MobileVLM native implementation

This commit is contained in:
Chenxiaotao03 2024-01-15 15:30:54 +08:00
parent 4a3156de2f
commit ea6cdccea1
7 changed files with 939 additions and 26 deletions

53
android/adb_run.sh Executable file
View file

@ -0,0 +1,53 @@
#!/bin/bash
model_dir="/Users/cxt/model/llm/mobileVLM/MobileVLM-1.7B_processed"
projector_name="mmproj-model-f16.gguf"
llama_name="ggml-model-q4_k.gguf"
img_dir="/Users/cxt/model/llm"
img_name="demo.jpg"
prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
# img_name="cat.jpeg"
# prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
program_dir="build_64/bin"
binName="llava-cli"
n_threads=4
deviceDir="/data/local/tmp"
saveDir="output"
if [ ! -d ${saveDir} ]; then
mkdir ${saveDir}
fi
function android_run() {
# # copy resource into device
# adb push ${model_dir}/${projector_name} ${deviceDir}/${projector_name}
# adb push ${model_dir}/${llama_name} ${deviceDir}/${llama_name}
adb push ${img_dir}/${img_name} ${deviceDir}/${img_name}
# copy program into device
adb push ${program_dir}/${binName} ${deviceDir}/${binName}
adb shell "chmod 0777 ${deviceDir}/${binName}"
# run
adb shell "echo cd ${deviceDir} ${deviceDir}/${binName} \
-m ${deviceDir}/${llama_name} \
--mmproj ${deviceDir}/${projector_name} \
-t ${n_threads} \
--image ${deviceDir}/${img_name} \
-p \"${prompt}\" \
> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt"
adb shell "cd ${deviceDir}; pwd; ${deviceDir}/${binName} \
-m ${deviceDir}/${llama_name} \
--mmproj ${deviceDir}/${projector_name} \
-t ${n_threads} \
--image ${deviceDir}/${img_name} \
-p \"${prompt}\" \
>> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt 2>&1"
adb pull ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt ${saveDir}
}
android_run
echo "android_run is Done!"

8
android/build_64.sh Executable file
View file

@ -0,0 +1,8 @@
#!/bin/bash
cmake ../../ \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DCMAKE_BUILD_TYPE=Release \
-DANDROID_ABI="arm64-v8a" \
-DANDROID_PLATFORM=android-23
make -j4

View file

@ -0,0 +1,131 @@
# MobileVLM
Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants.
for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM)
The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava.
## Usage
Build with cmake or run `make llava-cli` to build it.
After building, run: `./llava-cli` to see the usage. For example:
```sh
./llava-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \
--mmproj MobileVLM-1.7B/mmproj-model-f16.gguf \
--image path/to/an/image.jpg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? Answer the question using a single word or phrase. ASSISTANT:"
```
## Model conversion
- Clone `mobileVLM-1.7B` and `clip-vit-large-patch14-336` locally:
```sh
git clone https://huggingface.co/mtgv/MobileVLM-1.7B
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```
2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B
```
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert-image-encoder-to-gguf \
-m path/to/clip-vit-large-patch14-336 \
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
--output-dir path/to/MobileVLM-1.7B \
--projector-type ldp
```
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./convert.py path/to/MobileVLM-1.7B
```
5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
```sh
./quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s
```
Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory.
## Android compile and run
### compile
refer to `android/build_64.sh`
```sh
mkdir android/build_64
cd android/build_64
../build_64.sh
```
### run on Android
refer to `android/adb_run.sh`, modify resources' `name` and `path`
## some result on Android with `Snapdragon 888` chip
### case 1
**input**
```sh
/data/local/tmp/llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
--image /data/local/tmp/demo.jpg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
```
**output**
```sh
encode_image_with_clip: image encoded in 21148.71 ms by CLIP ( 146.87 ms per image patch)
Susan Wise Bauer
llama_print_timings: load time = 23574.72 ms
llama_print_timings: sample time = 1.24 ms / 6 runs ( 0.21 ms per token, 4850.44 tokens per second)
llama_print_timings: prompt eval time = 12460.15 ms / 246 tokens ( 50.65 ms per token, 19.74 tokens per second)
llama_print_timings: eval time = 424.86 ms / 6 runs ( 70.81 ms per token, 14.12 tokens per second)
llama_print_timings: total time = 34731.93 ms
```
### case 2
**input**
```sh
/data/local/tmp/llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
--image /data/local/tmp/cat.jpeg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
```
**output**
```sh
encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch)
The image depicts a cat sitting in the grass near some tall green plants.
llama_print_timings: load time = 23257.32 ms
llama_print_timings: sample time = 5.25 ms / 18 runs ( 0.29 ms per token, 3430.53 tokens per second)
llama_print_timings: prompt eval time = 11900.73 ms / 232 tokens ( 51.30 ms per token, 19.49 tokens per second)
llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 ms per token, 14.07 tokens per second)
llama_print_timings: total time = 34570.79 ms
```
## Minor shortcomings
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.
## TODO
- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
- [ ] Optimize LDP projector performance
- Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`;
- Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc.
- [ ] run MobileVLM on `Jetson Orin`
- [ ] Support more model variants, such as `MobileVLM-3B`.
## contributor
```sh
zhangjidong05, yangyang260, huyiming03, chenxiaotao03
```

View file

@ -12,6 +12,7 @@
#include <regex> #include <regex>
#include <stdexcept> #include <stdexcept>
#include <vector> #include <vector>
#include <sstream>
#include "clip.h" #include "clip.h"
#include "ggml.h" #include "ggml.h"
@ -67,6 +68,7 @@ static std::string format(const char * fmt, ...) {
#define KEY_PATCH_SIZE "clip.vision.patch_size" #define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean" #define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std" #define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
// //
// tensor name constants // tensor name constants
@ -89,6 +91,21 @@ static std::string format(const char * fmt, ...) {
#define TN_TEXT_PROJ "text_projection.weight" #define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight" #define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s" #define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_UNKNOWN,
};
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
};
// //
// utilities to get data from a gguf file // utilities to get data from a gguf file
@ -129,6 +146,91 @@ static std::string get_ftype(int ftype) {
return ggml_type_name(static_cast<ggml_type>(ftype)); return ggml_type_name(static_cast<ggml_type>(ftype));
} }
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return format("unknown type %d", type);
}
}
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
std::string result;
for (size_t pos = 0; ; pos += search.length()) {
auto new_pos = s.find(search, pos);
if (new_pos == std::string::npos) {
result += s.substr(pos, s.size() - pos);
break;
}
result += s.substr(pos, new_pos - pos) + replace;
pos = new_pos;
}
s = std::move(result);
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
replace_all(val, "\\", "\\\\");
replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
static void print_tensor_info(const ggml_tensor* tensor, const char* prefix = "") {
size_t tensor_size = ggml_nbytes(tensor);
printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%d, %d, %d, %d], type: %d\n",
prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->type);
}
static projector_type clip_projector_type_from_string(const std::string & name) {
for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
if (kv.second == name) {
return kv.first;
}
}
return PROJECTOR_TYPE_UNKNOWN;
}
// //
// image data // image data
// //
@ -205,6 +307,32 @@ struct clip_vision_model {
struct ggml_tensor * mm_0_b; struct ggml_tensor * mm_0_b;
struct ggml_tensor * mm_2_w; struct ggml_tensor * mm_2_w;
struct ggml_tensor * mm_2_b; struct ggml_tensor * mm_2_b;
// MobileVLM projection
struct ggml_tensor * mm_model_mlp_1_w;
struct ggml_tensor * mm_model_mlp_1_b;
struct ggml_tensor * mm_model_mlp_3_w;
struct ggml_tensor * mm_model_mlp_3_b;
struct ggml_tensor * mm_model_block_1_block_0_0_w;
struct ggml_tensor * mm_model_block_1_block_0_1_w;
struct ggml_tensor * mm_model_block_1_block_0_1_b;
struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
struct ggml_tensor * mm_model_block_1_block_2_0_w;
struct ggml_tensor * mm_model_block_1_block_2_1_w;
struct ggml_tensor * mm_model_block_1_block_2_1_b;
struct ggml_tensor * mm_model_block_2_block_0_0_w;
struct ggml_tensor * mm_model_block_2_block_0_1_w;
struct ggml_tensor * mm_model_block_2_block_0_1_b;
struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
struct ggml_tensor * mm_model_block_2_block_2_0_w;
struct ggml_tensor * mm_model_block_2_block_2_1_w;
struct ggml_tensor * mm_model_block_2_block_2_1_b;
}; };
struct clip_ctx { struct clip_ctx {
@ -213,6 +341,7 @@ struct clip_ctx {
bool has_llava_projector = false; bool has_llava_projector = false;
struct clip_vision_model vision_model; struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
float image_mean[3]; float image_mean[3];
float image_std[3]; float image_std[3];
@ -430,9 +559,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
free(patches_data); free(patches_data);
} }
// shape [1, 576, 1024]
// ne is whcn, ne = [1024, 576, 1, 1]
embeddings = ggml_get_rows(ctx0, embeddings, patches); embeddings = ggml_get_rows(ctx0, embeddings, patches);
// mm projection 0 // print_tensor_info(embeddings, "embeddings");
// llava projector
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
@ -441,6 +575,117 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
} }
else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projector
int n_patch = 24;
struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
mlp_1 = ggml_gelu(ctx0, mlp_1);
struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
// transpose from [1, 576, 2048] --> [1, 24, 24, 2048] --> [1, 2048, 24, 24]
mlp_3 = ggml_reshape_4d(ctx0, mlp_3, mlp_3->ne[0], n_patch, n_patch, mlp_3->ne[3]);
// permute logic is src idxs 0,1,2,3 perm to dst idxs
mlp_3 = ggml_permute_cpy(ctx0, mlp_3, 2, 0, 1, 3);
// mlp_3 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// block 1
struct ggml_tensor * block_1 = nullptr;
{
// stride = 1, padding = 1, bias is nullptr
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, nullptr, 1, 1, 1, 1, 1, 1);
// layer norm
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
block_1 = ggml_permute_cpy(ctx0, block_1, 1, 2, 0, 3);
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
block_1 = ggml_permute_cpy(ctx0, block_1, 2, 0, 1, 3);
// block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// hardswish
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
// block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
struct ggml_tensor* block_2_0_w_4d = ggml_reshape_4d(ctx0, model.mm_model_block_1_block_2_0_w, 1, 1,
model.mm_model_block_1_block_2_0_w->ne[0], model.mm_model_block_1_block_2_0_w->ne[1]);
block_1 = ggml_conv_2d(ctx0, block_2_0_w_4d, block_1, 1, 1, 0, 0, 1, 1);
// layernorm
block_1 = ggml_permute_cpy(ctx0, block_1, 1, 2, 0, 3);
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
block_1 = ggml_permute_cpy(ctx0, block_1, 2, 0, 1, 3);
// block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// residual
block_1 = ggml_add(ctx0, mlp_3, block_1);
}
// block_2
{
// stride = 2
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, nullptr, 2, 2, 1, 1, 1, 1);
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// layer norm
block_1 = ggml_permute_cpy(ctx0, block_1, 1, 2, 0, 3);
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
block_1 = ggml_permute_cpy(ctx0, block_1, 2, 0, 1, 3);
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// hardswish
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
// not sure the parameters is right for globalAvgPooling
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
struct ggml_tensor* block_2_0_w_4d = ggml_reshape_4d(ctx0, model.mm_model_block_2_block_2_0_w, 1, 1,
model.mm_model_block_2_block_2_0_w->ne[0], model.mm_model_block_1_block_2_0_w->ne[1]);
block_1 = ggml_conv_2d(ctx0, block_2_0_w_4d, block_1, 1, 1, 0, 0, 1, 1);
// layernorm
block_1 = ggml_permute_cpy(ctx0, block_1, 1, 2, 0, 3);
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
// block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
}
embeddings = block_1;
}
else {
GGML_ASSERT(false);
}
}
// build the graph // build the graph
ggml_build_forward_expand(gf, embeddings); ggml_build_forward_expand(gf, embeddings);
@ -485,16 +730,55 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("\n"); printf("\n");
} }
const int n_tensors = gguf_get_n_tensors(ctx); const int n_tensors = gguf_get_n_tensors(ctx);
// kv // kv
if (verbosity >= 3) {
const int n_kv = gguf_get_n_kv(ctx); const int n_kv = gguf_get_n_kv(ctx);
printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
__func__, n_kv, n_tensors, fname);
{
std::map<enum ggml_type, uint32_t> n_type;
for (int i = 0; i < n_kv; ++i) { uint32_t n_type_max = 0;
const char * key = gguf_get_key(ctx, i); enum ggml_type type_max = GGML_TYPE_F32;
printf("%s: kv[%d]: key = %s\n", __func__, i, key); for (int i = 0; i < n_tensors; i++) {
enum ggml_type type = gguf_get_tensor_type(ctx, i);
n_type[type]++;
if (n_type_max < n_type[type]) {
n_type_max = n_type[type];
type_max = type;
}
}
printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(ctx, i);
const enum gguf_type type = gguf_get_kv_type(ctx, i);
const std::string type_name =
type == GGUF_TYPE_ARRAY
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
: gguf_type_name(type);
std::string value = gguf_kv_to_str(ctx, i);
const size_t MAX_VALUE_LEN = 40;
if (value.size() > MAX_VALUE_LEN) {
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
}
replace_all(value, "\n", "\\n");
printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
}
// print type counts
for (auto & kv : n_type) {
if (kv.second == 0) {
continue;
}
printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
} }
printf("\n");
} }
// data // data
@ -503,20 +787,35 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
for (int i = 0; i < n_tensors; ++i) { for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i); const char * name = gguf_get_tensor_name(ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i);
enum ggml_type type = gguf_get_tensor_type(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(meta, name); struct ggml_tensor * cur = ggml_get_tensor(meta, name);
size_t tensor_size = ggml_nbytes(cur); size_t tensor_size = ggml_nbytes(cur);
buffer_size += tensor_size; buffer_size += tensor_size;
if (verbosity >= 3) { if (verbosity >= 3) {
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu\n", __func__, i, printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%d, %d, %d, %d], type: %d\n", __func__, i,
ggml_n_dims(cur), cur->name, tensor_size, offset); ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], type);
} }
} }
} }
buffer_size += n_tensors * 128 /* CLIP PADDING */; buffer_size += n_tensors * 128 /* CLIP PADDING */;
clip_ctx * new_clip = new clip_ctx; clip_ctx * new_clip = new clip_ctx;
// update projector type
{
int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
if (idx != -1) {
const std::string proj_type = gguf_get_val_str(ctx, idx);
new_clip->proj_type = clip_projector_type_from_string(proj_type);
}
else {
new_clip->proj_type = PROJECTOR_TYPE_MLP;
}
}
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUBLAS
new_clip->backend = ggml_backend_cuda_init(0); new_clip->backend = ggml_backend_cuda_init(0);
printf("%s: CLIP using CUDA backend\n", __func__); printf("%s: CLIP using CUDA backend\n", __func__);
@ -661,10 +960,45 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
// LLaVA projection
if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
}
else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projection
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
}
else {
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
}
vision_model.layers.resize(hparams.n_layer); vision_model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) { for (int il = 0; il < hparams.n_layer; ++il) {
@ -1100,13 +1434,25 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
} }
int clip_n_mmproj_embd(const struct clip_ctx * ctx) { int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
}
else if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
return ctx->vision_model.mm_2_b->ne[0]; return ctx->vision_model.mm_2_b->ne[0];
} }
else {
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
}
}
int clip_n_patches(const struct clip_ctx * ctx) { int clip_n_patches(const struct clip_ctx * ctx) {
auto & params = ctx->vision_model.hparams; auto & params = ctx->vision_model.hparams;
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
return (params.image_size / params.patch_size) * (params.image_size / params.patch_size); if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
n_patches /= 4;
}
return n_patches;
} }
size_t clip_embd_nbytes(const struct clip_ctx * ctx) { size_t clip_embd_nbytes(const struct clip_ctx * ctx) {

View file

@ -81,6 +81,7 @@ ap.add_argument("--vision-only", action="store_true", required=False,
ap.add_argument("--clip_model_is_vision", action="store_true", required=False, ap.add_argument("--clip_model_is_vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp", choices=["mlp", "ldp"], default="mlp")
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values") ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values") ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
@ -174,6 +175,8 @@ elif args.vision_only and not has_llava_projector:
fout.add_description("vision-only CLIP model") fout.add_description("vision-only CLIP model")
elif has_llava_projector: elif has_llava_projector:
fout.add_description("image encoder for LLaVA") fout.add_description("image encoder for LLaVA")
# add projector type
fout.add_string("clip.projector_type", args.projector_type)
else: else:
fout.add_description("two-tower CLIP model") fout.add_description("two-tower CLIP model")
@ -218,7 +221,8 @@ if has_llava_projector:
projector = torch.load(args.llava_projector) projector = torch.load(args.llava_projector)
for name, data in projector.items(): for name, data in projector.items():
name = get_tensor_name(name) name = get_tensor_name(name)
if data.ndim == 2: # pw and dw conv ndim==4
if data.ndim == 2 or data.ndim == 4:
data = data.squeeze().numpy().astype(np.float16) data = data.squeeze().numpy().astype(np.float16)
else: else:
data = data.squeeze().numpy().astype(np.float32) data = data.squeeze().numpy().astype(np.float32)

345
ggml.c
View file

@ -1424,6 +1424,9 @@ inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) {
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; } inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); } inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
// TODO: optimize performance
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
static const float GELU_COEF_A = 0.044715f; static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f; static const float GELU_QUICK_COEF = -1.702f;
@ -1647,6 +1650,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CLAMP", "CLAMP",
"CONV_TRANSPOSE_1D", "CONV_TRANSPOSE_1D",
"IM2COL", "IM2COL",
"CONV_DEPTHWISE_2D",
"CONV_TRANSPOSE_2D", "CONV_TRANSPOSE_2D",
"POOL_1D", "POOL_1D",
"POOL_2D", "POOL_2D",
@ -1680,7 +1684,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
}; };
static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72"); static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -1734,6 +1738,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"conv_transpose_1d(x)", "conv_transpose_1d(x)",
"im2col(x)", "im2col(x)",
"conv_transpose_2d(x)", "conv_transpose_2d(x)",
"conv_depthwise_2d(x)",
"pool_1d(x)", "pool_1d(x)",
"pool_2d(x)", "pool_2d(x)",
"upscale(x)", "upscale(x)",
@ -1766,7 +1771,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
}; };
static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72"); static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -1782,9 +1787,11 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"GELU", "GELU",
"GELU_QUICK", "GELU_QUICK",
"SILU", "SILU",
"HARDSWISH",
"HARDSIGMOID",
}; };
static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10"); static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
@ -3951,6 +3958,20 @@ struct ggml_tensor * ggml_silu_back(
return result; return result;
} }
// ggml hardswish
struct ggml_tensor * ggml_hardswish(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
}
// ggml hardsigmoid
struct ggml_tensor * ggml_hardsigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
}
// ggml_norm // ggml_norm
static struct ggml_tensor * ggml_norm_impl( static struct ggml_tensor * ggml_norm_impl(
@ -4759,6 +4780,24 @@ struct ggml_tensor * ggml_permute(
return result; return result;
} }
// some operations don't support permuted tensor, so we need to copy it, to avoid this case
struct ggml_tensor * ggml_permute_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3) {
struct ggml_tensor * result = ggml_permute(ctx, a, axis0, axis1, axis2, axis3);
// new 4d tensor
struct ggml_tensor* tensor = ggml_new_tensor_4d(ctx, a->type, result->ne[0], result->ne[1], result->ne[2], result->ne[3]);
struct ggml_tensor* cpy = ggml_cpy(ctx, result, tensor);
return cpy;
}
// ggml_transpose // ggml_transpose
struct ggml_tensor * ggml_transpose( struct ggml_tensor * ggml_transpose(
@ -5350,6 +5389,52 @@ GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
return result; return result;
} }
// ggml_conv_depthwise
struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
const int64_t ne[4] = {
OW,
OH,
b->ne[2],
b->ne[3],
};
// GGML_ASSERT(a->ne[3] == b->ne[2]);
// GGML_ASSERT(a->ne[2] == 1);
// weight ne: [KW, KH, OC, 1]
GGML_ASSERT(a->ne[2] == b->ne[2]);
GGML_ASSERT(a->ne[3] == 1);
bool is_node = false;
/*
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
*/
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, s1, p0, p1, d0, d1 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CONV_DEPTHWISE_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
// ggml_conv_2d // ggml_conv_2d
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
@ -9339,6 +9424,87 @@ static void ggml_compute_forward_silu_back(
} }
} }
static void ggml_compute_forward_hardswish_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_hardswish_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_hardswish(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_hardswish_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_hardsigmoid_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_hardsigmoid_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_hardsigmoid(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_norm // ggml_compute_forward_norm
static void ggml_compute_forward_norm_f32( static void ggml_compute_forward_norm_f32(
@ -12363,6 +12529,160 @@ static void ggml_compute_forward_im2col(
} }
} }
static void ggml_compute_forward_conv_depthwise_2d_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * src2,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
// total patches in dst
const int np = ne2;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
const int32_t stride_h = ggml_get_op_params_i32(dst, 0);
const int32_t stride_w = ggml_get_op_params_i32(dst, 1);
const int32_t pad_h = ggml_get_op_params_i32(dst, 2);
const int32_t pad_w = ggml_get_op_params_i32(dst, 3);
const int32_t dilation_h = ggml_get_op_params_i32(dst, 4);
const int32_t dilation_w = ggml_get_op_params_i32(dst, 5);
float* weight = (float*)(src0->data);
float* input = (float*)(src1->data);
// float* bias = (float*)(src2->data);
float* output = (float*)(dst->data);
for (int b = 0; b < ne13; ++b) {
for (int o_c = ip0; o_c < ip1; ++o_c) {
for (int o_h = 0; o_h < ne1; ++o_h) {
for (int o_w = 0; o_w < ne0; ++o_w) {
float result_data = 0;
int g = o_c;
int i_c = g;
for (int k_h = 0; k_h < ne01; ++k_h) {
for (int k_w = 0; k_w < ne00; ++k_w) {
int i_h = o_h * stride_h - pad_h + k_h * dilation_h;
int i_w = o_w * stride_w - pad_w + k_w * dilation_w;
if (i_h < 0 || i_h >= ne11 || i_w < 0 || i_w >= ne10) {
continue;
}
float input_data = input[((b * ne12 + i_c) * ne11 + i_h) * ne10 + i_w];
float weight_data = weight[(g * ne01 + k_h) * ne00 + k_w];
result_data += input_data * weight_data;
}
}
// output[((b * ne2 + o_c) * ne1 + o_h) * ne0 + o_w] = result_data + bias[o_c];
output[((b * ne2 + o_c) * ne1 + o_h) * ne0 + o_w] = result_data;
}
}
}
}
}
static void ggml_compute_forward_conv_depthwise_2d_f16_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * src2,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
// total patches in dst
const int np = ne2;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
const int32_t stride_h = ggml_get_op_params_i32(dst, 0);
const int32_t stride_w = ggml_get_op_params_i32(dst, 1);
const int32_t pad_h = ggml_get_op_params_i32(dst, 2);
const int32_t pad_w = ggml_get_op_params_i32(dst, 3);
const int32_t dilation_h = ggml_get_op_params_i32(dst, 4);
const int32_t dilation_w = ggml_get_op_params_i32(dst, 5);
ggml_fp16_t* weight = (ggml_fp16_t*)(src0->data);
float* input = (float*)(src1->data);
// float* bias = (float*)(src2->data);
float* output = (float*)(dst->data);
for (int b = 0; b < ne13; ++b) {
for (int o_c = ip0; o_c < ip1; ++o_c) {
for (int o_h = 0; o_h < ne1; ++o_h) {
for (int o_w = 0; o_w < ne0; ++o_w) {
float result_data = 0;
int g = o_c;
int i_c = g;
for (int k_h = 0; k_h < ne01; ++k_h) {
for (int k_w = 0; k_w < ne00; ++k_w) {
int i_h = o_h * stride_h - pad_h + k_h * dilation_h;
int i_w = o_w * stride_w - pad_w + k_w * dilation_w;
if (i_h < 0 || i_h >= ne11 || i_w < 0 || i_w >= ne10) {
continue;
}
float input_data = input[((b * ne12 + i_c) * ne11 + i_h) * ne10 + i_w];
float weight_data = GGML_FP16_TO_FP32(weight[(g * ne01 + k_h) * ne00 + k_w]);
result_data += input_data * weight_data;
}
}
// output[((b * ne2 + o_c) * ne1 + o_h) * ne0 + o_w] = result_data + bias[o_c];
output[((b * ne2 + o_c) * ne1 + o_h) * ne0 + o_w] = result_data;
}
}
}
}
}
static void ggml_compute_forward_conv_depthwise_2d(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * src2,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_conv_depthwise_2d_f32(params, src0, src1, src2, dst);
} break;
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_conv_depthwise_2d_f16_f32(params, src0, src1, src2, dst);
} else {
GGML_ASSERT(false);
}
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_conv_transpose_2d // ggml_compute_forward_conv_transpose_2d
static void ggml_compute_forward_conv_transpose_2d( static void ggml_compute_forward_conv_transpose_2d(
@ -13931,6 +14251,14 @@ static void ggml_compute_forward_unary(
{ {
ggml_compute_forward_silu(params, src0, dst); ggml_compute_forward_silu(params, src0, dst);
} break; } break;
case GGML_UNARY_OP_HARDSWISH:
{
ggml_compute_forward_hardswish(params, src0, dst);
} break;
case GGML_UNARY_OP_HARDSIGMOID:
{
ggml_compute_forward_hardsigmoid(params, src0, dst);
} break;
default: default:
{ {
GGML_ASSERT(false); GGML_ASSERT(false);
@ -14696,6 +15024,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor); ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
} break; } break;
case GGML_OP_CONV_DEPTHWISE_2D:
{
ggml_compute_forward_conv_depthwise_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
} break;
case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_CONV_TRANSPOSE_2D:
{ {
ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor); ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
@ -16344,6 +16676,8 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
{ {
n_tasks = 1; n_tasks = 1;
} break; } break;
@ -16430,6 +16764,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_CONV_DEPTHWISE_2D:
{
n_tasks = n_threads;
} break;
case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_CONV_TRANSPOSE_2D:
{ {
n_tasks = n_threads; n_tasks = n_threads;
@ -16576,7 +16914,6 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
// distribute new work or execute it direct if 1T // distribute new work or execute it direct if 1T
while (++node_n < cgraph->n_nodes) { while (++node_n < cgraph->n_nodes) {
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes); GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
struct ggml_tensor * node = cgraph->nodes[node_n]; struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = ggml_get_n_tasks(node, n_threads); const int n_tasks = ggml_get_n_tasks(node, n_threads);

34
ggml.h
View file

@ -433,6 +433,7 @@ extern "C" {
GGML_OP_CLAMP, GGML_OP_CLAMP,
GGML_OP_CONV_TRANSPOSE_1D, GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL, GGML_OP_IM2COL,
GGML_OP_CONV_DEPTHWISE_2D,
GGML_OP_CONV_TRANSPOSE_2D, GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D, GGML_OP_POOL_1D,
GGML_OP_POOL_2D, GGML_OP_POOL_2D,
@ -479,6 +480,8 @@ extern "C" {
GGML_UNARY_OP_GELU, GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK, GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU, GGML_UNARY_OP_SILU,
GGML_UNARY_OP_HARDSWISH,
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_COUNT, GGML_UNARY_OP_COUNT,
}; };
@ -1022,6 +1025,16 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b);
// hardswish(x) = x * relu6(x + 3) / 6
GGML_API struct ggml_tensor * ggml_hardswish(
struct ggml_context * ctx,
struct ggml_tensor * a);
// hardsigmoid(x) = relu6(x + 3) / 6
GGML_API struct ggml_tensor * ggml_hardsigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a);
// normalize along rows // normalize along rows
GGML_API struct ggml_tensor * ggml_norm( GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -1284,6 +1297,15 @@ extern "C" {
int axis2, int axis2,
int axis3); int axis3);
// some operations don't support permuted tensor, so we need to copy it, to avoid this case
GGML_API struct ggml_tensor * ggml_permute_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3);
// alias for ggml_permute(ctx, a, 1, 0, 2, 3) // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
GGML_API struct ggml_tensor * ggml_transpose( GGML_API struct ggml_tensor * ggml_transpose(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -1473,6 +1495,18 @@ extern "C" {
int d1, int d1,
bool is_2D); bool is_2D);
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
GGML_API struct ggml_tensor * ggml_conv_1d( GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,