Merge branch 'master' into gg/bpe-preprocess

This commit is contained in:
jaime-m-p 2024-05-09 00:10:43 +02:00 committed by GitHub
commit ea47119736
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
78 changed files with 4485 additions and 384 deletions

15
.flake8
View file

@ -1,4 +1,17 @@
[flake8]
max-line-length = 125
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
exclude = examples/*,examples/*/**,*/**/__init__.py,scripts/gen-unicode-data.py,tests/test-tokenizer-0.py
exclude =
# Do not traverse examples
examples,
# Do not include package initializers
__init__.py,
# No need to traverse our git directory
.git,
# There's no value in checking cache directories
__pycache__,
# No need to include the build path
build,
# This contains builds that we don't want to check
dist # This is generated with `python build .` for package releases
# max-complexity = 10

View file

@ -52,7 +52,19 @@ jobs:
ftype: q4_0
pr_comment_enabled: "true"
if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.head_ref == 'master' || github.ref_name == 'master' || github.event.push.ref == 'refs/heads/master' }}
if: |
inputs.gpu-series == 'Standard_NC4as_T4_v3'
|| (
github.event_name == 'schedule'
&& github.ref_name == 'master'
&& github.repository_owner == 'ggerganov'
)
|| github.event_name == 'pull_request_target'
|| (
github.event_name == 'push'
&& github.event.ref == 'refs/heads/master'
&& github.repository_owner == 'ggerganov'
)
steps:
- name: Clone
id: checkout

View file

@ -103,6 +103,8 @@ set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"llama: max. batch size for using peer access")
option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF)
option(LLAMA_CUDA_NO_VMM "llama: do not try to use CUDA VMM" OFF)
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
@ -403,12 +405,16 @@ if (LLAMA_CUDA)
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
add_compile_definitions(GGML_USE_CUDA)
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
if (LLAMA_CUDA_FORCE_DMMV)
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
endif()
if (LLAMA_CUDA_FORCE_MMQ)
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
endif()
if (LLAMA_CUDA_NO_VMM)
add_compile_definitions(GGML_CUDA_NO_VMM)
endif()
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
if (DEFINED LLAMA_CUDA_DMMV_Y)
@ -434,7 +440,11 @@ if (LLAMA_CUDA)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cuda_driver)
if (LLAMA_CUDA_NO_VMM)
# No VMM requested, no need to link directly with the cuda driver lib (libcuda.so)
else()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ...
endif()
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
# 52 == lowest CUDA 12 standard

View file

@ -433,7 +433,7 @@ ifdef LLAMA_CUDA
else
CUDA_PATH ?= /usr/local/cuda
endif
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
OBJS += ggml-cuda.o
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))

View file

@ -20,7 +20,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Hot topics
- **BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920**
- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021**
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
@ -139,7 +140,6 @@ Typically finetunes of the base models below are supported as well.
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
**HTTP server**
@ -712,6 +712,8 @@ Building the program with BLAS support may lead to some performance improvements
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
```bash
# obtain the official LLaMA model weights and place them in ./models
ls ./models
@ -933,17 +935,25 @@ If your issue is with model generation quality, then please at least scan the fo
### Android
#### Build on Android using Termux
[Termux](https://github.com/termux/termux-app#installation) is a method to execute `llama.cpp` on an Android device (no root required).
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
[Get the code](https://github.com/ggerganov/llama.cpp#get-the-code) & [follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
#### Building the Project using Android NDK
You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/).
First, install the essential packages for termux:
```
pkg install clang wget git cmake
```
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
You can execute the following commands on your computer to avoid downloading the NDK to your mobile. Of course, you can also do this in Termux.
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
```
$ mkdir build-android
$ cd build-android
@ -951,7 +961,9 @@ $ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make
```
Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card.
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
@ -973,53 +985,10 @@ $cd /data/data/com.termux/files/home/bin
$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
```
Here is a demo of an interactive session running on Pixel 5 phone:
Here's a demo of an interactive session running on Pixel 5 phone:
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
#### Building the Project using Termux (F-Droid)
Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card.
Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU.
If you opt to utilize OpenBLAS, you'll need to install the corresponding package.
```
apt install libopenblas
```
Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages:
```
apt install ocl-icd opencl-headers opencl-clhpp clinfo
```
In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below:
```
cmake .
make
cp libclblast.so* $PREFIX/lib
cp ./include/clblast.h ../llama.cpp
```
Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below:
```
cp /data/data/com.termux/files/usr/include/openblas/cblas.h .
cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h .
make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice)
```
Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below:
```
GGML_OPENCL_PLATFORM=0
GGML_OPENCL_DEVICE=0
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH
```
(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ )
For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.
Place your desired model into the `~/llama.cpp/models/` directory and execute the `./main (...)` script.
### Docker
#### Prerequisites

View file

@ -160,9 +160,8 @@ function gg_run_test_scripts_debug {
set -e
# TODO: too slow, run on dedicated node
#(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
#(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
@ -695,8 +694,10 @@ test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run embd_bge_small
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
fi
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then

View file

@ -1,4 +1,6 @@
#include "common.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"
@ -76,7 +78,7 @@ int32_t get_num_physical_cores() {
// enumerate the set of thread siblings, num entries is num cores
std::unordered_set<std::string> siblings;
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
std::ifstream thread_siblings("/sys/devices/system/cpu"
std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
+ std::to_string(cpu) + "/topology/thread_siblings");
if (!thread_siblings.is_open()) {
break; // no more cpus
@ -911,6 +913,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.instruct = true;
return true;
}
if (arg == "-cnv" || arg == "--conversation") {
params.conversation = true;
return true;
}
if (arg == "-cml" || arg == "--chatml") {
params.chatml = true;
return true;
@ -1417,6 +1423,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --version show version and build info\n");
printf(" -i, --interactive run in interactive mode\n");
printf(" --interactive-first run in interactive mode and wait for input right away\n");
printf(" -cnv, --conversation run in conversation mode (does not print special tokens and suffix/prefix)\n");
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
@ -1964,18 +1971,18 @@ static bool llama_download_file(const std::string & url, const std::string & pat
try {
metadata_in >> metadata;
fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata["url"].is_string()) {
auto previous_url = metadata["url"].get<std::string>();
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata["etag"].is_string()) {
etag = metadata["etag"];
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata["lastModified"].is_string()) {
last_modified = metadata["lastModified"];
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());

View file

@ -140,6 +140,7 @@ struct gpt_params {
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it

View file

@ -1,4 +1,8 @@
#pragma once
#include "ggml.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);

View file

@ -35,6 +35,8 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
result->prev.resize(params.n_prev);
result->n_considered = 0;
llama_sampling_set_rng_seed(result, params.seed);
return result;
@ -64,6 +66,7 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
ctx->n_considered = 0;
}
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
@ -253,6 +256,8 @@ static llama_token llama_sampling_sample_impl(
}
}
ctx_sampling->n_considered = cur_p.size;
return id;
}

View file

@ -81,6 +81,7 @@ struct llama_sampling_context {
// TODO: replace with ring-buffer
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
size_t n_considered;
std::mt19937 rng;
};

16
convert-hf-to-gguf-update.py Normal file → Executable file
View file

@ -1,3 +1,5 @@
#!/usr/bin/env python3
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
#
@ -64,6 +66,10 @@ models = [
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
]
# make directory "models/tokenizers" if it doesn't exist
@ -104,6 +110,14 @@ for model in models:
save_path = f"models/tokenizers/{name}/tokenizer.json"
download_file_with_auth(url, token, save_path)
# if downloaded file is less than 1KB, we likely need to download an LFS instead
if os.path.getsize(save_path) < 1024:
# remove the file
os.remove(save_path)
url = f"{repo}/resolve/main/tokenizer.json"
save_path = f"models/tokenizers/{name}/tokenizer.json"
download_file_with_auth(url, token, save_path)
if tokt == TOKENIZER_TYPE.SPM:
url = f"{repo}/resolve/main/tokenizer.model"
save_path = f"models/tokenizers/{name}/tokenizer.model"
@ -139,6 +153,8 @@ for model in models:
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
normalizer = cfg["normalizer"]
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))

View file

@ -311,6 +311,18 @@ class Model(ABC):
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base
res = "refact"
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
# ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
res = "command-r"
if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
# ref: https://huggingface.co/Qwen/Qwen1.5-7B
res = "qwen2"
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
# ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
res = "olmo"
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
# ref: https://huggingface.co/databricks/dbrx-instruct
res = "dbrx"
if res is None:
logger.warning("\n")
@ -2828,8 +2840,9 @@ class OlmoModel(Model):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_layer_norm_eps(1e-5)
if "clip_qkv" in self.hparams is not None:
self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
clip_qkv = self.hparams.get("clip_qkv")
if clip_qkv is not None:
self.gguf_writer.add_clamp_kqv(clip_qkv)
# Same as super class, but permuting q_proj, k_proj
# Copied from: LlamaModel

View file

@ -16,6 +16,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("lora-to-gguf")
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}

View file

@ -1508,6 +1508,8 @@ def main(args_in: list[str] | None = None) -> None:
if args.big_endian:
endianess = gguf.GGUFEndian.BIG
params = None
if args.pad_vocab or not args.vocab_only:
params = Params.load(model_plus)
if params.n_ctx == -1:
if args.ctx is None:
@ -1539,6 +1541,17 @@ def main(args_in: list[str] | None = None) -> None:
if not args.outfile:
raise ValueError("need --outfile if using --vocab-only")
outfile = args.outfile
if params is None:
params = Params(
n_vocab = vocab.vocab_size,
n_embd = 1,
n_layer = 1,
n_ctx = 1,
n_ff = 1,
n_head = 1,
n_head_kv = 1,
f_norm_eps = 1e-5,
)
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
endianess=endianess, pad_vocab=args.pad_vocab)
logger.info(f"Wrote {outfile}")

View file

@ -23,7 +23,7 @@ Install BLIS:
sudo make install
```
We recommend using openmp since it's easier to modify the cores been used.
We recommend using openmp since it's easier to modify the cores being used.
### llama.cpp compilation

View file

@ -96,9 +96,9 @@ NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorc
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look to existing implementation like `build_llama`, `build_dbrx` or `build_bert`.
Have a look at existing implementation like `build_llama`, `build_dbrx` or `build_bert`.
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support of missing backend operations can be added in another PR.
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR.
Note: to debug the inference graph: you can use [eval-callback](../examples/eval-callback).

View file

@ -575,7 +575,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) {
if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16 || a->type == GGML_TYPE_BF16) {
return ggml_add_cast(ctx, a, b, GGML_TYPE_F32);
} else if (a->type == GGML_TYPE_F32) {
return ggml_add(ctx, a, b);

View file

@ -32,6 +32,7 @@ struct split_params {
int n_split_tensors = 128;
std::string input;
std::string output;
bool no_tensor_first_split = false;
bool dry_run = false;
};
@ -49,6 +50,7 @@ static void split_print_usage(const char * executable) {
printf(" --merge merge multiple GGUF to a single GGUF\n");
printf(" --split-max-tensors max tensors in each split (default: %d)\n", default_params.n_split_tensors);
printf(" --split-max-size N(M|G) max size per split\n");
printf(" --no-tensor-first-split do not add tensors to the first split (disabled by default)\n");
printf(" --dry-run only print out a split plan and exit, without writing any new files\n");
printf("\n");
}
@ -100,6 +102,10 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p
arg_found = true;
params.dry_run = true;
}
if (arg == "--no-tensor-first-split") {
arg_found = true;
params.no_tensor_first_split = true;
}
if (is_op_set) {
throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
@ -200,10 +206,10 @@ struct split_strategy {
// because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits
int i_split = -1;
struct gguf_context * ctx_out = NULL;
auto new_ctx_out = [&]() {
auto new_ctx_out = [&](bool allow_no_tensors) {
i_split++;
if (ctx_out != NULL) {
if (gguf_get_n_tensors(ctx_out) == 0) {
if (gguf_get_n_tensors(ctx_out) == 0 && !allow_no_tensors) {
fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n");
exit(EXIT_FAILURE);
}
@ -220,7 +226,12 @@ struct split_strategy {
};
// initialize ctx_out for the first split
new_ctx_out();
new_ctx_out(false);
// skip first split if no_tensor_first_split is set
if (params.no_tensor_first_split) {
new_ctx_out(true);
}
// process tensors one by one
size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata)
@ -230,7 +241,7 @@ struct split_strategy {
size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT);
size_t next_tensors_size = curr_tensors_size + n_bytes;
if (should_split(i, next_tensors_size)) {
new_ctx_out();
new_ctx_out(false);
curr_tensors_size = n_bytes;
} else {
curr_tensors_size = next_tensors_size;

View file

@ -55,15 +55,15 @@ $MAIN --model $WORK_PATH/ggml-model-merge.gguf --random-prompt --n-predict 32
echo PASS
echo
# 4. Split with no tensor in metadata
#$SPLIT --split-max-tensors 32 --no-tensor-in-metadata $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-32-tensors
#echo PASS
#echo
# 4. Split with no tensors in the first split
$SPLIT --split-max-tensors 32 --no-tensor-first-split $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-32-tensors
echo PASS
echo
# 4b. Test the sharded model is loading properly
#$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf --random-prompt --n-predict 32
#echo PASS
#echo
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --random-prompt --n-predict 32
echo PASS
echo
# 5. Merge
#$SPLIT --merge $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf $WORK_PATH/ggml-model-merge-2.gguf

View file

@ -19,6 +19,7 @@
struct Stats {
std::vector<float> values;
std::vector<int> counts;
int ncall = 0;
};
@ -121,12 +122,10 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
auto & e = m_stats[wname];
++e.ncall;
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
// using the following line, we can correct for that if needed by replacing the line above with:
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
e.counts.resize(src1->ne[0]*n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
@ -153,6 +152,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j];
e.counts[e_start + j]++;
}
}
}
@ -170,6 +170,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
auto& e = m_stats[wname];
if (e.values.empty()) {
e.values.resize(src1->ne[0], 0);
e.counts.resize(src1->ne[0], 0);
}
else if (e.values.size() != (size_t)src1->ne[0]) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
@ -183,6 +184,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
const float * x = data + row * src1->ne[0];
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[j] += x[j]*x[j];
e.counts[j]++;
}
}
if (e.ncall > m_last_call) {
@ -222,7 +224,13 @@ void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) co
out.write((const char *) &p.second.ncall, sizeof(p.second.ncall));
int nval = p.second.values.size();
out.write((const char *) &nval, sizeof(nval));
if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float));
if (nval > 0) {
std::vector<float> tmp(nval);
for (int i = 0; i < nval; i++) {
tmp[i] = (p.second.values[i] / static_cast<float>(p.second.counts[i])) * static_cast<float>(p.second.ncall);
}
out.write((const char*)tmp.data(), nval*sizeof(float));
}
}
// Write the number of call the matrix was computed with
@ -270,14 +278,28 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma
imatrix_data = {};
return false;
}
e.values.resize(nval);
in.read((char*)e.values.data(), nval*sizeof(float));
// When re-called from load_imatrix() with add set, this will already be created.
if (e.values.empty()) {
e.values.resize(nval, 0);
e.counts.resize(nval, 0);
}
std::vector<float> tmp(nval);
in.read((char*)tmp.data(), nval*sizeof(float));
if (in.fail()) {
printf("%s: failed reading data for entry %d\n",__func__,i);
imatrix_data = {};
return false;
}
e.ncall = ncall;
// Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
for (int i = 0; i < nval; i++) {
e.values[i] += tmp[i];
e.counts[i] += ncall;
}
e.ncall += ncall;
}
return true;
}

View file

@ -178,6 +178,7 @@ struct cmd_params {
std::vector<std::vector<float>> tensor_split;
std::vector<bool> use_mmap;
std::vector<bool> embeddings;
ggml_numa_strategy numa;
int reps;
bool verbose;
output_formats output_format;
@ -200,6 +201,7 @@ static const cmd_params cmd_params_defaults = {
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* use_mmap */ {true},
/* embeddings */ {false},
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
/* reps */ 5,
/* verbose */ false,
/* output_format */ MARKDOWN
@ -224,6 +226,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
@ -396,6 +399,17 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "--numa") {
if (++i >= argc) {
invalid_param = true;
break;
} else {
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; break; }
}
} else if (arg == "-fa" || arg == "--flash-attn") {
if (++i >= argc) {
invalid_param = true;
@ -1215,6 +1229,7 @@ int main(int argc, char ** argv) {
llama_log_set(llama_null_log_callback, NULL);
}
llama_backend_init();
llama_numa_init(params.numa);
// initialize printer
std::unique_ptr<printer> p;

View file

@ -56,7 +56,7 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-pa
python ./convert.py ../llava-v1.5-7b --skip-unknown
```
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
## LLaVA 1.6 gguf conversion
1) First clone a LLaVA 1.6 model:

View file

@ -104,7 +104,6 @@ static std::string format(const char * fmt, ...) {
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
@ -426,7 +425,6 @@ struct clip_vision_model {
// embeddings
struct ggml_tensor * class_embedding;
struct ggml_tensor * patch_embeddings;
struct ggml_tensor * patch_bias;
struct ggml_tensor * position_embeddings;
struct ggml_tensor * pre_ln_w;
@ -503,11 +501,6 @@ struct clip_ctx {
bool use_gelu = false;
int32_t ftype = 1;
bool has_class_embedding = true;
bool has_pre_norm = true;
bool has_post_norm = false;
bool has_patch_bias = false;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_data;
@ -533,7 +526,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
const int num_positions = num_patches + 1;
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
@ -564,23 +557,16 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
if (ctx->has_patch_bias) {
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
inp = ggml_add(ctx0, inp, model.patch_bias);
}
// concat class_embeddings and patch_embeddings
struct ggml_tensor * embeddings = inp;
if (ctx->has_class_embedding) {
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
}
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
ggml_set_name(embeddings, "embeddings");
ggml_set_input(embeddings);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions");
@ -590,7 +576,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
// pre-layernorm
if (ctx->has_pre_norm) {
{
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "pre_ln");
@ -678,14 +664,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = cur;
}
// post-layernorm
if (ctx->has_post_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
// llava projector
{
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
@ -1171,38 +1149,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
try {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
new_clip->has_class_embedding = true;
} catch (const std::exception& e) {
new_clip->has_class_embedding = false;
}
try {
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
new_clip->has_pre_norm = true;
} catch (std::exception & e) {
new_clip->has_pre_norm = false;
}
try {
vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
new_clip->has_post_norm = true;
} catch (std::exception & e) {
new_clip->has_post_norm = false;
}
try {
vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
new_clip->has_patch_bias = true;
} catch (std::exception & e) {
new_clip->has_patch_bias = false;
}
try {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
} catch(const std::exception& e) {
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
}

View file

@ -143,7 +143,7 @@ The `--ctx-size` option allows you to set the size of the prompt context used by
### Extended Context Size
Some fine-tuned models have extended the context length by scaling RoPE. For example, if the original pre-trained model have a context length (max sequence length) of 4096 (4k) and the fine-tuned model have 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8.
Some fine-tuned models have extended the context length by scaling RoPE. For example, if the original pre-trained model has a context length (max sequence length) of 4096 (4k) and the fine-tuned model has 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8.
- `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model.
@ -286,7 +286,7 @@ These options help improve the performance and memory usage of the LLaMA models.
- `--numa distribute`: Pin an equal proportion of the threads to the cores on each NUMA node. This will spread the load amongst all cores on the system, utilitizing all memory channels at the expense of potentially requiring memory to travel over the slow links between nodes.
- `--numa isolate`: Pin all threads to the NUMA node that the program starts on. This limits the number of cores and amount of memory that can be used, but guarantees all memory access remains local to the NUMA node.
- `--numa numactl`: Pin threads to the CPUMAP that is passed to the program by starting it with the numactl utility. This is the most flexible mode, and allow arbitraty core usage patterns, for example a map that uses all the cores on one NUMA nodes, and just enough cores on a second node to saturate the inter-node memory bus.
- `--numa numactl`: Pin threads to the CPUMAP that is passed to the program by starting it with the numactl utility. This is the most flexible mode, and allow arbitrary core usage patterns, for example a map that uses all the cores on one NUMA nodes, and just enough cores on a second node to saturate the inter-node memory bus.
These flags attempt optimizations that help on some systems with non-uniform memory access. This currently consists of one of the above strategies, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop_caches' as root.

View file

@ -362,6 +362,9 @@ int main(int argc, char ** argv) {
params.interactive_first = true;
params.antiprompt.emplace_back("<|im_start|>user\n");
}
else if (params.conversation) {
params.interactive_first = true;
}
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
@ -733,7 +736,7 @@ int main(int argc, char ** argv) {
// display text
if (input_echo && display) {
for (auto id : embd) {
const std::string token_str = llama_token_to_piece(ctx, id);
const std::string token_str = llama_token_to_piece(ctx, id, !params.conversation);
printf("%s", token_str.c_str());
if (embd.size() > 1) {
@ -796,7 +799,7 @@ int main(int argc, char ** argv) {
// deal with end of generation tokens in interactive mode
if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
LOG("found EOS token\n");
LOG("found an EOG token\n");
if (params.interactive) {
if (!params.antiprompt.empty()) {
@ -816,7 +819,7 @@ int main(int argc, char ** argv) {
if (n_past > 0 && is_interacting) {
LOG("waiting for user input\n");
if (params.instruct || params.chatml) {
if (params.conversation || params.instruct || params.chatml) {
printf("\n> ");
}
@ -826,7 +829,7 @@ int main(int argc, char ** argv) {
}
std::string buffer;
if (!params.input_prefix.empty()) {
if (!params.input_prefix.empty() && !params.conversation) {
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
printf("%s", params.input_prefix.c_str());
}
@ -850,7 +853,7 @@ int main(int argc, char ** argv) {
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty()) {
if (!params.input_suffix.empty() && !params.conversation) {
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
printf("%s", params.input_suffix.c_str());
}

View file

@ -46,7 +46,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", },
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },

View file

@ -62,6 +62,18 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name. Default: template taken from model's metadata. We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
- `--log-disable`: Output logs to stdout only, not to `llama.log`. Default: enabled
- `--log-format FORMAT`: Define the log output to FORMAT: json or text Default: `json`
- `--rope-scaling` : RoPE scaling method. Defaults to linear unless otherwise specified by the model. Options are `none`, `linear`, `yarn`
- `--rope-freq-base N` : RoPE frequency base (default: loaded from model)
- `--rope-freq-scale N`: RoPE frequency scaling factor, expands context by a factor of 1/N (e.g. 0.25)
- `--yarn-ext-factor N` : YaRN: extrapolation mix factor (Default: 1.0, 0.0 = full interpolation)
- `--yarn-attn-factor N` : YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
- `--yarn-beta-slow N`: YaRN: High correction dim or alpha (default: 1.0)
- `--yarn-beta-fast N`: YaRN: low correction dim or beta (default: 32.0)
- `--pooling` : Pooling type for embeddings, use model default if unspecified. Options are `none`, `mean`, `cls`
- `-dt N`, `--defrag-thold N`: KV cache defragmentation threshold (default: -1.0, < 0 = disabled)
- `-fa`, `--flash-attn` : enable flash attention (default: disabled).
- `-ctk TYPE`, `--cache-type-k TYPE` : KV cache data type for K (default: `f16`, options `f32`, `f16`, `q8_0`, `q4_0`, `q4_1`, `iq4_nl`, `q5_0`, or `q5_1`)
- `-ctv TYPE`, `--cache-type-v TYPE` : KV cache type for V (default `f16`, see `-ctk` for options)
**If compiled with `LLAMA_SERVER_SSL=ON`**
- `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key
@ -260,7 +272,7 @@ node index.js
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token. Default: `0`
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0`
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
@ -319,7 +331,7 @@ Notice that each `probs` is an array of length `n_probs`.
`content`: Set the text to tokenize.
Note that a special `BOS` token is never inserted.
`add_special`: Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false`
- **POST** `/detokenize`: Convert tokens to text.

Binary file not shown.

After

Width:  |  Height:  |  Size: 4 KiB

View file

@ -12,6 +12,8 @@
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
#include "httplib.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
// auto generated files (update with ./deps.sh)
@ -859,7 +861,7 @@ struct server_context {
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
// process "json_schema" and "grammar"
if (data.contains("json_schema") && !data["json_schema"].is_null() && data.contains("grammar") && !data["grammar"].is_null()) {
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
return false;
} else if (data.contains("json_schema") && !data.contains("grammar")) {
@ -1512,7 +1514,7 @@ struct server_context {
// add subtasks
for (int i = 0; i < prompt_count; i++) {
json subtask_data = multiprompt_task.data;
subtask_data["prompt"] = subtask_data["prompt"][i];
subtask_data["prompt"] = subtask_data.at("prompt")[i];
// subtasks inherit everything else (infill mode, embedding mode, etc.)
request_completion(subtask_ids[i], id_multi, subtask_data, multiprompt_task.infill, multiprompt_task.embedding);
@ -1532,7 +1534,7 @@ struct server_context {
}
if (task.data.contains("system_prompt")) {
system_prompt_set(task.data["system_prompt"]);
system_prompt_set(task.data.at("system_prompt"));
for (server_slot & slot : slots) {
slot.n_past = 0;
@ -1644,7 +1646,7 @@ struct server_context {
} break;
case SERVER_TASK_TYPE_SLOT_SAVE:
{
int id_slot = task.data["id_slot"];
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
@ -1654,8 +1656,8 @@ struct server_context {
const size_t token_count = slot->cache_tokens.size();
const int64_t t_start = ggml_time_us();
std::string filename = task.data["filename"];
std::string filepath = task.data["filepath"];
std::string filename = task.data.at("filename");
std::string filepath = task.data.at("filepath");
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
@ -1679,7 +1681,7 @@ struct server_context {
} break;
case SERVER_TASK_TYPE_SLOT_RESTORE:
{
int id_slot = task.data["id_slot"];
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
@ -1688,8 +1690,8 @@ struct server_context {
const int64_t t_start = ggml_time_us();
std::string filename = task.data["filename"];
std::string filepath = task.data["filepath"];
std::string filename = task.data.at("filename");
std::string filepath = task.data.at("filepath");
slot->cache_tokens.resize(slot->n_ctx);
size_t token_count = 0;
@ -1721,7 +1723,7 @@ struct server_context {
} break;
case SERVER_TASK_TYPE_SLOT_ERASE:
{
int id_slot = task.data["id_slot"];
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
@ -2266,18 +2268,32 @@ struct server_context {
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
const int32_t n_probs = slot.sparams.n_probs;
if (slot.sparams.temp <= 0 && n_probs > 0) {
// for llama_sample_token_greedy we need to sort candidates
llama_sample_softmax(ctx, &cur_p);
const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
if (n_probs > 0) {
const size_t n_considered = slot.ctx_sampling->n_considered;
// Make sure at least n_probs top tokens are at the front of the vector:
if (slot.sparams.temp == 0.0f && n_probs > n_considered) {
llama_sample_top_k(ctx, &cur_p, n_probs, 0);
}
for (size_t i = 0; i < std::min(cur_p.size, (size_t) n_probs); ++i) {
if (slot.sparams.temp == 0.0f) {
// With greedy sampling the probabilities have possibly not been calculated.
for (size_t i = 0; i < n_probs; ++i) {
result.probs.push_back({
cur_p.data[i].id,
cur_p.data[i].p
i == 0 ? 1.0f : 0.0f
});
}
} else {
for (size_t i = 0; i < n_probs; ++i) {
result.probs.push_back({
cur_p.data[i].id,
i >= n_considered ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
});
}
}
}
if (!process_token(result, slot)) {
slot.release();
@ -3122,8 +3138,8 @@ int main(int argc, char ** argv) {
server_task_result result = ctx_server.queue_results.recv(task.id);
ctx_server.queue_results.remove_waiting_task_id(task.id);
const int n_idle_slots = result.data["idle"];
const int n_processing_slots = result.data["processing"];
const int n_idle_slots = result.data.at("idle");
const int n_processing_slots = result.data.at("processing");
json health = {
{"status", "ok"},
@ -3133,7 +3149,7 @@ int main(int argc, char ** argv) {
res.status = 200; // HTTP OK
if (sparams.slots_endpoint && req.has_param("include_slots")) {
health["slots"] = result.data["slots"];
health["slots"] = result.data.at("slots");
}
if (n_idle_slots == 0) {
@ -3177,7 +3193,7 @@ int main(int argc, char ** argv) {
server_task_result result = ctx_server.queue_results.recv(task.id);
ctx_server.queue_results.remove_waiting_task_id(task.id);
res.set_content(result.data["slots"].dump(), "application/json");
res.set_content(result.data.at("slots").dump(), "application/json");
res.status = 200; // HTTP OK
};
@ -3204,32 +3220,32 @@ int main(int argc, char ** argv) {
json data = result.data;
const uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
const uint64_t t_prompt_processing = data["t_prompt_processing"];
const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
const uint64_t t_prompt_processing = data.at("t_prompt_processing");
const uint64_t n_tokens_predicted = data["n_tokens_predicted"];
const uint64_t t_tokens_generation = data["t_tokens_generation"];
const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
const uint64_t t_tokens_generation = data.at("t_tokens_generation");
const int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
json all_metrics_def = json {
{"counter", {{
{"name", "prompt_tokens_total"},
{"help", "Number of prompt tokens processed."},
{"value", (uint64_t) data["n_prompt_tokens_processed_total"]}
{"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
}, {
{"name", "prompt_seconds_total"},
{"help", "Prompt process time"},
{"value", (uint64_t) data["t_prompt_processing_total"] / 1.e3}
{"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
}, {
{"name", "tokens_predicted_total"},
{"help", "Number of generation tokens processed."},
{"value", (uint64_t) data["n_tokens_predicted_total"]}
{"value", (uint64_t) data.at("n_tokens_predicted_total")}
}, {
{"name", "tokens_predicted_seconds_total"},
{"help", "Predict process time"},
{"value", (uint64_t) data["t_tokens_generation_total"] / 1.e3}
{"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
}}},
{"gauge", {{
{"name", "prompt_tokens_seconds"},
@ -3246,15 +3262,15 @@ int main(int argc, char ** argv) {
},{
{"name", "kv_cache_tokens"},
{"help", "KV-cache tokens."},
{"value", (uint64_t) data["kv_cache_tokens_count"]}
{"value", (uint64_t) data.at("kv_cache_tokens_count")}
},{
{"name", "requests_processing"},
{"help", "Number of request processing."},
{"value", (uint64_t) data["processing"]}
{"value", (uint64_t) data.at("processing")}
},{
{"name", "requests_deferred"},
{"help", "Number of request deferred."},
{"value", (uint64_t) data["deferred"]}
{"value", (uint64_t) data.at("deferred")}
}}}
};
@ -3265,8 +3281,8 @@ int main(int argc, char ** argv) {
const auto & metrics_def = el.value();
for (const auto & metric_def : metrics_def) {
const std::string name = metric_def["name"];
const std::string help = metric_def["help"];
const std::string name = metric_def.at("name");
const std::string help = metric_def.at("help");
auto value = json_value(metric_def, "value", 0.);
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
@ -3275,7 +3291,7 @@ int main(int argc, char ** argv) {
}
}
const int64_t t_start = data["t_start"];
const int64_t t_start = data.at("t_start");
res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
@ -3284,7 +3300,7 @@ int main(int argc, char ** argv) {
const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data["filename"];
std::string filename = request_data.at("filename");
if (!validate_file_name(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
@ -3314,7 +3330,7 @@ int main(int argc, char ** argv) {
const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data["filename"];
std::string filename = request_data.at("filename");
if (!validate_file_name(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
@ -3633,7 +3649,8 @@ int main(int argc, char ** argv) {
std::vector<llama_token> tokens;
if (body.count("content") != 0) {
tokens = ctx_server.tokenize(body["content"], false);
const bool add_special = json_value(body, "add_special", false);
tokens = ctx_server.tokenize(body.at("content"), add_special);
}
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json; charset=utf-8");
@ -3645,7 +3662,7 @@ int main(int argc, char ** argv) {
std::string content;
if (body.count("tokens") != 0) {
const std::vector<llama_token> tokens = body["tokens"];
const std::vector<llama_token> tokens = body.at("tokens");
content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
}
@ -3668,10 +3685,10 @@ int main(int argc, char ** argv) {
json prompt;
if (body.count("input") != 0) {
is_openai = true;
prompt = body["input"];
prompt = body.at("input");
} else if (body.count("content") != 0) {
// with "content", we only support single prompt
prompt = std::vector<std::string>{body["content"]};
prompt = std::vector<std::string>{body.at("content")};
} else {
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
return;
@ -3690,7 +3707,7 @@ int main(int argc, char ** argv) {
if (!result.error) {
if (result.data.count("results")) {
// result for multi-task
responses = result.data["results"];
responses = result.data.at("results");
} else {
// result for single task
responses = std::vector<json>{result.data};

View file

@ -7,6 +7,7 @@ Feature: llama.cpp server
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file test-model.gguf
And a model alias tinyllama-2
And BOS token is 1
And 42 as server seed
# KV Cache corresponds to the total amount of tokens
# that can be stored across all independent sequences: #4130
@ -91,7 +92,18 @@ Feature: llama.cpp server
"""
What is the capital of France ?
"""
Then tokens can be detokenize
Then tokens can be detokenized
And tokens do not begin with BOS
Scenario: Tokenize w/ BOS
Given adding special tokens
When tokenizing:
"""
What is the capital of Germany?
"""
Then tokens begin with BOS
Given first token is removed
Then tokens can be detokenized
Scenario: Models available
Given available models

View file

@ -376,6 +376,11 @@ def step_seed(context, seed):
context.seed.append(seed)
@step('BOS token is {bos:d}')
def step_bos_token(context, bos):
context.bos = bos
@step('a prefix prompt')
def step_prompt_prefix(context):
context.prompt_prefix = context_text(context)
@ -656,21 +661,29 @@ async def all_embeddings_are_generated(context):
assert_embeddings(context.tasks_result.pop().pop())
@step('adding special tokens')
def step_tokenize_set_add_special(context):
context.tokenize_add_special = True
@step('tokenizing')
@async_run_until_complete
async def step_tokenize(context):
context.tokenized_text = context_text(context)
async with aiohttp.ClientSession() as session:
async with session.post(f'{context.base_url}/tokenize',
json={
tokenize_args = {
"content": context.tokenized_text,
}) as response:
}
if getattr(context, 'tokenize_add_special', None) is not None:
tokenize_args['add_special'] = context.tokenize_add_special
async with session.post(f'{context.base_url}/tokenize',
json=tokenize_args) as response:
assert response.status == 200
tokenize_json = await response.json()
context.tokens = tokenize_json['tokens']
@step('tokens can be detokenize')
@step('tokens can be detokenized')
@async_run_until_complete
async def step_detokenize(context):
assert len(context.tokens) > 0
@ -685,6 +698,21 @@ async def step_detokenize(context):
assert context.tokenized_text == detokenize_json['content'].strip()
@step('tokens begin with BOS')
def step_strings_for_tokenization(context):
assert context.tokens[0] == context.bos
@step('tokens do not begin with BOS')
def step_strings_for_tokenization(context):
assert context.tokens[0] != context.bos
@step('first token is removed')
def step_strings_for_tokenization(context):
context.tokens = context.tokens[1:]
@step('an OPTIONS request is sent from {origin}')
@async_run_until_complete
async def step_options_request(context, origin):

View file

@ -0,0 +1,5 @@
# LLaMA.cpp Server Wild Theme
Simple themes directory of sample "public" directories. To try any of these add --path to your run like `server --path=wild`.
![image](wild/wild.png)

View file

@ -0,0 +1,7 @@
# LLaMA.cpp Server Buttons Top Theme
Simple tweaks to the UI. Chat buttons at the top of the page instead of bottom so you can hit Stop instead of chasing it down the page.
To use simply run server with `--path=themes/buttons_top`
![image](buttons_top.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4 KiB

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,5 @@
# LLaMA.cpp Server Wild Theme
Simple tweaks to the UI. To use simply run server with `--path=themes/wild`
![image](wild.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 4 KiB

File diff suppressed because it is too large Load diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 254 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 485 KiB

View file

@ -3,6 +3,8 @@
#include "llama.h"
#include "common.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include <string>
@ -49,18 +51,18 @@ extern bool server_log_json;
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra);
static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra);
template <typename T>
static T json_value(const json & body, const std::string & key, const T & default_value) {
// Fallback null to default value
if (body.contains(key) && !body.at(key).is_null()) {
try {
return body.value(key, default_value);
}
catch (nlohmann::json_abi_v3_11_3::detail::type_error const&){
std::string message = "Wrong type supplied for parameter '" + key + "'. Expected '" + typeid(default_value).name() + "', using default value.";
server_log("WARN", __func__, __LINE__, message.c_str(), body);
return body.at(key);
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
std::stringstream ss;
ss << "Wrong type supplied for parameter '" << key << "'. Expected '" << json(default_value).type_name() << "', using default value.";
LOG_WARNING(ss.str().c_str(), body);
return default_value;
}
} else {
@ -68,10 +70,10 @@ static T json_value(const json &body, const std::string &key, const T &default_v
}
}
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra) {
std::stringstream ss_tid;
ss_tid << std::this_thread::get_id();
json log = nlohmann::ordered_json{
json log = json{
{"tid", ss_tid.str()},
{"timestamp", time(nullptr)},
};
@ -373,11 +375,11 @@ static json oaicompat_completion_params_parse(
llama_params["top_p"] = json_value(body, "top_p", 1.0);
// Apply chat template to the list of messages
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
// Handle "stop" field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
if (body.contains("stop") && body.at("stop").is_string()) {
llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}

View file

@ -1,6 +1,6 @@
# llama.cpp/example/sycl
This example program provide the tools for llama.cpp for SYCL on Intel GPU.
This example program provides the tools for llama.cpp for SYCL on Intel GPU.
## Tool

30
flake.lock generated
View file

@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1712014858,
"narHash": "sha256-sB4SWl2lX95bExY2gMFG5HIzvva5AVMJd4Igm+GpZNw=",
"lastModified": 1714641030,
"narHash": "sha256-yzcRNDoyVP7+SCNX0wmuDju1NUCt8Dz9+lyUXEI0dbI=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "9126214d0a59633752a136528f5f3b9aa8565b7d",
"rev": "e5d10a24b66c3ea8f150e47dfdb0416ab7c3390e",
"type": "github"
},
"original": {
@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1714076141,
"narHash": "sha256-Drmja/f5MRHZCskS6mvzFqxEaZMeciScCTFxWVLqWEY=",
"lastModified": 1714635257,
"narHash": "sha256-4cPymbty65RvF1DWQfc+Bc8B233A1BWxJnNULJKQ1EY=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "7bb2ccd8cdc44c91edba16c48d2c8f331fb3d856",
"rev": "63c3a29ca82437c87573e4c6919b09a24ea61b0f",
"type": "github"
},
"original": {
@ -36,20 +36,14 @@
},
"nixpkgs-lib": {
"locked": {
"dir": "lib",
"lastModified": 1711703276,
"narHash": "sha256-iMUFArF0WCatKK6RzfUJknjem0H9m4KgorO/p3Dopkk=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "d8fe5e6c92d0d190646fb9f1056741a229980089",
"type": "github"
"lastModified": 1714640452,
"narHash": "sha256-QBx10+k6JWz6u7VsohfSw8g8hjdBZEf8CFzXH1/1Z94=",
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/50eb7ecf4cd0a5756d7275c8ba36790e5bd53e33.tar.gz"
},
"original": {
"dir": "lib",
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/50eb7ecf4cd0a5756d7275c8ba36790e5bd53e33.tar.gz"
}
},
"root": {

View file

@ -113,7 +113,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
#if !defined(GGML_USE_HIPBLAS)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
@ -259,7 +259,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
};
// pool with virtual memory
#if !defined(GGML_USE_HIPBLAS)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
@ -356,7 +356,7 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
#endif // !defined(GGML_USE_HIPBLAS)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
#if !defined(GGML_USE_HIPBLAS)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
}
@ -2410,11 +2410,184 @@ GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
GGML_UNUSED(backend);
}
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
graph_node_properties->node_address = node->data;
graph_node_properties->node_op = node->op;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
graph_node_properties->ne[i] = node->ne[i];
graph_node_properties->nb[i] = node->nb[i];
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
}
}
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
if (node->data != graph_node_properties->node_address &&
node->op != GGML_OP_CPY &&
node->op != GGML_OP_VIEW) {
return false;
}
if (node->op != graph_node_properties->node_op) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (node->ne[i] != graph_node_properties->ne[i]) {
return false;
}
if (node->nb[i] != graph_node_properties->nb[i]) {
return false;
}
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node->src[i] &&
node->src[i]->data != graph_node_properties->src_address[i] &&
node->op != GGML_OP_CPY &&
node->op != GGML_OP_VIEW
) {
return false;
}
}
return true;
}
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_device(cuda_ctx->device);
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
// Objects required for CUDA Graph
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
bool use_cuda_graph = true;
bool cuda_graph_update_required = false;
// pointer to CUDA cpy kernel, which is required to identify
// kernel parameters which need updated in the graph for each token
void * ggml_cuda_cpy_fn_ptr = nullptr;
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
fprintf(stderr, "%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
}
}
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
// or previous graph capture failure.
// Also disable for multi-gpu for now. TO DO investigate
if (disable_cuda_graphs_due_to_env
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
use_cuda_graph = false;
}
if (use_cuda_graph) {
if (cuda_ctx->cuda_graph->instance == nullptr) {
cuda_graph_update_required = true;
}
// Check if the graph size has changed
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cuda_graph_update_required = true;
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
// and store properties to allow this comparison for the next token
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = true;
if (!cuda_graph_update_required) {
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
if (!has_matching_properties) {
cuda_graph_update_required = true;
}
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
fprintf(stderr, "%s: disabling CUDA graphs due to split buffer\n", __func__);
#endif
}
if (node->op == GGML_OP_MUL_MAT_ID) {
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
fprintf(stderr, "%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
#endif
}
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
// disable CUDA graphs for batch size > 1 for now.
// Changes in batch size or context size can cause changes to the grid size of some kernels.
use_cuda_graph = false;
#ifndef NDEBUG
fprintf(stderr, "%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
#endif
}
if (node->op == GGML_OP_CPY) {
// store the copy op parameter which changes with each token.
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
if (ggml_cuda_cpy_fn_ptr == nullptr) {
// store a pointer to the copy op CUDA kernel to identify it later
ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
}
}
if (!use_cuda_graph) {
break;
}
}
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (cuda_graph_update_required) {
cuda_ctx->cuda_graph->number_consecutive_updates++;
} else {
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
}
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
#ifndef NDEBUG
fprintf(stderr, "%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
#endif
}
}
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
#else
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
#endif // USE_CUDA_GRAPH
bool graph_evaluated_or_captured = false;
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
// With the use of CUDA graphs, the execution will be performed by the graph launch.
if (!use_cuda_graph || cuda_graph_update_required) {
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@ -2437,6 +2610,105 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
}
GGML_ASSERT(ok);
}
}
#ifdef USE_CUDA_GRAPH
if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
if (cuda_ctx->cuda_graph->graph != nullptr) {
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
cuda_ctx->cuda_graph->graph = nullptr;
}
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
#if 0
if (disable_cuda_graphs_due_to_failed_capture) {
use_cuda_graph = false;
cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
#ifndef NDEBUG
fprintf(stderr, "%s: disabling CUDA graphs due to failed graph capture\n", __func__);
#endif
} else {
graph_evaluated_or_captured = true; // CUDA graph has been captured
}
#endif
graph_evaluated_or_captured = true; // CUDA graph has been captured
} else {
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
}
}
if (use_cuda_graph) {
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
}
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
if (cuda_graph_update_required) {
// Extract nodes from graph
if (cuda_ctx->cuda_graph->num_nodes == 0) {
// First call with null argument gets number of nodes in graph
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
}
// Subsequent call with non-null argument gets nodes
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
if (cuda_ctx->cuda_graph->num_nodes > 0) {
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
// Loop over nodes, and extract kernel parameters from each node
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
cudaGraphNodeType node_type;
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
if (node_type == cudaGraphNodeTypeKernel) {
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
if (stat == cudaErrorInvalidDeviceFunction) {
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
// We don't need to update blas nodes, so clear error and move on.
cudaGetLastError();
} else {
GGML_ASSERT(stat == cudaSuccess);
}
}
}
}
}
// One of the arguments to the copy kernel is updated for each token, hence we need to
// replace that argument with the updated value in the CUDA graph
if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
int k = 0;
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
if (cuda_ctx->cuda_graph->params[i].func == ggml_cuda_cpy_fn_ptr) {
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
}
}
}
// Update graph executable
cudaGraphExecUpdateResultInfo result_info;
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
if (stat == cudaErrorGraphExecUpdateFailure) {
#ifndef NDEBUG
fprintf(stderr, "%s: CUDA graph update failed\n", __func__);
#endif
// The pre-existing graph exec cannot be updated due to violated constraints
// so instead clear error and re-instantiate
cudaGetLastError();
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
cuda_ctx->cuda_graph->instance = nullptr;
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
} else {
GGML_ASSERT(stat == cudaSuccess);
}
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
#else
graph_evaluated_or_captured = true;
#endif // USE_CUDA_GRAPH
}
return GGML_STATUS_SUCCESS;
}

View file

@ -31,5 +31,4 @@ void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
CUDA_CHECK(cudaGetLastError());
}

View file

@ -19,6 +19,7 @@
#include <cassert>
#include <cfloat>
#include <string>
#include <vector>
#if defined(GGML_USE_HIPBLAS)
#include <hip/hip_runtime.h>
@ -526,6 +527,43 @@ struct ggml_tensor_extra_gpu {
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
};
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
#define USE_CUDA_GRAPH
#endif
struct ggml_graph_node_properties {
void * node_address;
ggml_op node_op;
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
void * src_address[GGML_MAX_SRC];
};
struct ggml_cuda_graph {
#ifdef USE_CUDA_GRAPH
~ggml_cuda_graph() {
if (instance != nullptr) {
CUDA_CHECK(cudaGraphExecDestroy(instance));
}
if (graph != nullptr) {
CUDA_CHECK(cudaGraphDestroy(graph));
}
}
cudaGraph_t graph = nullptr;
cudaGraphExec_t instance = nullptr;
size_t num_nodes = 0;
std::vector<cudaGraphNode_t> nodes;
std::vector<cudaKernelNodeParams> params;
bool disable_due_to_gpu_arch = false;
bool disable_due_to_too_many_updates = false;
bool disable_due_to_failed_graph_capture = false;
int number_consecutive_updates = 0;
std::vector<ggml_graph_node_properties> ggml_graph_properties;
std::vector<char **> updated_kernel_arg;
#endif
};
struct ggml_backend_cuda_context {
int device;
std::string name;
@ -534,6 +572,8 @@ struct ggml_backend_cuda_context {
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
std::unique_ptr<ggml_cuda_graph> cuda_graph;
explicit ggml_backend_cuda_context(int device) :
device(device),
name(GGML_CUDA_NAME + std::to_string(device)) {

View file

@ -727,7 +727,6 @@ static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict_
}
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
int id;
switch (type) {
case GGML_TYPE_Q4_0:
return dequantize_row_q4_0_cuda;
@ -738,8 +737,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
case GGML_TYPE_Q5_1:
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
case GGML_TYPE_Q8_0:
CUDA_CHECK(cudaGetDevice(&id));
if (ggml_cuda_info().devices[id].cc >= CC_PASCAL) {
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) {
return dequantize_block_q8_0_f16_cuda;
}
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;

View file

@ -459,3 +459,32 @@ void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
ggml_cuda_cpy(ctx, src0, dst);
}
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f32_f32>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
return (void*) cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q5_0, QK5_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
return (void*) cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
return (void*) cpy_f32_q<cpy_blck_f32_q5_1, QK5_1>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false);
}
}

View file

@ -5,3 +5,5 @@
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);

View file

@ -1735,8 +1735,7 @@ static void ggml_mul_mat_q4_0_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -1780,8 +1779,7 @@ static void ggml_mul_mat_q4_1_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -1825,8 +1823,7 @@ static void ggml_mul_mat_q5_0_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -1870,8 +1867,7 @@ static void ggml_mul_mat_q5_1_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -1915,8 +1911,7 @@ static void ggml_mul_mat_q8_0_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -1960,8 +1955,7 @@ static void ggml_mul_mat_q2_K_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -2007,8 +2001,7 @@ static void ggml_mul_mat_q3_K_q8_1_cuda(
#if QK_K == 256
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -2053,8 +2046,7 @@ static void ggml_mul_mat_q4_K_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -2098,8 +2090,7 @@ static void ggml_mul_mat_q5_K_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;
@ -2143,8 +2134,7 @@ static void ggml_mul_mat_q6_K_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
int mmq_x, mmq_y, nwarps;

View file

@ -89,8 +89,7 @@ static void mul_mat_vec_q_cuda(
GGML_ASSERT(ncols_x % qk == 0);
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
int64_t nwarps = 1;
int64_t rows_per_cuda_block = 1;
@ -328,8 +327,7 @@ void ggml_cuda_op_mul_mat_vec_q(
const int64_t ne0 = dst->ne[0];
int id;
CUDA_CHECK(cudaGetDevice(&id));
int id = ggml_cuda_get_device();
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into

View file

@ -28,5 +28,4 @@ void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
memcpy(&scale, dst->op_params, sizeof(float));
scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
CUDA_CHECK(cudaGetLastError());
}

View file

@ -17,6 +17,83 @@
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/**
* Converts brain16 to float32.
*
* The bfloat16 floating point format has the following structure:
*
* sign
*
* exponent
*
* mantissa
*
*
* 0b0000000000000000 brain16
*
* Since bf16 has the same number of exponent bits as a 32bit float,
* encoding and decoding numbers becomes relatively straightforward.
*
* sign
*
* exponent
*
* mantissa
*
*
* 0b00000000000000000000000000000000 IEEE binary32
*
* For comparison, the standard fp16 format has fewer exponent bits.
*
* sign
*
* exponent
*
* mantissa
*
*
* 0b0000000000000000 IEEE binary16
*
* @see IEEE 754-2008
*/
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
union {
float f;
uint32_t i;
} u;
u.i = (uint32_t)h.bits << 16;
return u.f;
}
/**
* Converts float32 to brain16.
*
* This function is binary identical to AMD Zen4 VCVTNEPS2BF16.
* Subnormals shall be flushed to zero, and NANs will be quiet.
* This code should vectorize nicely if using modern compilers.
*/
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
ggml_bf16_t h;
union {
float f;
uint32_t i;
} u;
u.f = s;
if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
h.bits = (u.i >> 16) | 64; /* force to quiet */
return h;
}
if (!(u.i & 0x7f800000)) { /* subnormal */
h.bits = (u.i & 0x80000000) >> 16; /* flush to zero */
return h;
}
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
return h;
}
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
#ifdef __cplusplus
extern "C" {
#endif

View file

@ -265,11 +265,20 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
static void * ggml_metal_host_malloc(size_t n) {
void * data = NULL;
#if TARGET_OS_OSX
kern_return_t err = vm_allocate((vm_map_t) mach_task_self(), (void *) &data, n, VM_FLAGS_ANYWHERE);
if (err != KERN_SUCCESS) {
GGML_METAL_LOG_ERROR("%s: error: vm_allocate failed\n", __func__);
return NULL;
}
#else
const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
if (result != 0) {
GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
return NULL;
}
#endif
return data;
}
@ -803,7 +812,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_GET_ROWS:
{
return op->ne[3] == 1;
return op->src[0]->type != GGML_TYPE_BF16 && op->ne[3] == 1;
}
default:
return false;
@ -2840,7 +2849,11 @@ GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_
ggml_backend_metal_free_device();
if (ctx->owned) {
#if TARGET_OS_OSX
vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ctx->all_data, ctx->all_size);
#else
free(ctx->all_data);
#endif
}
free(ctx);
@ -2944,14 +2957,16 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff
ctx->owned = true;
ctx->n_buffers = 1;
if (ctx->all_data != NULL) {
ctx->buffers[0].data = ctx->all_data;
ctx->buffers[0].size = size;
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
length:size_aligned
options:MTLResourceStorageModeShared
deallocator:nil];
}
if (ctx->buffers[0].metal == nil) {
if (ctx->all_data == NULL || ctx->buffers[0].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
free(ctx);
ggml_backend_metal_free_device();

View file

@ -2175,7 +2175,7 @@ kernel void kernel_flash_attn_ext_f16(
const short D4 = D/4;
const short D8 = D/8;
const short Q8 = Q/8;
//const short Q8 = Q/8;
const short NW = N_SIMDWIDTH;
const short SH = (C + Q); // shared memory per simdgroup in (half)

View file

@ -12450,6 +12450,24 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
const size_t nb = nbytes/ggml_type_size(type);
switch (type) {
case GGML_TYPE_BF16:
{
int nans = 0;
int infs = 0;
const unsigned short * f = (const unsigned short *) data;
for (size_t i = 0; i < nb; ++i) {
nans += (f[i] & 0x7fff) > 0x7f80;
infs += (f[i] & 0x7fff) == 0x7f80;
}
if (nans) {
fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
return false;
}
if (infs) {
fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
return false;
}
} break;
case GGML_TYPE_F16:
{
const ggml_fp16_t * f = (const ggml_fp16_t *) data;

1031
ggml.c

File diff suppressed because it is too large Load diff

20
ggml.h
View file

@ -326,14 +326,20 @@ extern "C" {
// get ggml_status name string
GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
// ieee 754-2008 half-precision float16
// todo: make this not an integral type
typedef uint16_t ggml_fp16_t;
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
// convert FP16 <-> FP32
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n);
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n);
// google brain half-precision bfloat16
typedef struct { uint16_t bits; } ggml_bf16_t;
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
struct ggml_object;
struct ggml_context;
@ -370,6 +376,7 @@ extern "C" {
GGML_TYPE_I64 = 27,
GGML_TYPE_F64 = 28,
GGML_TYPE_IQ1_M = 29,
GGML_TYPE_BF16 = 30,
GGML_TYPE_COUNT,
};
@ -410,6 +417,7 @@ extern "C" {
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
};
// available tensor operations:

View file

@ -817,6 +817,7 @@ class GGMLQuantizationType(IntEnum):
I64 = 27
F64 = 28
IQ1_M = 29
BF16 = 30
class GGUFEndian(IntEnum):
@ -888,6 +889,7 @@ GGML_QUANT_SIZES = {
GGMLQuantizationType.I64: (1, 8),
GGMLQuantizationType.F64: (1, 8),
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
GGMLQuantizationType.BF16: (1, 2),
}

View file

@ -51,7 +51,7 @@ single-line ::= [^\n]+ "\n"`
## Sequences and Alternatives
The order of symbols in a sequence matter. For example, in `"1. " move " " move "\n"`, the `"1. "` must come before the first `move`, etc.
The order of symbols in a sequence matters. For example, in `"1. " move " " move "\n"`, the `"1. "` must come before the first `move`, etc.
Alternatives, denoted by `|`, give different sequences that are acceptable. For example, in `move ::= pawn | nonpawn | castle`, `move` can be a `pawn` move, a `nonpawn` move, or a `castle`.

View file

@ -3175,6 +3175,7 @@ struct llama_model_loader {
switch (type_max) {
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
@ -3666,6 +3667,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
switch (ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
@ -4386,6 +4388,18 @@ static void llm_load_vocab(
} else if (
tokenizer_pre == "refact") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
} else if (
tokenizer_pre == "command-r") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
} else if (
tokenizer_pre == "qwen2") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
} else if (
tokenizer_pre == "olmo") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
} else if (
tokenizer_pre == "dbrx") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}
@ -6123,6 +6137,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|| !(
model.ftype == LLAMA_FTYPE_ALL_F32 ||
model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
)
@ -12191,6 +12206,7 @@ struct llm_tokenizer_bpe {
case LLAMA_VOCAB_TYPE_BPE:
switch (vocab.type_pre) {
case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
case LLAMA_VOCAB_PRE_TYPE_DBRX:
word_collection = unicode_regex_split(text, {
// original regex from tokenizer.json
//"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
@ -12238,16 +12254,25 @@ struct llm_tokenizer_bpe {
break;
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
case LLAMA_VOCAB_PRE_TYPE_REFACT:
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
word_collection = unicode_regex_split(text, {
"\\p{N}",
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
});
break;
case LLAMA_VOCAB_PRE_TYPE_GPT2:
case LLAMA_VOCAB_PRE_TYPE_OLMO:
word_collection = unicode_regex_split(text, {
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
});
break;
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
word_collection = unicode_regex_split(text, {
// original regex from tokenizer.json
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
});
break;
default:
// default regex for BPE tokenization pre-processing
word_collection = unicode_regex_split(text, {
@ -14150,13 +14175,16 @@ static void llama_tensor_dequantize_internal(
if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
}
} else if (tensor->type != GGML_TYPE_F16) {
} else if (tensor->type != GGML_TYPE_F16 &&
tensor->type != GGML_TYPE_BF16) {
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
}
if (nthread < 2) {
if (tensor->type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
} else if (tensor->type == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
} else if (ggml_is_quantized(tensor->type)) {
qtype.to_float(tensor->data, f32_output, nelements);
} else {
@ -14165,7 +14193,14 @@ static void llama_tensor_dequantize_internal(
return;
}
size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
size_t block_size;
if (tensor->type == GGML_TYPE_F16 ||
tensor->type == GGML_TYPE_BF16) {
block_size = 1;
} else {
block_size = (size_t)ggml_blck_size(tensor->type);
}
size_t block_size_bytes = ggml_type_size(tensor->type);
GGML_ASSERT(nelements % block_size == 0);
@ -14184,6 +14219,8 @@ static void llama_tensor_dequantize_internal(
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else if (typ == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
} else {
qtype.to_float(inbuf, outbuf, nels);
}
@ -14544,6 +14581,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
// K-quants

View file

@ -80,6 +80,10 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 10,
LLAMA_VOCAB_PRE_TYPE_OLMO = 11,
LLAMA_VOCAB_PRE_TYPE_DBRX = 12,
};
// note: these values should be synchronized with ggml_rope
@ -135,6 +139,7 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};

Binary file not shown.

View file

@ -0,0 +1,106 @@
ied 4 ½ months
__ggml_vocab_test__
Führer
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
this is 🦙.cpp
__ggml_vocab_test__
w048 7tuijk dsdfhu
__ggml_vocab_test__
нещо на Български
__ggml_vocab_test__
កាន់តែពិសេសអាចខលចេញ
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
Hello
__ggml_vocab_test__
(
__ggml_vocab_test__
=
__ggml_vocab_test__
' era
__ggml_vocab_test__
Hello, y'all! How are you 😁 ?我想在apple工作1314151天
__ggml_vocab_test__
3
__ggml_vocab_test__
33
__ggml_vocab_test__
333
__ggml_vocab_test__
3333
__ggml_vocab_test__
33333
__ggml_vocab_test__
333333
__ggml_vocab_test__
3333333
__ggml_vocab_test__
33333333
__ggml_vocab_test__
333333333
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL
__ggml_vocab_test__

View file

@ -0,0 +1,43 @@
2536 228 27 228 22957 6983
45 193433
228
1667
1742
205
206
2126
11516
34777
28339 3845
46609 3845
28339 3930
46609 3930
46609 3930 8
28339 19 3845 8
46609 19 3845 8
2075 1801 11254 107 255 21 19317
94 23 27 31 228 30 21213 20752 39267 6405 9980
4929 40071 2196 3236 8750 1764 37097 41168
38111 230 174833 38111 249 86325 241 38111 245 86325 232 38111 252 38111 123 38111 261 165 24629 38111 261 38111 103 174833 38111 235 38111 231 38111 257 38111 235 165 24629 38111 239
2226 256 230 1737 18258 16 80503 122 35927 2226 242 112 57462 1737 54457 223165 106230 2096 16 48389 1737 10203 109160 1875 2222 2517 3342 12523 16
28339
46609
228 46609
1667 46609
1742 46609
1742 46609 1856 46609
1737
206 1857
14 4515
28339 19 1770 14 1954 8 4070 1955 1933 80503 231 5691 12081 13336 2648 29325 14315 24 26 24 27 24 28 24 5123 18372
26
26 26
26 26 26
26 26 26 26
26 26 26 26 26
26 26 26 26 26 26
26 26 26 26 26 26 26
26 26 26 26 26 26 26 26
26 26 26 26 26 26 26 26 26
127731 51628 205 57788 18494 97469 126134 206 2226 256 230 1737 18258 16 80503 122 35927 2226 242 112 57462 1737 54457 223165 106230 2096 16 48389 11254 107 255 2226 107 255 228 26 228 26 26 228 26 26 26 228 26 26 26 26 228 26 26 26 26 26 228 26 26 26 26 26 26 228 26 26 26 26 26 26 26 228 26 26 26 26 26 26 26 26 228 26 21 26 228 26 2271 26 228 26 3834 26 182018 230 174833 38111 249 86325 241 38111 245 86325 232 38111 252 38111 123 38111 261 165 24629 38111 261 38111 103 174833 38111 235 188568 231 5691 12081 13336 2648 29325 14315 24 26 24 27 24 28 24 5123 18372 8391 158343 3512 40071 2196 3236 8750 1764 37097 41168 29721 32797 25646 3802 4975 4975 116167 57178 10251 154048 27292 1767 5125 2632 2155 91 2378 1919 1914 2782 19 2155 3354 1933 5470 38 2155 52 2068 5470 1767 4961 3059 1894 19 2155 43 1933 3026 2725 23186 38 2930 14 20676 1671 14 83 51

Binary file not shown.

View file

@ -0,0 +1,106 @@
ied 4 ½ months
__ggml_vocab_test__
Führer
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
this is 🦙.cpp
__ggml_vocab_test__
w048 7tuijk dsdfhu
__ggml_vocab_test__
нещо на Български
__ggml_vocab_test__
កាន់តែពិសេសអាចខលចេញ
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
Hello
__ggml_vocab_test__
(
__ggml_vocab_test__
=
__ggml_vocab_test__
' era
__ggml_vocab_test__
Hello, y'all! How are you 😁 ?我想在apple工作1314151天
__ggml_vocab_test__
3
__ggml_vocab_test__
33
__ggml_vocab_test__
333
__ggml_vocab_test__
3333
__ggml_vocab_test__
33333
__ggml_vocab_test__
333333
__ggml_vocab_test__
3333333
__ggml_vocab_test__
33333333
__ggml_vocab_test__
333333333
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL
__ggml_vocab_test__

View file

@ -0,0 +1,43 @@
1122 220 19 220 26062 3951
37 50753 261
220
256
262
197
198
271
1406
1572
9707 1879
21927 1879
9707 4337
21927 4337
21927 4337 0
9707 11 1879 0
21927 11 1879 0
419 374 11162 99 247 13 10821
86 15 19 23 220 22 83 1963 41808 11472 2940 16739
78762 14144 1456 13073 63471 33594 3038 133178 79012
146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 147805 148301 147270 44258 223 146848
145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 320 3243 42365 429 702 1181 1828 3950 8
9707
21927
220 21927
256 21927
262 21927
262 21927 198 262 21927
320
198 284
6 11385
9707 11 379 64848 0 2585 525 498 26525 223 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216
18
18 18
18 18 18
18 18 18 18
18 18 18 18 18
18 18 18 18 18 18
18 18 18 18 18 18 18
18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 18
198 4710 14731 65497 7847 1572 2303 78672 10947 145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 11162 99 247 149955 220 18 220 18 18 220 18 18 18 220 18 18 18 18 220 18 18 18 18 18 220 18 18 18 18 18 18 220 18 18 18 18 18 18 18 220 18 18 18 18 18 18 18 18 220 18 13 18 220 18 496 18 220 18 1112 18 220 146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 144534 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216 55460 53237 18658 14144 1456 13073 63471 33594 3038 133178 79012 3355 4605 4605 13874 13874 73594 3014 3014 28149 17085 2928 26610 7646 358 3003 1012 364 83 813 566 594 1052 11 364 787 498 2704 30 364 44 537 2704 358 3278 1281 432 11 364 35 498 1075 1045 15243 30 1205 6 42612 264 63866 43

View file

@ -1,5 +1,5 @@
numpy~=1.24.4
sentencepiece~=0.1.98
transformers>=4.35.2,<5.0.0
transformers>=4.40.1,<5.0.0
gguf>=0.1.0
protobuf>=4.21.0,<5.0.0

View file

@ -93,11 +93,14 @@ help_s = (
"specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
)
parser.add_argument("-s", "--show", help=help_s)
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
known_args, unknown_args = parser.parse_known_args()
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
if unknown_args:
logger.error(f"Received unknown args: {unknown_args}.")
logger.error(f"Received unknown args: {unknown_args}.\n")
parser.print_help()
sys.exit(1)
@ -110,7 +113,7 @@ if input_file is None:
input_file = sqlite_files[0]
if input_file is None:
logger.error("Cannot find a suitable input file, please provide one.")
logger.error("Cannot find a suitable input file, please provide one.\n")
parser.print_help()
sys.exit(1)
@ -202,12 +205,12 @@ elif repo is not None:
hexsha8_baseline = find_parent_in_data(repo.heads.master.commit)
if hexsha8_baseline is None:
logger.error("No baseline was provided and did not find data for any master branch commits.")
logger.error("No baseline was provided and did not find data for any master branch commits.\n")
parser.print_help()
sys.exit(1)
else:
logger.error("No baseline was provided and the current working directory "
"is not part of a git repository from which a baseline could be inferred.")
"is not part of a git repository from which a baseline could be inferred.\n")
parser.print_help()
sys.exit(1)
@ -238,7 +241,7 @@ elif repo is not None:
break
if hexsha8_compare is None:
logger.error("No compare target was provided and did not find data for any non-master commits.")
logger.error("No compare target was provided and did not find data for any non-master commits.\n")
parser.print_help()
sys.exit(1)
else:
@ -361,7 +364,7 @@ if "gpu_info" in show:
headers = [PRETTY_NAMES[p] for p in show]
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
logger.info(tabulate(
print(tabulate( # noqa: NP100
table,
headers=headers,
floatfmt=".2f",

View file

@ -1,6 +1,3 @@
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=c++ ts=4 sts=4 sw=4 fenc=utf-8 :vi
//
// Copyright 2024 Mozilla Foundation
//
// Permission is hereby granted, free of charge, to any person obtaining
@ -585,11 +582,11 @@ class tinyBLAS_Q0_ARM {
};
#endif // __ARM_FEATURE_DOTPROD
#if defined(__AVX2__) || defined(__AVX512F__)
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
template <typename TA, typename TB, typename TC>
class tinyBLAS_Q0_AVX2 {
class tinyBLAS_Q0_AVX {
public:
tinyBLAS_Q0_AVX2(int64_t k,
tinyBLAS_Q0_AVX(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
@ -728,14 +725,34 @@ class tinyBLAS_Q0_AVX2 {
__m256 Cv[RN][RM] = {};
for (int64_t l = 0; l < k; ++l)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
unhalf(B[ldb * (jj + j) + l].d)),
updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
for (int64_t i = 0; i < RM; ++i) {
#if defined(__AVX2__)
__m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
load(A + lda * (ii + i) + l)),
_mm256_sign_epi8(load(B + ldb * (jj + j) + l),
load(A + lda * (ii + i) + l))),
load(A + lda * (ii + i) + l)));
#else
__m128i ali0 = load0(A + lda * (ii + i) + l);
__m128i ali1 = load1(A + lda * (ii + i) + l);
__m128i blj0 = load0(B + ldb * (jj + j) + l);
__m128i blj1 = load1(B + ldb * (jj + j) + l);
__m128i sepAA0 = _mm_sign_epi8(ali0, ali0);
__m128i sepAA1 = _mm_sign_epi8(ali1, ali1);
__m128i sepBA0 = _mm_sign_epi8(blj0, ali0);
__m128i sepBA1 = _mm_sign_epi8(blj1, ali1);
// updot
const __m128i oneFill = _mm_set1_epi16(1);
__m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0);
__m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1);
__m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0)));
#endif
Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
unhalf(B[ldb * (jj + j) + l].d)),
udTmp,
Cv[j][i]);
}
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
@ -746,10 +763,28 @@ class tinyBLAS_Q0_AVX2 {
return _mm256_loadu_si256((const __m256i *)b->qs);
}
inline __m128i load0(const block_q8_0 *b) {
return _mm_loadu_si128((const __m128i *)b->qs);
}
inline __m128i load1(const block_q8_0 *b) {
return _mm_loadu_si128(((const __m128i *)b->qs) + 1);
}
inline __m256i load(const block_q4_0 *b) {
return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
}
inline __m128i load0(const block_q4_0 *b) {
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8));
}
inline __m128i load1(const block_q4_0 *b) {
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8));
}
inline __m256 updot(__m256i u, __m256i s) {
__m256i res;
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
@ -777,7 +812,7 @@ class tinyBLAS_Q0_AVX2 {
const int ith;
const int nth;
};
#endif // __AVX2__
#endif // __AVX__
} // namespace
@ -928,8 +963,8 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
case GGML_TYPE_Q8_0: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__)
tinyBLAS_Q0_AVX2<block_q8_0, block_q8_0, float> tb{
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{
k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
@ -952,8 +987,8 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
case GGML_TYPE_Q4_0: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__)
tinyBLAS_Q0_AVX2<block_q4_0, block_q8_0, float> tb{
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{
k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,

View file

@ -83,6 +83,8 @@ llama_test(test-tokenizer-0 NAME test-tokenizer-0-bert-bge ARGS ${CMAKE
llama_test(test-tokenizer-0 NAME test-tokenizer-0-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
llama_test(test-tokenizer-0 NAME test-tokenizer-0-gpt-2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-2.gguf)
llama_test(test-tokenizer-0 NAME test-tokenizer-0-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
llama_test(test-tokenizer-0 NAME test-tokenizer-0-command-r ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-command-r.gguf)
llama_test(test-tokenizer-0 NAME test-tokenizer-0-qwen2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-qwen2.gguf)
# build test-tokenizer-1-bpe target once and add many tests
add_executable(test-tokenizer-1-bpe test-tokenizer-1-bpe.cpp)

View file

@ -50,7 +50,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
@ -92,6 +92,8 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
if (t->type == GGML_TYPE_F16) {
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
} else if (t->type == GGML_TYPE_BF16) {
tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
} else if (t->type == GGML_TYPE_F32) {
tv.push_back(*(float *) &buf[i]);
} else if (t->type == GGML_TYPE_I32) {
@ -1898,7 +1900,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
std::default_random_engine rng(0);
const ggml_type all_types[] = {
GGML_TYPE_F32, GGML_TYPE_F16,
GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0,

View file

@ -2,6 +2,7 @@
#undef NDEBUG
#endif
#include <cassert>
#include <fstream>
#include <sstream>
#include <regex>

View file

@ -13,7 +13,7 @@ fname_tok = args.fname_tok
tokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
print('tokenizing file: ', fname_tok)
print('tokenizing file: ', fname_tok) # noqa: NP100
fname_out = fname_tok + '.tok'
with open(fname_tok, 'r', encoding='utf-8') as f:
lines = f.readlines()
@ -21,7 +21,7 @@ with open(fname_tok, 'r', encoding='utf-8') as f:
t_start = time.time()
res = tokenizer.encode(s, add_special_tokens=False)
t_end = time.time()
print('\nmain : tokenized in', "{:.3f}".format(1000.0 * (t_end - t_start)), 'ms (py)')
print('\nmain : tokenized in', "{:.3f}".format(1000.0 * (t_end - t_start)), 'ms (py)') # noqa: NP100
with open(fname_out, 'w', encoding='utf-8') as f:
for x in res:
# LLaMA v3 for some reason strips the space for these tokens (and others)
@ -41,6 +41,6 @@ with open(fname_tok, 'r', encoding='utf-8') as f:
# f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n')
# f.write(str(x) + ' \'' + tokenizer.decode(x).strip() + '\'\n')
f.write(str(x) + '\n')
print('len(res): ', len(res))
print('len(lines): ', len(lines))
print('results written to: ', fname_out)
print('len(res): ', len(res)) # noqa: NP100
print('len(lines): ', len(lines)) # noqa: NP100
print('results written to: ', fname_out) # noqa: NP100