Initial implementation of handling merges and special tokens

This commit is contained in:
KerfuffleV2 2023-08-27 12:31:24 -06:00
parent 795c0c6e9d
commit ea43267819

View file

@ -353,7 +353,7 @@ class BpeVocab:
yield from self.added_tokens() yield from self.added_tokens()
def __repr__(self) -> str: def __repr__(self) -> str:
return f"BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab: class SentencePieceVocab:
@ -416,6 +416,72 @@ class SentencePieceVocab:
Vocab = Union[BpeVocab, SentencePieceVocab] Vocab = Union[BpeVocab, SentencePieceVocab]
class SpecialVocab:
merges: List[str] = []
special_token_types: Tuple[str, ...] = tuple(('bos', 'eos', 'unk', 'sep', 'pad'))
special_token_ids: Dict[str, int] = {}
def __init__(self, path: Path, special_token_types: Optional[Tuple[str]] = None):
self.special_token_ids = {}
if special_token_types is not None:
self.special_token_types = special_token_types
self.load(path)
def load(self, path: Path):
if not self.try_load_from_tokenizer_json(path):
self.try_load_from_config_json(path)
def try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer_file = path / 'tokenizer.json'
if not tokenizer_file.is_file():
return False
with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
tokenizer = json.load(f)
merges = tokenizer.get('model', {}).get('merges')
if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str):
self.merges = merges
tokenizer_config_file = path / 'tokenizer_config.json'
added_tokens = tokenizer.get('added_tokens')
if added_tokens is None or not tokenizer_config_file.is_file():
return True
with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
tokenizer_config = json.load(f)
for typ in self.special_token_types:
tc_content = (tokenizer_config.get(f'{typ}_token') or {}).get('content')
if not isinstance(tc_content, str):
continue
for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
if isinstance(maybe_token_id, int):
self.special_token_ids[typ] = maybe_token_id
break
return True
def try_load_from_config_json(self, path: Path) -> bool:
config_file = path / 'config.json'
if not config_file.is_file():
return False
with open(config_file, 'r', encoding = 'utf-8') as f:
config = json.load(f)
for typ in self.special_token_types:
maybe_token_id = config.get(f'{typ}_token_id')
if isinstance(maybe_token_id, int):
self.special_token_ids[typ] = maybe_token_id
return True
def add_to_gguf(self, gw: gguf.GGUFWriter):
if len(self.merges) > 0:
print(f'SpecialVocab: Adding {len(self.merges)} merge(s).')
gw.add_token_merges(self.merges)
for typ, tokid in self.special_token_ids.items():
handler: Optional[Callable[[int], None]] = getattr(gw, f'add_{typ}_token_id', None)
if handler is None:
print(f'SpecialVocab: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
continue
print(f'SpecialVocab: Setting special token type {typ} to {tokid}')
handler(tokid)
def __repr__(self):
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
# #
# data loading # data loading
@ -843,6 +909,9 @@ class OutputFile:
self.gguf.add_token_scores(scores) self.gguf.add_token_scores(scores)
self.gguf.add_token_types(toktypes) self.gguf.add_token_types(toktypes)
def add_meta_special_vocab(self, svocab: SpecialVocab) -> None:
svocab.add_to_gguf(self.gguf)
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
n_elements = int(np.prod(tensor.shape)) n_elements = int(np.prod(tensor.shape))
raw_dtype = getattr(tensor.data_type, 'ggml_type', None) raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
@ -887,7 +956,7 @@ class OutputFile:
return dt.quantize(arr) return dt.quantize(arr)
@staticmethod @staticmethod
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, concurrency: int = DEFAULT_CONCURRENCY) -> None: def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
check_vocab_size(params, vocab) check_vocab_size(params, vocab)
of = OutputFile(fname_out) of = OutputFile(fname_out)
@ -895,6 +964,7 @@ class OutputFile:
# meta data # meta data
of.add_meta_arch(params) of.add_meta_arch(params)
of.add_meta_vocab(vocab) of.add_meta_vocab(vocab)
of.add_meta_special_vocab(svocab)
# tensor info # tensor info
for name, lazy_tensor in model.items(): for name, lazy_tensor in model.items():
@ -1120,6 +1190,10 @@ def main(args_in: Optional[List[str]] = None) -> None:
model_plus = load_some_model(args.model) model_plus = load_some_model(args.model)
if args.dump:
do_dump_model(model_plus)
return
params = Params.load(model_plus) params = Params.load(model_plus)
if params.n_ctx == -1: if params.n_ctx == -1:
if args.ctx is None: if args.ctx is None:
@ -1140,33 +1214,33 @@ def main(args_in: Optional[List[str]] = None) -> None:
vocab: Vocab vocab: Vocab
if args.vocab_only: if args.vocab_only:
# FIXME: Handle special vocab here also.
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype) vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
assert args.outfile, "need --outfile if using --vocab-only" assert args.outfile, "need --outfile if using --vocab-only"
outfile = args.outfile outfile = args.outfile
OutputFile.write_vocab_only(outfile, params, vocab) OutputFile.write_vocab_only(outfile, params, vocab)
print(f"Wrote {outfile}") print(f"Wrote {outfile}")
return
if model_plus.vocab is not None and args.vocab_dir is None:
vocab = model_plus.vocab
else: else:
if args.dump: vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
do_dump_model(model_plus) vocab = load_vocab(vocab_dir, args.vocabtype)
return # FIXME: Try to respect vocab_dir somehow?
special_vocab = SpecialVocab(model_plus.paths[0].parent)
if model_plus.vocab is not None and args.vocab_dir is None: model = model_plus.model
vocab = model_plus.vocab model = convert_model_names(model, params)
else: ftype = pick_output_type(model, args.outtype)
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent model = convert_to_output_type(model, ftype)
vocab = load_vocab(vocab_dir, args.vocabtype) outfile = args.outfile or default_outfile(model_plus.paths, ftype)
model = model_plus.model params.ftype = ftype
model = convert_model_names(model, params) print(f"Writing {outfile}, format {ftype}")
ftype = pick_output_type(model, args.outtype)
model = convert_to_output_type(model, ftype)
outfile = args.outfile or default_outfile(model_plus.paths, ftype)
params.ftype = ftype OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency)
print(f"Writing {outfile}, format {ftype}") print(f"Wrote {outfile}")
OutputFile.write_all(outfile, ftype, params, model, vocab, concurrency = args.concurrency)
print(f"Wrote {outfile}")
if __name__ == '__main__': if __name__ == '__main__':