gguf-convert-endian.py: refactor convert_byteorder() to use tqdm progressbar
This commit is contained in:
parent
dc798d23d7
commit
ea449058b6
1 changed files with 32 additions and 19 deletions
|
@ -5,6 +5,7 @@ import logging
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
from tqdm import tqdm
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -63,31 +64,43 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None
|
||||||
for part in field.parts:
|
for part in field.parts:
|
||||||
part.byteswap(inplace=True)
|
part.byteswap(inplace=True)
|
||||||
logger.info(f"* Converting tensors ({len(reader.tensors)})")
|
logger.info(f"* Converting tensors ({len(reader.tensors)})")
|
||||||
for idx, tensor in enumerate(reader.tensors):
|
|
||||||
|
for idx, tensor in enumerate(pbar := tqdm(reader.tensors, desc="Converting tensor")):
|
||||||
log_message = (
|
log_message = (
|
||||||
f" - {idx:4}: Converting tensor {repr(tensor.name)}, type={tensor.tensor_type.name}, "
|
f"Converting tensor {repr(tensor.name)}, "
|
||||||
f"elements={tensor.n_elements}... "
|
f"type={tensor.tensor_type.name}, "
|
||||||
|
f"elements={tensor.n_elements} "
|
||||||
)
|
)
|
||||||
tensor_type = tensor.tensor_type
|
|
||||||
|
# Byte-swap each part of the tensor's field
|
||||||
for part in tensor.field.parts:
|
for part in tensor.field.parts:
|
||||||
part.byteswap(inplace=True)
|
part.byteswap(inplace=True)
|
||||||
if tensor_type != gguf.GGMLQuantizationType.Q8_0:
|
|
||||||
tensor.data.byteswap(inplace=True)
|
|
||||||
logger.info(log_message)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# A Q8_0 block consists of a f16 delta followed by 32 int8 quants, so 34 bytes
|
# Byte-swap tensor data if necessary
|
||||||
block_size = 34
|
if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0:
|
||||||
|
# Handle Q8_0 tensor blocks (block_q8_0)
|
||||||
|
# Specific handling of block_q8_0 is required.
|
||||||
|
# Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
|
||||||
|
|
||||||
|
block_size = 34 # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
|
||||||
|
|
||||||
n_blocks = len(tensor.data) // block_size
|
n_blocks = len(tensor.data) // block_size
|
||||||
for block_num in range(n_blocks):
|
for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
|
||||||
block_offs = block_num * block_size
|
block_offs = block_num * block_size
|
||||||
# I know I said f16, but it doesn't matter here - any simple 16 bit type works.
|
|
||||||
|
# Byte-Swap f16 sized delta field
|
||||||
delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
||||||
delta.byteswap(inplace=True)
|
delta.byteswap(inplace=True)
|
||||||
if block_num % 100000 == 0:
|
|
||||||
log_message += f"[{(n_blocks - block_num) // 1000}K]"
|
|
||||||
|
|
||||||
logger.info(log_message)
|
# Byte-Swap Q8 weights
|
||||||
|
if block_num % 100000 == 0:
|
||||||
|
inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Handle other tensor types
|
||||||
|
tensor.data.byteswap(inplace=True)
|
||||||
|
|
||||||
|
pbar.set_description(log_message)
|
||||||
|
|
||||||
logger.info("* Completion")
|
logger.info("* Completion")
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue