Initial implementation of handling merges and special tokens
This commit is contained in:
parent
795c0c6e9d
commit
ea43267819
1 changed files with 94 additions and 20 deletions
114
convert.py
114
convert.py
|
@ -353,7 +353,7 @@ class BpeVocab:
|
|||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class SentencePieceVocab:
|
||||
|
@ -416,6 +416,72 @@ class SentencePieceVocab:
|
|||
|
||||
Vocab = Union[BpeVocab, SentencePieceVocab]
|
||||
|
||||
class SpecialVocab:
|
||||
merges: List[str] = []
|
||||
special_token_types: Tuple[str, ...] = tuple(('bos', 'eos', 'unk', 'sep', 'pad'))
|
||||
special_token_ids: Dict[str, int] = {}
|
||||
|
||||
def __init__(self, path: Path, special_token_types: Optional[Tuple[str]] = None):
|
||||
self.special_token_ids = {}
|
||||
if special_token_types is not None:
|
||||
self.special_token_types = special_token_types
|
||||
self.load(path)
|
||||
|
||||
def load(self, path: Path):
|
||||
if not self.try_load_from_tokenizer_json(path):
|
||||
self.try_load_from_config_json(path)
|
||||
|
||||
def try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||
tokenizer_file = path / 'tokenizer.json'
|
||||
if not tokenizer_file.is_file():
|
||||
return False
|
||||
with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
|
||||
tokenizer = json.load(f)
|
||||
merges = tokenizer.get('model', {}).get('merges')
|
||||
if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str):
|
||||
self.merges = merges
|
||||
tokenizer_config_file = path / 'tokenizer_config.json'
|
||||
added_tokens = tokenizer.get('added_tokens')
|
||||
if added_tokens is None or not tokenizer_config_file.is_file():
|
||||
return True
|
||||
with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
|
||||
tokenizer_config = json.load(f)
|
||||
for typ in self.special_token_types:
|
||||
tc_content = (tokenizer_config.get(f'{typ}_token') or {}).get('content')
|
||||
if not isinstance(tc_content, str):
|
||||
continue
|
||||
for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
|
||||
if isinstance(maybe_token_id, int):
|
||||
self.special_token_ids[typ] = maybe_token_id
|
||||
break
|
||||
return True
|
||||
|
||||
def try_load_from_config_json(self, path: Path) -> bool:
|
||||
config_file = path / 'config.json'
|
||||
if not config_file.is_file():
|
||||
return False
|
||||
with open(config_file, 'r', encoding = 'utf-8') as f:
|
||||
config = json.load(f)
|
||||
for typ in self.special_token_types:
|
||||
maybe_token_id = config.get(f'{typ}_token_id')
|
||||
if isinstance(maybe_token_id, int):
|
||||
self.special_token_ids[typ] = maybe_token_id
|
||||
return True
|
||||
|
||||
def add_to_gguf(self, gw: gguf.GGUFWriter):
|
||||
if len(self.merges) > 0:
|
||||
print(f'SpecialVocab: Adding {len(self.merges)} merge(s).')
|
||||
gw.add_token_merges(self.merges)
|
||||
for typ, tokid in self.special_token_ids.items():
|
||||
handler: Optional[Callable[[int], None]] = getattr(gw, f'add_{typ}_token_id', None)
|
||||
if handler is None:
|
||||
print(f'SpecialVocab: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
|
||||
continue
|
||||
print(f'SpecialVocab: Setting special token type {typ} to {tokid}')
|
||||
handler(tokid)
|
||||
|
||||
def __repr__(self):
|
||||
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
|
||||
|
||||
#
|
||||
# data loading
|
||||
|
@ -843,6 +909,9 @@ class OutputFile:
|
|||
self.gguf.add_token_scores(scores)
|
||||
self.gguf.add_token_types(toktypes)
|
||||
|
||||
def add_meta_special_vocab(self, svocab: SpecialVocab) -> None:
|
||||
svocab.add_to_gguf(self.gguf)
|
||||
|
||||
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
|
||||
n_elements = int(np.prod(tensor.shape))
|
||||
raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
|
||||
|
@ -887,7 +956,7 @@ class OutputFile:
|
|||
return dt.quantize(arr)
|
||||
|
||||
@staticmethod
|
||||
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
|
||||
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
|
||||
check_vocab_size(params, vocab)
|
||||
|
||||
of = OutputFile(fname_out)
|
||||
|
@ -895,6 +964,7 @@ class OutputFile:
|
|||
# meta data
|
||||
of.add_meta_arch(params)
|
||||
of.add_meta_vocab(vocab)
|
||||
of.add_meta_special_vocab(svocab)
|
||||
|
||||
# tensor info
|
||||
for name, lazy_tensor in model.items():
|
||||
|
@ -1120,6 +1190,10 @@ def main(args_in: Optional[List[str]] = None) -> None:
|
|||
|
||||
model_plus = load_some_model(args.model)
|
||||
|
||||
if args.dump:
|
||||
do_dump_model(model_plus)
|
||||
return
|
||||
|
||||
params = Params.load(model_plus)
|
||||
if params.n_ctx == -1:
|
||||
if args.ctx is None:
|
||||
|
@ -1140,33 +1214,33 @@ def main(args_in: Optional[List[str]] = None) -> None:
|
|||
|
||||
vocab: Vocab
|
||||
if args.vocab_only:
|
||||
# FIXME: Handle special vocab here also.
|
||||
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
|
||||
assert args.outfile, "need --outfile if using --vocab-only"
|
||||
outfile = args.outfile
|
||||
OutputFile.write_vocab_only(outfile, params, vocab)
|
||||
print(f"Wrote {outfile}")
|
||||
return
|
||||
|
||||
if model_plus.vocab is not None and args.vocab_dir is None:
|
||||
vocab = model_plus.vocab
|
||||
else:
|
||||
if args.dump:
|
||||
do_dump_model(model_plus)
|
||||
return
|
||||
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
||||
vocab = load_vocab(vocab_dir, args.vocabtype)
|
||||
# FIXME: Try to respect vocab_dir somehow?
|
||||
special_vocab = SpecialVocab(model_plus.paths[0].parent)
|
||||
|
||||
if model_plus.vocab is not None and args.vocab_dir is None:
|
||||
vocab = model_plus.vocab
|
||||
else:
|
||||
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
||||
vocab = load_vocab(vocab_dir, args.vocabtype)
|
||||
model = model_plus.model
|
||||
model = convert_model_names(model, params)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
model = convert_to_output_type(model, ftype)
|
||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype)
|
||||
|
||||
model = model_plus.model
|
||||
model = convert_model_names(model, params)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
model = convert_to_output_type(model, ftype)
|
||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype)
|
||||
params.ftype = ftype
|
||||
print(f"Writing {outfile}, format {ftype}")
|
||||
|
||||
params.ftype = ftype
|
||||
print(f"Writing {outfile}, format {ftype}")
|
||||
|
||||
OutputFile.write_all(outfile, ftype, params, model, vocab, concurrency = args.concurrency)
|
||||
print(f"Wrote {outfile}")
|
||||
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency)
|
||||
print(f"Wrote {outfile}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue