpp new file mode 100644 index 000000000..49377a7bc --- /dev/null +++ b/examples/tts/tts-impl.cpp @@ -0,0 +1,540 @@ +#include "log.h" +#include "llama.h" +#include "common.h" +#include "tts-impl.hpp" + +#define _USE_MATH_DEFINES // For M_PI on MSVC + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +static void fill_hann_window(int length, bool periodic, float * output) { + int offset = -1; + if (periodic) { + offset = 0; + } + for (int i = 0; i < length; i++) { + output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset))); + } +} + +// very poor-man fft +static void twiddle(float * real, float * imag, int k, int N) { + float angle = 2 * M_PI * k / N; + *real = cos(angle); + *imag = sin(angle); +} + +static void irfft(int n, const float * inp_cplx, float * out_real) { + int N = n / 2 + 1; + + std::vector real_input(N); + std::vector imag_input(N); + for (int i = 0; i < N; ++i) { + real_input[i] = inp_cplx[2 * i]; + imag_input[i] = inp_cplx[2 * i + 1]; + } + + std::vector real_output(n); + std::vector imag_output(n); + + for (int k = 0; k < n; ++k) { + real_output[k] = 0.0f; + imag_output[k] = 0.0f; + for (int m = 0; m < N; ++m) { + float twiddle_real; + float twiddle_imag; + + twiddle(&twiddle_real, &twiddle_imag, k * m, n); + + real_output[k] += real_input[m] * twiddle_real - imag_input[m] * twiddle_imag; + imag_output[k] += real_input[m] * twiddle_imag + imag_input[m] * twiddle_real; + } + } + + for (int i = 0; i < n; ++i) { + out_real[i] = real_output[i] / N; + } +} + +// +// y = torch.nn.functional.fold( +// data, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), +// )[:, 0, 0, pad:-pad] +// +// data.shape = torch.Size([1, 1280, 261]) +// output_size = 84480 +// win_length = 1280 +// hop_length = 320 +// pad = 480 +// +static void fold(const std::vector & data, int64_t n_out, int64_t n_win, int64_t n_hop, int64_t n_pad, std::vector & output) { + int64_t output_height = n_out; + int64_t kernel_w = n_win; + int64_t stride_w = n_hop; + int64_t width = n_out; + + output.resize(width, 0.0f); + + int64_t col_idx = 0; + for (int64_t w_col = 0; w_col < width; ++w_col) { + int64_t start = w_col * stride_w - n_pad; + int64_t end = start + kernel_w; + + for (int64_t w_im = start; w_im < end; ++w_im) { + if (w_im >= 0 && w_im < output_height && col_idx < (int64_t) data.size()) { + output[w_im] += data[col_idx]; + } + col_idx++; + } + } + + output.resize(n_out - 2 * n_pad); +} + +// TODO: not optimized at all +std::vector tts_embd_to_audio( + const float * embd, + const int n_codes, + const int n_embd, + const int n_thread) { + const int n_fft = 1280; + const int n_hop = 320; + const int n_win = 1280; + const int n_pad = (n_win - n_hop)/2; + const int n_out = (n_codes - 1)*n_hop + n_win; + + std::vector hann(n_fft); + + fill_hann_window(hann.size(), true, hann.data()); + + int n_spec = n_embd*n_codes; + + std::vector E (n_spec); + std::vector S (n_spec); + std::vector ST(n_spec); + + for (int l = 0; l < n_codes; ++l) { + for (int k = 0; k < n_embd; ++k) { + E[k*n_codes + l] = embd[l*n_embd + k]; + } + } + + for (int k = 0; k < n_embd/2; ++k) { + for (int l = 0; l < n_codes; ++l) { + float mag = E[(k )*n_codes + l]; + float phi = E[(k + n_embd/2)*n_codes + l]; + + mag = exp(mag); + + if (mag > 1e2) { + mag = 1e2; + } + S[2*(k*n_codes + l) + 0] = mag*cosf(phi); + S[2*(k*n_codes + l) + 1] = mag*sinf(phi); + } + } + + for (int l = 0; l < n_codes; ++l) { + for (int k = 0; k < n_embd/2; ++k) { + ST[l*n_embd + 2*k + 0] = S[2*(k*n_codes + l) + 0]; + ST[l*n_embd + 2*k + 1] = S[2*(k*n_codes + l) + 1]; + } + } + + std::vector res (n_codes*n_fft); + std::vector hann2(n_codes*n_fft); + + std::vector workers(n_thread); + for (int i = 0; i < n_thread; ++i) { + workers[i] = std::thread([&, i]() { + for (int l = i; l < n_codes; l += n_thread) { + irfft(n_fft, ST.data() + l*n_embd, res.data() + l*n_fft); + for (int j = 0; j < n_fft; ++j) { + res [l*n_fft + j] *= hann[j]; + hann2[l*n_fft + j] = hann[j] * hann[j]; + } + } + }); + } + for (int i = 0; i < n_thread; ++i) { + workers[i].join(); + } + + std::vector audio; + std::vector env; + + fold(res, n_out, n_win, n_hop, n_pad, audio); + fold(hann2, n_out, n_win, n_hop, n_pad, env); // TODO: can be done once + + for (size_t i = 0; i < audio.size(); ++i) { + audio[i] /= env[i]; + } + + return audio; +} + +// +// prompt pre-processing utils +// + +static const std::map ones = { + {0, "zero"}, {1, "one"}, {2, "two"}, {3, "three"}, {4, "four"}, + {5, "five"}, {6, "six"}, {7, "seven"}, {8, "eight"}, {9, "nine"}, + {10, "ten"}, {11, "eleven"}, {12, "twelve"}, {13, "thirteen"}, {14, "fourteen"}, + {15, "fifteen"}, {16, "sixteen"}, {17, "seventeen"}, {18, "eighteen"}, {19, "nineteen"} +}; + +static const std::map tens = { + {2, "twenty"}, {3, "thirty"}, {4, "forty"}, {5, "fifty"}, + {6, "sixty"}, {7, "seventy"}, {8, "eighty"}, {9, "ninety"} +}; + +// Convert a number less than 1000 to words +static std::string convert_less_than_thousand(int num) { + std::string result; + + if (num >= 100) { + result += ones.at(num / 100) + " hundred "; + num %= 100; + } + + if (num >= 20) { + result += tens.at(num / 10); + if (num % 10 > 0) { + result += "-" + ones.at(num % 10); + } + } else if (num > 0) { + result += ones.at(num); + } + + return result; +} + +static std::string number_to_words(const std::string & number_str) { + try { + size_t decimal_pos = number_str.find('.'); + std::string integer_part = number_str.substr(0, decimal_pos); + + int int_number = std::stoi(integer_part); + std::string result; + + if (int_number == 0) { + result = "zero"; + } else { + if (int_number >= 1000000000) { + int billions = int_number / 1000000000; + result += convert_less_than_thousand(billions) + " billion "; + int_number %= 1000000000; + } + + if (int_number >= 1000000) { + int millions = int_number / 1000000; + result += convert_less_than_thousand(millions) + " million "; + int_number %= 1000000; + } + + if (int_number >= 1000) { + int thousands = int_number / 1000; + result += convert_less_than_thousand(thousands) + " thousand "; + int_number %= 1000; + } + + if (int_number > 0) { + result += convert_less_than_thousand(int_number); + } + } + + // Handle decimal part + if (decimal_pos != std::string::npos) { + result += " point"; + std::string decimal_part = number_str.substr(decimal_pos + 1); + for (char digit : decimal_part) { + result += " " + ones.at(digit - '0'); + } + } + + return result; + } catch (const std::exception& e) { + // Skip if fails + return " "; + } +} + +static std::string replace_numbers_with_words(const std::string & input_text) { + std::regex number_pattern(R"(\d+(\.\d+)?)"); + std::string result; + auto it = std::sregex_iterator(input_text.begin(), input_text.end(), number_pattern); + auto end = std::sregex_iterator(); + + size_t last_pos = 0; + for (std::sregex_iterator i = it; i != end; ++i) { + const std::smatch& match = *i; + result.append(input_text, last_pos, match.position() - last_pos); + result.append(number_to_words(match.str())); + last_pos = match.position() + match.length(); + } + result.append(input_text, last_pos); + + return result; +} + +// Based on: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/version/v1/prompt_processor.py#L39 +static std::string process_text(const std::string & text) { + + // For now I skipped text romanization as I am unsure how to handle + // uroman and MeCab implementations in C++ + // maybe something like https://github.com/anyascii/anyascii/ could work. + // currently only English would be supported in this function + + std::string processed_text = replace_numbers_with_words(text); + + std::transform(processed_text.begin(), processed_text.end(), + processed_text.begin(), ::tolower); + + std::regex special_chars(R"([-_/,\.\\])"); + processed_text = std::regex_replace(processed_text, special_chars, " "); + + std::regex non_alpha(R"([^a-z\s])"); + processed_text = std::regex_replace(processed_text, non_alpha, ""); + + std::regex multiple_spaces(R"(\s+)"); + processed_text = std::regex_replace(processed_text, multiple_spaces, " "); + + processed_text = std::regex_replace(processed_text, std::regex(R"(^\s+|\s+$)"), ""); + + /* + Replace spaces with the separator token same as in line 365 + + for (auto & c : prompt_user) { + if (c == ' ') { + prompt_clean += "<|text_sep|>"; + */ + processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|text_sep|>"); + + return processed_text; +} + +static void prompt_add(llama_tokens & prompt, llama_token token) { + prompt.push_back(token); +} + +static void prompt_add(llama_tokens & prompt, const llama_tokens & tokens) { + prompt.insert(prompt.end(), tokens.begin(), tokens.end()); +} + +static void prompt_add(llama_tokens & prompt, const llama_model * model, const std::string & txt, bool add_special, bool parse_special) { + auto tmp = common_tokenize(model, txt, add_special, parse_special); + prompt_add(prompt, tmp); +} + +static void prompt_init(llama_tokens & prompt, const llama_model * model) { + prompt.clear(); + + prompt_add(prompt, model, "<|im_start|>\n", true, true); +} + +llama_tokens tts_preprocess_prompt(const llama_model * model_ttc, const std::string & prompt_str) { + llama_tokens prompt_inp; + + prompt_init(prompt_inp, model_ttc); + + prompt_add(prompt_inp, model_ttc, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true); + + // convert the input text into the necessary format expected by OuteTTS + { + std::string prompt_clean = process_text(prompt_str); + + LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str()); + + prompt_add(prompt_inp, model_ttc, prompt_clean, false, true); + } + + prompt_add(prompt_inp, model_ttc, "<|text_end|>\n", false, true); + + // disabled to save time on tokenizing each time + // TODO: load voices from the json files +#if 0 + const std::string voice_data = R"(<|audio_start|> +the<|t_0.08|><|code_start|><|257|><|740|><|636|><|913|><|788|><|1703|><|code_end|> +overall<|t_0.36|><|code_start|><|127|><|201|><|191|><|774|><|700|><|532|><|1056|><|557|><|798|><|298|><|1741|><|747|><|1662|><|1617|><|1702|><|1527|><|368|><|1588|><|1049|><|1008|><|1625|><|747|><|1576|><|728|><|1019|><|1696|><|1765|><|code_end|> +package<|t_0.56|><|code_start|><|935|><|584|><|1319|><|627|><|1016|><|1491|><|1344|><|1117|><|1526|><|1040|><|239|><|1435|><|951|><|498|><|723|><|1180|><|535|><|789|><|1649|><|1637|><|78|><|465|><|1668|><|901|><|595|><|1675|><|117|><|1009|><|1667|><|320|><|840|><|79|><|507|><|1762|><|1508|><|1228|><|1768|><|802|><|1450|><|1457|><|232|><|639|><|code_end|> +from<|t_0.19|><|code_start|><|604|><|782|><|1682|><|872|><|1532|><|1600|><|1036|><|1761|><|647|><|1554|><|1371|><|653|><|1595|><|950|><|code_end|> +just<|t_0.25|><|code_start|><|1782|><|1670|><|317|><|786|><|1748|><|631|><|599|><|1155|><|1364|><|1524|><|36|><|1591|><|889|><|1535|><|541|><|440|><|1532|><|50|><|870|><|code_end|> +two<|t_0.24|><|code_start|><|1681|><|1510|><|673|><|799|><|805|><|1342|><|330|><|519|><|62|><|640|><|1138|><|565|><|1552|><|1497|><|1552|><|572|><|1715|><|1732|><|code_end|> +people<|t_0.39|><|code_start|><|593|><|274|><|136|><|740|><|691|><|633|><|1484|><|1061|><|1138|><|1485|><|344|><|428|><|397|><|1562|><|645|><|917|><|1035|><|1449|><|1669|><|487|><|442|><|1484|><|1329|><|1832|><|1704|><|600|><|761|><|653|><|269|><|code_end|> +is<|t_0.16|><|code_start|><|566|><|583|><|1755|><|646|><|1337|><|709|><|802|><|1008|><|485|><|1583|><|652|><|10|><|code_end|> +pretty<|t_0.32|><|code_start|><|1818|><|1747|><|692|><|733|><|1010|><|534|><|406|><|1697|><|1053|><|1521|><|1355|><|1274|><|816|><|1398|><|211|><|1218|><|817|><|1472|><|1703|><|686|><|13|><|822|><|445|><|1068|><|code_end|> +remarkable<|t_0.68|><|code_start|><|230|><|1048|><|1705|><|355|><|706|><|1149|><|1535|><|1787|><|1356|><|1396|><|835|><|1583|><|486|><|1249|><|286|><|937|><|1076|><|1150|><|614|><|42|><|1058|><|705|><|681|><|798|><|934|><|490|><|514|><|1399|><|572|><|1446|><|1703|><|1346|><|1040|><|1426|><|1304|><|664|><|171|><|1530|><|625|><|64|><|1708|><|1830|><|1030|><|443|><|1509|><|1063|><|1605|><|1785|><|721|><|1440|><|923|><|code_end|> +sure<|t_0.36|><|code_start|><|792|><|1780|><|923|><|1640|><|265|><|261|><|1525|><|567|><|1491|><|1250|><|1730|><|362|><|919|><|1766|><|543|><|1|><|333|><|113|><|970|><|252|><|1606|><|133|><|302|><|1810|><|1046|><|1190|><|1675|><|code_end|> +i<|t_0.08|><|code_start|><|123|><|439|><|1074|><|705|><|1799|><|637|><|code_end|> +have<|t_0.16|><|code_start|><|1509|><|599|><|518|><|1170|><|552|><|1029|><|1267|><|864|><|419|><|143|><|1061|><|0|><|code_end|> +some<|t_0.16|><|code_start|><|619|><|400|><|1270|><|62|><|1370|><|1832|><|917|><|1661|><|167|><|269|><|1366|><|1508|><|code_end|> +critiques<|t_0.60|><|code_start|><|559|><|584|><|1163|><|1129|><|1313|><|1728|><|721|><|1146|><|1093|><|577|><|928|><|27|><|630|><|1080|><|1346|><|1337|><|320|><|1382|><|1175|><|1682|><|1556|><|990|><|1683|><|860|><|1721|><|110|><|786|><|376|><|1085|><|756|><|1523|><|234|><|1334|><|1506|><|1578|><|659|><|612|><|1108|><|1466|><|1647|><|308|><|1470|><|746|><|556|><|1061|><|code_end|> +about<|t_0.29|><|code_start|><|26|><|1649|><|545|><|1367|><|1263|><|1728|><|450|><|859|><|1434|><|497|><|1220|><|1285|><|179|><|755|><|1154|><|779|><|179|><|1229|><|1213|><|922|><|1774|><|1408|><|code_end|> +some<|t_0.23|><|code_start|><|986|><|28|><|1649|><|778|><|858|><|1519|><|1|><|18|><|26|><|1042|><|1174|><|1309|><|1499|><|1712|><|1692|><|1516|><|1574|><|code_end|> +of<|t_0.07|><|code_start|><|197|><|716|><|1039|><|1662|><|64|><|code_end|> +the<|t_0.08|><|code_start|><|1811|><|1568|><|569|><|886|><|1025|><|1374|><|code_end|> +gameplay<|t_0.48|><|code_start|><|1269|><|1092|><|933|><|1362|><|1762|><|1700|><|1675|><|215|><|781|><|1086|><|461|><|838|><|1022|><|759|><|649|><|1416|><|1004|><|551|><|909|><|787|><|343|><|830|><|1391|><|1040|><|1622|><|1779|><|1360|><|1231|><|1187|><|1317|><|76|><|997|><|989|><|978|><|737|><|189|><|code_end|> +aspects<|t_0.56|><|code_start|><|1423|><|797|><|1316|><|1222|><|147|><|719|><|1347|><|386|><|1390|><|1558|><|154|><|440|><|634|><|592|><|1097|><|1718|><|712|><|763|><|1118|><|1721|><|1311|><|868|><|580|><|362|><|1435|><|868|><|247|><|221|><|886|><|1145|><|1274|><|1284|><|457|><|1043|><|1459|><|1818|><|62|><|599|><|1035|><|62|><|1649|><|778|><|code_end|> +but<|t_0.20|><|code_start|><|780|><|1825|><|1681|><|1007|><|861|><|710|><|702|><|939|><|1669|><|1491|><|613|><|1739|><|823|><|1469|><|648|><|code_end|> +its<|t_0.09|><|code_start|><|92|><|688|><|1623|><|962|><|1670|><|527|><|599|><|code_end|> +still<|t_0.27|><|code_start|><|636|><|10|><|1217|><|344|><|713|><|957|><|823|><|154|><|1649|><|1286|><|508|><|214|><|1760|><|1250|><|456|><|1352|><|1368|><|921|><|615|><|5|><|code_end|> +really<|t_0.36|><|code_start|><|55|><|420|><|1008|><|1659|><|27|><|644|><|1266|><|617|><|761|><|1712|><|109|><|1465|><|1587|><|503|><|1541|><|619|><|197|><|1019|><|817|><|269|><|377|><|362|><|1381|><|507|><|1488|><|4|><|1695|><|code_end|> +enjoyable<|t_0.49|><|code_start|><|678|><|501|><|864|><|319|><|288|><|1472|><|1341|><|686|><|562|><|1463|><|619|><|1563|><|471|><|911|><|730|><|1811|><|1006|><|520|><|861|><|1274|><|125|><|1431|><|638|><|621|><|153|><|876|><|1770|><|437|><|987|><|1653|><|1109|><|898|><|1285|><|80|><|593|><|1709|><|843|><|code_end|> +and<|t_0.15|><|code_start|><|1285|><|987|><|303|><|1037|><|730|><|1164|><|502|><|120|><|1737|><|1655|><|1318|><|code_end|> +it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><|code_end|> +looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|> +lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)"; + + auto tmp = common_tokenize(model_ttc, voice_data, false, true); + printf("\n\n"); + for (int i = 0; i < tmp.size(); ++i) { + printf("%d, ", tmp[i]); + } + printf("\n\n"); +#else + prompt_add(prompt_inp, llama_tokens { + 151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585, + 152460, 153375, 151670, 198, 74455, 155808, 151669, 151799, + 151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470, + 151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040, + 153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691, + 153368, 153437, 151670, 198, 1722, 155828, 151669, 152607, + 152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198, + 152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207, + 152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267, + 153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179, + 153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904, + 152311, 151670, 198, 1499, 155791, 151669, 152276, 152454, + 153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226, + 153043, 152325, 153267, 152622, 151670, 198, 4250, 155797, + 151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271, + 152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213, + 152112, 153204, 151722, 152542, 151670, 198, 19789, 155796, + 151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002, + 152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224, + 152244, 153387, 153404, 151670, 198, 16069, 155811, 151669, + 152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733, + 152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589, + 152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504, + 153376, 152272, 152433, 152325, 151941, 151670, 198, 285, + 155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381, + 152474, 152680, 152157, 153255, 152324, 151682, 151670, 198, + 32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682, + 152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488, + 153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685, + 152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669, + 151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459, + 153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609, + 152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470, + 152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018, + 152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736, + 153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457, + 152393, 153112, 152595, 151670, 198, 19098, 155808, 151669, + 152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239, + 153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673, + 152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482, + 152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795, + 152111, 152746, 152377, 153471, 152309, 151670, 198, 19016, + 155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701, + 152939, 152536, 152091, 151815, 152733, 151672, 151670, 198, + 14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042, + 153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670, + 198, 36996, 8303, 155832, 151669, 152231, 152256, 152835, + 152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600, + 151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847, + 153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458, + 152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250, + 152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418, + 152228, 152733, 151670, 198, 9096, 155801, 151669, 151698, + 153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106, + 152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851, + 152901, 152885, 152594, 153446, 153080, 151670, 198, 14689, + 155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191, + 151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384, + 153364, 153188, 153246, 151670, 198, 1055, 155779, 151669, + 151869, 152388, 152711, 153334, 151736, 151670, 198, 1782, + 155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046, + 151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605, + 153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133, + 152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581, + 152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032, + 152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409, + 151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469, + 152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230, + 151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435, + 152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540, + 151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715, + 153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450, + 151670, 198, 8088, 155792, 151669, 152452, 153497, 153353, + 152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285, + 153411, 152495, 153141, 152320, 151670, 198, 1199, 155781, + 151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271, + 151670, 198, 43366, 155799, 151669, 152308, 151682, 152889, + 152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180, + 151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287, + 151677, 151670, 198, 53660, 155808, 151669, 151727, 152092, + 152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384, + 151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691, + 152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676, + 153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350, + 152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234, + 153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678, + 152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825, + 152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957, + 151752, 152265, 153381, 152515, 151670, 198, 437, 155787, + 151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174, + 151792, 153409, 153327, 152990, 151670, 198, 275, 155781, + 151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974, + 151670, 198, 94273, 155799, 151669, 152953, 152938, 153427, + 152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331, + 152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326, + 152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268, + 153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110, + 152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444, + 152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751, + 152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499, + 152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349, + 151670,}); + #endif + + return prompt_inp; +} + +// TODO: do not dumplicate this from tts.cpp +int tts_get_embd(struct llama_context * ctx_cts, llama_tokens & codes, std::vector & output) { + for (auto & token : codes) { + token -= 151672; + } + + int n_codes = codes.size(); + llama_batch batch = llama_batch_init(n_codes, 0, 1); + + for (size_t i = 0; i < codes.size(); ++i) { + common_batch_add(batch, codes[i], i, { 0 }, true); // TODO: all logits? + } + GGML_ASSERT(batch.n_tokens == n_codes); + + int status = llama_decode(ctx_cts, batch); + if (status != 0) { + return status; + } + + llama_synchronize(ctx_cts); + + const int n_embd = llama_n_embd(llama_get_model(ctx_cts)); + const float * embd = llama_get_embeddings(ctx_cts); + + output.resize(n_codes * n_embd); + memcpy(output.data(), embd, n_codes * n_embd * sizeof(float)); + + return 0; +} diff --git a/examples/tts/tts-impl.hpp b/examples/tts/tts-impl.hpp new file mode 100644 index 000000000..76c133de9 --- /dev/null +++ b/examples/tts/tts-impl.hpp @@ -0,0 +1,29 @@ +#pragma once + +#include + +struct wav_header { + char riff[4] = {'R', 'I', 'F', 'F'}; + uint32_t chunk_size; + char wave[4] = {'W', 'A', 'V', 'E'}; + char fmt[4] = {'f', 'm', 't', ' '}; + uint32_t fmt_chunk_size = 16; + uint16_t audio_format = 1; // PCM + uint16_t num_channels = 1; // Mono + uint32_t sample_rate; + uint32_t byte_rate; + uint16_t block_align; + uint16_t bits_per_sample = 16; + char data[4] = {'d', 'a', 't', 'a'}; + uint32_t data_size; +}; + +std::vector tts_embd_to_audio( + const float * embd, + const int n_codes, + const int n_embd, + const int n_thread); + +llama_tokens tts_preprocess_prompt(const llama_model * model_ttc, const std::string & prompt_str); + +int tts_get_embd(struct llama_context * ctx_cts, llama_tokens & codes, std::vector & output); diff --git a/examples/tts/tts.cpp b/examples/tts/tts.cpp index 522f5e881..b77cbb8cf 100644 --- a/examples/tts/tts.cpp +++ b/examples/tts/tts.cpp @@ -3,6 +3,7 @@ #include "sampling.h" #include "log.h" #include "llama.h" +#include "tts-impl.hpp" #define _USE_MATH_DEFINES // For M_PI on MSVC @@ -10,10 +11,7 @@ #include #include #include -#include -#include #include -#include #include // @@ -63,22 +61,6 @@ static void print_usage(int, char ** argv) { LOG("\n"); } -struct wav_header { - char riff[4] = {'R', 'I', 'F', 'F'}; - uint32_t chunk_size; - char wave[4] = {'W', 'A', 'V', 'E'}; - char fmt[4] = {'f', 'm', 't', ' '}; - uint32_t fmt_chunk_size = 16; - uint16_t audio_format = 1; // PCM - uint16_t num_channels = 1; // Mono - uint32_t sample_rate; - uint32_t byte_rate; - uint16_t block_align; - uint16_t bits_per_sample = 16; - char data[4] = {'d', 'a', 't', 'a'}; - uint32_t data_size; -}; - static void save_wav16(const std::string & fname, const std::vector & data, int sample_rate) { std::ofstream file(fname, std::ios::binary); if (!file) { @@ -103,328 +85,6 @@ static void save_wav16(const std::string & fname, const std::vector & dat file.close(); } -static void fill_hann_window(int length, bool periodic, float * output) { - int offset = -1; - if (periodic) { - offset = 0; - } - for (int i = 0; i < length; i++) { - output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset))); - } -} - -// very poor-man fft -static void twiddle(float * real, float * imag, int k, int N) { - float angle = 2 * M_PI * k / N; - *real = cos(angle); - *imag = sin(angle); -} - -static void irfft(int n, const float * inp_cplx, float * out_real) { - int N = n / 2 + 1; - - std::vector real_input(N); - std::vector imag_input(N); - for (int i = 0; i < N; ++i) { - real_input[i] = inp_cplx[2 * i]; - imag_input[i] = inp_cplx[2 * i + 1]; - } - - std::vector real_output(n); - std::vector imag_output(n); - - for (int k = 0; k < n; ++k) { - real_output[k] = 0.0f; - imag_output[k] = 0.0f; - for (int m = 0; m < N; ++m) { - float twiddle_real; - float twiddle_imag; - - twiddle(&twiddle_real, &twiddle_imag, k * m, n); - - real_output[k] += real_input[m] * twiddle_real - imag_input[m] * twiddle_imag; - imag_output[k] += real_input[m] * twiddle_imag + imag_input[m] * twiddle_real; - } - } - - for (int i = 0; i < n; ++i) { - out_real[i] = real_output[i] / N; - } -} - -// -// y = torch.nn.functional.fold( -// data, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), -// )[:, 0, 0, pad:-pad] -// -// data.shape = torch.Size([1, 1280, 261]) -// output_size = 84480 -// win_length = 1280 -// hop_length = 320 -// pad = 480 -// -static void fold(const std::vector & data, int64_t n_out, int64_t n_win, int64_t n_hop, int64_t n_pad, std::vector & output) { - int64_t output_height = n_out; - int64_t kernel_w = n_win; - int64_t stride_w = n_hop; - int64_t width = n_out; - - output.resize(width, 0.0f); - - int64_t col_idx = 0; - for (int64_t w_col = 0; w_col < width; ++w_col) { - int64_t start = w_col * stride_w - n_pad; - int64_t end = start + kernel_w; - - for (int64_t w_im = start; w_im < end; ++w_im) { - if (w_im >= 0 && w_im < output_height && col_idx < (int64_t) data.size()) { - output[w_im] += data[col_idx]; - } - col_idx++; - } - } - - output.resize(n_out - 2 * n_pad); -} - -// TODO: not optimized at all -static std::vector embd_to_audio( - const float * embd, - const int n_codes, - const int n_embd, - const int n_thread) { - const int n_fft = 1280; - const int n_hop = 320; - const int n_win = 1280; - const int n_pad = (n_win - n_hop)/2; - const int n_out = (n_codes - 1)*n_hop + n_win; - - std::vector hann(n_fft); - - fill_hann_window(hann.size(), true, hann.data()); - - int n_spec = n_embd*n_codes; - - std::vector E (n_spec); - std::vector S (n_spec); - std::vector ST(n_spec); - - for (int l = 0; l < n_codes; ++l) { - for (int k = 0; k < n_embd; ++k) { - E[k*n_codes + l] = embd[l*n_embd + k]; - } - } - - for (int k = 0; k < n_embd/2; ++k) { - for (int l = 0; l < n_codes; ++l) { - float mag = E[(k )*n_codes + l]; - float phi = E[(k + n_embd/2)*n_codes + l]; - - mag = exp(mag); - - if (mag > 1e2) { - mag = 1e2; - } - S[2*(k*n_codes + l) + 0] = mag*cosf(phi); - S[2*(k*n_codes + l) + 1] = mag*sinf(phi); - } - } - - for (int l = 0; l < n_codes; ++l) { - for (int k = 0; k < n_embd/2; ++k) { - ST[l*n_embd + 2*k + 0] = S[2*(k*n_codes + l) + 0]; - ST[l*n_embd + 2*k + 1] = S[2*(k*n_codes + l) + 1]; - } - } - - std::vector res (n_codes*n_fft); - std::vector hann2(n_codes*n_fft); - - std::vector workers(n_thread); - for (int i = 0; i < n_thread; ++i) { - workers[i] = std::thread([&, i]() { - for (int l = i; l < n_codes; l += n_thread) { - irfft(n_fft, ST.data() + l*n_embd, res.data() + l*n_fft); - for (int j = 0; j < n_fft; ++j) { - res [l*n_fft + j] *= hann[j]; - hann2[l*n_fft + j] = hann[j] * hann[j]; - } - } - }); - } - for (int i = 0; i < n_thread; ++i) { - workers[i].join(); - } - - std::vector audio; - std::vector env; - - fold(res, n_out, n_win, n_hop, n_pad, audio); - fold(hann2, n_out, n_win, n_hop, n_pad, env); // TODO: can be done once - - for (size_t i = 0; i < audio.size(); ++i) { - audio[i] /= env[i]; - } - - return audio; -} - -static const std::map ones = { - {0, "zero"}, {1, "one"}, {2, "two"}, {3, "three"}, {4, "four"}, - {5, "five"}, {6, "six"}, {7, "seven"}, {8, "eight"}, {9, "nine"}, - {10, "ten"}, {11, "eleven"}, {12, "twelve"}, {13, "thirteen"}, {14, "fourteen"}, - {15, "fifteen"}, {16, "sixteen"}, {17, "seventeen"}, {18, "eighteen"}, {19, "nineteen"} -}; - -static const std::map tens = { - {2, "twenty"}, {3, "thirty"}, {4, "forty"}, {5, "fifty"}, - {6, "sixty"}, {7, "seventy"}, {8, "eighty"}, {9, "ninety"} -}; - -// Convert a number less than 1000 to words -static std::string convert_less_than_thousand(int num) { - std::string result; - - if (num >= 100) { - result += ones.at(num / 100) + " hundred "; - num %= 100; - } - - if (num >= 20) { - result += tens.at(num / 10); - if (num % 10 > 0) { - result += "-" + ones.at(num % 10); - } - } else if (num > 0) { - result += ones.at(num); - } - - return result; -} - -static std::string number_to_words(const std::string & number_str) { - try { - size_t decimal_pos = number_str.find('.'); - std::string integer_part = number_str.substr(0, decimal_pos); - - int int_number = std::stoi(integer_part); - std::string result; - - if (int_number == 0) { - result = "zero"; - } else { - if (int_number >= 1000000000) { - int billions = int_number / 1000000000; - result += convert_less_than_thousand(billions) + " billion "; - int_number %= 1000000000; - } - - if (int_number >= 1000000) { - int millions = int_number / 1000000; - result += convert_less_than_thousand(millions) + " million "; - int_number %= 1000000; - } - - if (int_number >= 1000) { - int thousands = int_number / 1000; - result += convert_less_than_thousand(thousands) + " thousand "; - int_number %= 1000; - } - - if (int_number > 0) { - result += convert_less_than_thousand(int_number); - } - } - - // Handle decimal part - if (decimal_pos != std::string::npos) { - result += " point"; - std::string decimal_part = number_str.substr(decimal_pos + 1); - for (char digit : decimal_part) { - result += " " + ones.at(digit - '0'); - } - } - - return result; - } catch (const std::exception& e) { - // Skip if fails - return " "; - } -} - -static std::string replace_numbers_with_words(const std::string & input_text) { - std::regex number_pattern(R"(\d+(\.\d+)?)"); - std::string result; - auto it = std::sregex_iterator(input_text.begin(), input_text.end(), number_pattern); - auto end = std::sregex_iterator(); - - size_t last_pos = 0; - for (std::sregex_iterator i = it; i != end; ++i) { - const std::smatch& match = *i; - result.append(input_text, last_pos, match.position() - last_pos); - result.append(number_to_words(match.str())); - last_pos = match.position() + match.length(); - } - result.append(input_text, last_pos); - - return result; -} - -// Based on: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/version/v1/prompt_processor.py#L39 -static std::string process_text(const std::string & text) { - - // For now I skipped text romanization as I am unsure how to handle - // uroman and MeCab implementations in C++ - // maybe something like https://github.com/anyascii/anyascii/ could work. - // currently only English would be supported in this function - - std::string processed_text = replace_numbers_with_words(text); - - std::transform(processed_text.begin(), processed_text.end(), - processed_text.begin(), ::tolower); - - std::regex special_chars(R"([-_/,\.\\])"); - processed_text = std::regex_replace(processed_text, special_chars, " "); - - std::regex non_alpha(R"([^a-z\s])"); - processed_text = std::regex_replace(processed_text, non_alpha, ""); - - std::regex multiple_spaces(R"(\s+)"); - processed_text = std::regex_replace(processed_text, multiple_spaces, " "); - - processed_text = std::regex_replace(processed_text, std::regex(R"(^\s+|\s+$)"), ""); - - /* - Replace spaces with the separator token same as in line 365 - - for (auto & c : prompt_user) { - if (c == ' ') { - prompt_clean += "<|text_sep|>"; - */ - processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|text_sep|>"); - - return processed_text; -} - -static void prompt_add(llama_tokens & prompt, llama_token token) { - prompt.push_back(token); -} - -static void prompt_add(llama_tokens & prompt, const llama_tokens & tokens) { - prompt.insert(prompt.end(), tokens.begin(), tokens.end()); -} - -static void prompt_add(llama_tokens & prompt, const llama_model * model, const std::string & txt, bool add_special, bool parse_special) { - auto tmp = common_tokenize(model, txt, add_special, parse_special); - prompt_add(prompt, tmp); -} - -static void prompt_init(llama_tokens & prompt, const llama_model * model) { - prompt.clear(); - - prompt_add(prompt, model, "<|im_start|>\n", true, true); -} - int main(int argc, char ** argv) { common_params params; @@ -497,169 +157,7 @@ int main(int argc, char ** argv) { { LOG_INF("%s: constructing prompt ..\n", __func__); - std::vector prompt_inp; - - prompt_init(prompt_inp, model_ttc); - - prompt_add(prompt_inp, model_ttc, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true); - - // convert the input text into the necessary format expected by OuteTTS - { - std::string prompt_clean = process_text(params.prompt); - - LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str()); - - prompt_add(prompt_inp, model_ttc, prompt_clean, false, true); - } - - prompt_add(prompt_inp, model_ttc, "<|text_end|>\n", false, true); - - // disabled to save time on tokenizing each time - // TODO: load voices from the json files -#if 0 - const std::string voice_data = R"(<|audio_start|> -the<|t_0.08|><|code_start|><|257|><|740|><|636|><|913|><|788|><|1703|><|code_end|> -overall<|t_0.36|><|code_start|><|127|><|201|><|191|><|774|><|700|><|532|><|1056|><|557|><|798|><|298|><|1741|><|747|><|1662|><|1617|><|1702|><|1527|><|368|><|1588|><|1049|><|1008|><|1625|><|747|><|1576|><|728|><|1019|><|1696|><|1765|><|code_end|> -package<|t_0.56|><|code_start|><|935|><|584|><|1319|><|627|><|1016|><|1491|><|1344|><|1117|><|1526|><|1040|><|239|><|1435|><|951|><|498|><|723|><|1180|><|535|><|789|><|1649|><|1637|><|78|><|465|><|1668|><|901|><|595|><|1675|><|117|><|1009|><|1667|><|320|><|840|><|79|><|507|><|1762|><|1508|><|1228|><|1768|><|802|><|1450|><|1457|><|232|><|639|><|code_end|> -from<|t_0.19|><|code_start|><|604|><|782|><|1682|><|872|><|1532|><|1600|><|1036|><|1761|><|647|><|1554|><|1371|><|653|><|1595|><|950|><|code_end|> -just<|t_0.25|><|code_start|><|1782|><|1670|><|317|><|786|><|1748|><|631|><|599|><|1155|><|1364|><|1524|><|36|><|1591|><|889|><|1535|><|541|><|440|><|1532|><|50|><|870|><|code_end|> -two<|t_0.24|><|code_start|><|1681|><|1510|><|673|><|799|><|805|><|1342|><|330|><|519|><|62|><|640|><|1138|><|565|><|1552|><|1497|><|1552|><|572|><|1715|><|1732|><|code_end|> -people<|t_0.39|><|code_start|><|593|><|274|><|136|><|740|><|691|><|633|><|1484|><|1061|><|1138|><|1485|><|344|><|428|><|397|><|1562|><|645|><|917|><|1035|><|1449|><|1669|><|487|><|442|><|1484|><|1329|><|1832|><|1704|><|600|><|761|><|653|><|269|><|code_end|> -is<|t_0.16|><|code_start|><|566|><|583|><|1755|><|646|><|1337|><|709|><|802|><|1008|><|485|><|1583|><|652|><|10|><|code_end|> -pretty<|t_0.32|><|code_start|><|1818|><|1747|><|692|><|733|><|1010|><|534|><|406|><|1697|><|1053|><|1521|><|1355|><|1274|><|816|><|1398|><|211|><|1218|><|817|><|1472|><|1703|><|686|><|13|><|822|><|445|><|1068|><|code_end|> -remarkable<|t_0.68|><|code_start|><|230|><|1048|><|1705|><|355|><|706|><|1149|><|1535|><|1787|><|1356|><|1396|><|835|><|1583|><|486|><|1249|><|286|><|937|><|1076|><|1150|><|614|><|42|><|1058|><|705|><|681|><|798|><|934|><|490|><|514|><|1399|><|572|><|1446|><|1703|><|1346|><|1040|><|1426|><|1304|><|664|><|171|><|1530|><|625|><|64|><|1708|><|1830|><|1030|><|443|><|1509|><|1063|><|1605|><|1785|><|721|><|1440|><|923|><|code_end|> -sure<|t_0.36|><|code_start|><|792|><|1780|><|923|><|1640|><|265|><|261|><|1525|><|567|><|1491|><|1250|><|1730|><|362|><|919|><|1766|><|543|><|1|><|333|><|113|><|970|><|252|><|1606|><|133|><|302|><|1810|><|1046|><|1190|><|1675|><|code_end|> -i<|t_0.08|><|code_start|><|123|><|439|><|1074|><|705|><|1799|><|637|><|code_end|> -have<|t_0.16|><|code_start|><|1509|><|599|><|518|><|1170|><|552|><|1029|><|1267|><|864|><|419|><|143|><|1061|><|0|><|code_end|> -some<|t_0.16|><|code_start|><|619|><|400|><|1270|><|62|><|1370|><|1832|><|917|><|1661|><|167|><|269|><|1366|><|1508|><|code_end|> -critiques<|t_0.60|><|code_start|><|559|><|584|><|1163|><|1129|><|1313|><|1728|><|721|><|1146|><|1093|><|577|><|928|><|27|><|630|><|1080|><|1346|><|1337|><|320|><|1382|><|1175|><|1682|><|1556|><|990|><|1683|><|860|><|1721|><|110|><|786|><|376|><|1085|><|756|><|1523|><|234|><|1334|><|1506|><|1578|><|659|><|612|><|1108|><|1466|><|1647|><|308|><|1470|><|746|><|556|><|1061|><|code_end|> -about<|t_0.29|><|code_start|><|26|><|1649|><|545|><|1367|><|1263|><|1728|><|450|><|859|><|1434|><|497|><|1220|><|1285|><|179|><|755|><|1154|><|779|><|179|><|1229|><|1213|><|922|><|1774|><|1408|><|code_end|> -some<|t_0.23|><|code_start|><|986|><|28|><|1649|><|778|><|858|><|1519|><|1|><|18|><|26|><|1042|><|1174|><|1309|><|1499|><|1712|><|1692|><|1516|><|1574|><|code_end|> -of<|t_0.07|><|code_start|><|197|><|716|><|1039|><|1662|><|64|><|code_end|> -the<|t_0.08|><|code_start|><|1811|><|1568|><|569|><|886|><|1025|><|1374|><|code_end|> -gameplay<|t_0.48|><|code_start|><|1269|><|1092|><|933|><|1362|><|1762|><|1700|><|1675|><|215|><|781|><|1086|><|461|><|838|><|1022|><|759|><|649|><|1416|><|1004|><|551|><|909|><|787|><|343|><|830|><|1391|><|1040|><|1622|><|1779|><|1360|><|1231|><|1187|><|1317|><|76|><|997|><|989|><|978|><|737|><|189|><|code_end|> -aspects<|t_0.56|><|code_start|><|1423|><|797|><|1316|><|1222|><|147|><|719|><|1347|><|386|><|1390|><|1558|><|154|><|440|><|634|><|592|><|1097|><|1718|><|712|><|763|><|1118|><|1721|><|1311|><|868|><|580|><|362|><|1435|><|868|><|247|><|221|><|886|><|1145|><|1274|><|1284|><|457|><|1043|><|1459|><|1818|><|62|><|599|><|1035|><|62|><|1649|><|778|><|code_end|> -but<|t_0.20|><|code_start|><|780|><|1825|><|1681|><|1007|><|861|><|710|><|702|><|939|><|1669|><|1491|><|613|><|1739|><|823|><|1469|><|648|><|code_end|> -its<|t_0.09|><|code_start|><|92|><|688|><|1623|><|962|><|1670|><|527|><|599|><|code_end|> -still<|t_0.27|><|code_start|><|636|><|10|><|1217|><|344|><|713|><|957|><|823|><|154|><|1649|><|1286|><|508|><|214|><|1760|><|1250|><|456|><|1352|><|1368|><|921|><|615|><|5|><|code_end|> -really<|t_0.36|><|code_start|><|55|><|420|><|1008|><|1659|><|27|><|644|><|1266|><|617|><|761|><|1712|><|109|><|1465|><|1587|><|503|><|1541|><|619|><|197|><|1019|><|817|><|269|><|377|><|362|><|1381|><|507|><|1488|><|4|><|1695|><|code_end|> -enjoyable<|t_0.49|><|code_start|><|678|><|501|><|864|><|319|><|288|><|1472|><|1341|><|686|><|562|><|1463|><|619|><|1563|><|471|><|911|><|730|><|1811|><|1006|><|520|><|861|><|1274|><|125|><|1431|><|638|><|621|><|153|><|876|><|1770|><|437|><|987|><|1653|><|1109|><|898|><|1285|><|80|><|593|><|1709|><|843|><|code_end|> -and<|t_0.15|><|code_start|><|1285|><|987|><|303|><|1037|><|730|><|1164|><|502|><|120|><|1737|><|1655|><|1318|><|code_end|> -it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><|code_end|> -looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|> -lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)"; - - auto tmp = common_tokenize(model_ttc, voice_data, false, true); - printf("\n\n"); - for (int i = 0; i < tmp.size(); ++i) { - printf("%d, ", tmp[i]); - } - printf("\n\n"); -#else - prompt_add(prompt_inp, llama_tokens { - 151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585, - 152460, 153375, 151670, 198, 74455, 155808, 151669, 151799, - 151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470, - 151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040, - 153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691, - 153368, 153437, 151670, 198, 1722, 155828, 151669, 152607, - 152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198, - 152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207, - 152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267, - 153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179, - 153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904, - 152311, 151670, 198, 1499, 155791, 151669, 152276, 152454, - 153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226, - 153043, 152325, 153267, 152622, 151670, 198, 4250, 155797, - 151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271, - 152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213, - 152112, 153204, 151722, 152542, 151670, 198, 19789, 155796, - 151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002, - 152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224, - 152244, 153387, 153404, 151670, 198, 16069, 155811, 151669, - 152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733, - 152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589, - 152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504, - 153376, 152272, 152433, 152325, 151941, 151670, 198, 285, - 155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381, - 152474, 152680, 152157, 153255, 152324, 151682, 151670, 198, - 32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682, - 152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488, - 153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685, - 152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669, - 151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459, - 153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609, - 152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470, - 152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018, - 152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736, - 153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457, - 152393, 153112, 152595, 151670, 198, 19098, 155808, 151669, - 152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239, - 153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673, - 152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482, - 152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795, - 152111, 152746, 152377, 153471, 152309, 151670, 198, 19016, - 155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701, - 152939, 152536, 152091, 151815, 152733, 151672, 151670, 198, - 14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042, - 153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670, - 198, 36996, 8303, 155832, 151669, 152231, 152256, 152835, - 152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600, - 151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847, - 153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458, - 152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250, - 152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418, - 152228, 152733, 151670, 198, 9096, 155801, 151669, 151698, - 153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106, - 152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851, - 152901, 152885, 152594, 153446, 153080, 151670, 198, 14689, - 155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191, - 151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384, - 153364, 153188, 153246, 151670, 198, 1055, 155779, 151669, - 151869, 152388, 152711, 153334, 151736, 151670, 198, 1782, - 155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046, - 151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605, - 153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133, - 152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581, - 152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032, - 152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409, - 151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469, - 152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230, - 151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435, - 152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540, - 151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715, - 153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450, - 151670, 198, 8088, 155792, 151669, 152452, 153497, 153353, - 152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285, - 153411, 152495, 153141, 152320, 151670, 198, 1199, 155781, - 151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271, - 151670, 198, 43366, 155799, 151669, 152308, 151682, 152889, - 152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180, - 151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287, - 151677, 151670, 198, 53660, 155808, 151669, 151727, 152092, - 152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384, - 151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691, - 152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676, - 153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350, - 152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234, - 153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678, - 152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825, - 152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957, - 151752, 152265, 153381, 152515, 151670, 198, 437, 155787, - 151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174, - 151792, 153409, 153327, 152990, 151670, 198, 275, 155781, - 151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974, - 151670, 198, 94273, 155799, 151669, 152953, 152938, 153427, - 152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331, - 152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326, - 152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268, - 153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110, - 152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444, - 152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751, - 152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499, - 152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349, - 151670,}); -#endif + std::vector prompt_inp = tts_preprocess_prompt(model_ttc, params.prompt); // print the prompt token-by-token @@ -845,28 +343,14 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14 LOG_INF("%s: codes audio size: %d\n", __func__, (int) codes.size()); } - for (auto & token : codes) { - token -= 151672; - } - const auto t_voc_start = ggml_time_us(); - const int n_codes = codes.size(); - - llama_batch batch = llama_batch_init(n_codes, 0, 1); - - for (size_t i = 0; i < codes.size(); ++i) { - common_batch_add(batch, codes[i], i, { 0 }, true); // TODO: all logits? - } - GGML_ASSERT(batch.n_tokens == n_codes); - - if (llama_decode(ctx_cts, batch) != 0) { - LOG_ERR("%s: llama_decode() failed\n", __func__); + std::vector embd; + if (tts_get_embd(ctx_cts, codes, embd) != 0) { + LOG_ERR("%s: tts_get_embd() failed\n", __func__); return 1; } - llama_synchronize(ctx_cts); - LOG_INF("%s: time for vocoder: %.3f ms\n", __func__, (ggml_time_us() - t_voc_start) / 1000.0f); const auto t_spec_start = ggml_time_us(); @@ -874,10 +358,9 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14 #if 1 // spectral operations const int n_embd = llama_n_embd(model_cts); - const float * embd = llama_get_embeddings(ctx_cts); - - auto audio = embd_to_audio(embd, n_codes, n_embd, params.cpuparams.n_threads); + const int n_codes = codes.size(); + auto audio = tts_embd_to_audio(embd.data(), n_codes, n_embd, params.cpuparams.n_threads); #else // read the spectrogram from a file for debugging purposes std::vector audio;